Use of Psychotropics in COVID-19: Another Anti-inflammatory Pathway

Page: [137 - 146] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

The emergence of the novel coronavirus SARS-CoV-2 has significantly impacted the world's population, disrupting healthcare systems around the globe and leading to human and material losses. While different vaccines have been approved in record time, there continues to be a high number of daily new cases, and patients face a wide range of presentations of the disease, from asymptomatic to potentially fatal. Therefore, the search for therapeutic agents that can aid in the management and control of the disease has become one of the main goals for researchers and clinicians. As an inflammatory disease, targets for the treatment of COVID-19 have largely involved the immune system. Inflammation has also been associated with mental health disorders, and studies have shown the potential involvement of inflammatory pathways in the pathophysiology of depression. As a consequence, the hypothesis of using antidepressants and other psychotropics for the treatment of COVID-19 has emerged. In this review, we aim to summarize the molecular pathways that could be involved as well as the emergent evidence that has been reported by studies performed since the appearance of SARS-CoV-2 in 2019. While it has been observed that there are potential therapeutic pathways for the use of antidepressants in the treatment of COVID-19, additional studies are needed to evaluate the feasibility, safety, and efficacy of psychotropics in this disease.

Keywords: COVID-19, SARS-CoV-2, psychotropics, anti-inflammatory, antidepressants, sigma receptor 1.

[1]
Hoertel N, Sánchez-Rico M, Vernet R, Beeker N, Jannot A-S, Neuraz A. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: Results from an observational study. Mol Psychiatry 2021; 1-14.
[2]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the chinese center for disease control and prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[3]
Chu KH, Tsang WK, Tang CS, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int 2005; 67(2): 698-705.
[http://dx.doi.org/10.1111/j.1523-1755.2005.67130.x] [PMID: 15673319]
[4]
Zhang B, Zhou X, Qiu Y, Feng F, Feng J, Jia Y. Clinical characteristics of 82 death cases with COVID-19. Infectious Diseases (except HIV/AIDS) 2020.
[http://dx.doi.org/10.1101/2020.02.26.20028191]
[5]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[6]
Manjili RH, Zarei M, Habibi M, Manjili MH. COVID-19 as an acute inflammatory disease. JI 2020; 205(1): 12-9.
[7]
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46(5): 846-8.
[http://dx.doi.org/10.1007/s00134-020-05991-x] [PMID: 32125452]
[8]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[9]
Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145-7.
[http://dx.doi.org/10.1016/j.thromres.2020.04.013] [PMID: 32291094]
[10]
Zhang X, Yang X, Jiao H, Liu X. Coagulopathy in patients with COVID-19: A systematic review and meta-analysis. Aging (Albany NY) 2020; 12(24): 24535-51.
[http://dx.doi.org/10.18632/aging.104138] [PMID: 33229625]
[11]
Cheng L, Li H, Li L, Liu C, Yan S, Chen H. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Lab Anal 2020; 34(10)
[12]
Di Minno MND, Calcaterra I, Lupoli R, et al. Hemostatic changes in patients with COVID-19: A meta-analysis with meta-regressions. J Clin Med 2020; 9(7): E2244.
[http://dx.doi.org/10.3390/jcm9072244] [PMID: 32679766]
[13]
Liao D, Zhou F, Luo L, et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: A retrospective cohort study. Lancet Haematol 2020; 7(9): e671-8.
[http://dx.doi.org/10.1016/S2352-3026(20)30217-9] [PMID: 32659214]
[14]
Smadja DM, Mentzer SJ, Fontenay M, et al. COVID-19 is a systemic vascular hemopathy: Insight for mechanistic and clinical aspects. Angiogenesis 2021; 24(4): 755-88.
[http://dx.doi.org/10.1007/s10456-021-09805-6] [PMID: 34184164]
[15]
Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 2020; 18(5): 1023-6.
[http://dx.doi.org/10.1111/jth.14810] [PMID: 32338827]
[16]
Goswami J, MacArthur TA, Sridharan M, et al. A review of pathophysiology, clinical features, and management options of COVID-19 associated coagulopathy. Shock 2021; 55(6): 700-16.
[http://dx.doi.org/10.1097/SHK.0000000000001680] [PMID: 33378321]
[17]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395(10234): 1417-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[18]
Joly BS, Siguret V, Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med 2020; 46(8): 1603-6.
[http://dx.doi.org/10.1007/s00134-020-06088-1] [PMID: 32415314]
[19]
Rapkiewicz AV, Mai X, Carsons SE, et al. Megakaryocytes and platelet-fibrin thrombi characterize multiorgan thrombosis at autopsy in COVID-19: A case series. EClinicalMedicine 2020; 24: 100434.
[http://dx.doi.org/10.1016/j.eclinm.2020.100434] [PMID: 32766543]
[20]
Baumeister D, Ciufolini S, Mondelli V. Effects of psychotropic drugs on inflammation: Consequence or mediator of therapeutic effects in psychiatric treatment? Psychopharmacology (Berl) 2016; 233(9): 1575-89.
[http://dx.doi.org/10.1007/s00213-015-4044-5] [PMID: 26268146]
[21]
Al-Amin MM, Nasir Uddin MM, Mahmud Reza H. Effects of antipsychotics on the inflammatory response system of patients with schizophrenia in peripheral blood mononuclear cell cultures. Clin Psychopharmacol Neurosci 2013; 11(3): 144-51.
[http://dx.doi.org/10.9758/cpn.2013.11.3.144] [PMID: 24465251]
[22]
Li C, Wang A, Wu Y, Gulbins E, Grassmé H, Zhao Z. Acid sphingomyelinase-ceramide system in bacterial infections. Cell Physiol Biochem 2019; 52(2): 280-301.
[http://dx.doi.org/10.33594/000000021] [PMID: 30816675]
[23]
Henry B, Ziobro R, Becker KA, Kolesnick R, Gulbins E. Acid sphingomyelinase. Handb Exp Pharmacol 2013; 215: 77-88.
[http://dx.doi.org/10.1007/978-3-7091-1368-4_4] [PMID: 23579450]
[24]
Carpinteiro A, Gripp B, Hoffmann M, Pöhlmann S, Hoertel N, Edwards MJ. Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. Journal of Biological Chemistry 2021.
[25]
Carpinteiro A, Edwards MJ, Hoffmann M, Kochs G, Gripp B, Weigang S. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell Rep Med 2020.
[26]
Wang J, Pendurthi UR, Yi G, Rao LVM. SARS-CoV-2 infection induces the activation of tissue factor-mediated coagulation via activation of acid sphingomyelinase. Blood 2021; 138(4): 344-9.
[27]
Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother 2014; 58(8): 4885-93.
[http://dx.doi.org/10.1128/AAC.03036-14]
[28]
Rossino G, Rui M, Pozzetti L, et al. Setup and validation of a reliable docking protocol for the development of neuroprotective agents by targeting the sigma-1 receptor (S1R). Int J Mol Sci 2020; 21(20): E7708.
[http://dx.doi.org/10.3390/ijms21207708] [PMID: 33081037]
[29]
Su T-P, Su T-C, Nakamura Y, Tsai S-Y. The sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol Sci 2016; 37(4): 262-78.
[http://dx.doi.org/10.1016/j.tips.2016.01.003]
[30]
Papadopoulos KI, Sutheesophon W, Aw T-C. Anti-SARS-CoV-2 action of fluvoxamine may be mediated by endothelial nitric oxide synthase. Pharmacopsychiatry 2022; 55(1): 57.
[31]
Hashimoto K. Repurposing of CNS drugs to treat COVID-19 infection: targeting the sigma-1 receptor. Eur Arch Psychiatry Clin Neurosci 2021; 271(2): 249-58.
[http://dx.doi.org/10.1007/s00406-020-01231-x] [PMID: 33403480]
[32]
Vela JM. Repurposing sigma-1 receptor ligands for COVID-19 therapy? Front Pharmacol 2020; 11: 582310.
[http://dx.doi.org/10.3389/fphar.2020.582310] [PMID: 33364957]
[33]
Hashimoto K. Inhibition of SARS-CoV-2 infection in human cardiomyocytes by targeting the sigma-1 receptor disrupts cytoskeleton architecture and contractility. 2021.
[34]
Troncone LR. COVID-19, cytokine storm and sigma-1 receptors: Potential treatments at hand? Preprints 2020.
[35]
Khosravi M. Candidate psychotropics against SARS – CoV – 2: A narrative review. Pharmacopsychiatry 2022; 55(1): 16-23.
[PMID: 34399430]
[36]
Vitlic A, Lord JM, Phillips AC. Stress, ageing and their influence on functional, cellular and molecular aspects of the immune system. Age (Dordr) 2014; 36(3): 9631.
[http://dx.doi.org/10.1007/s11357-014-9631-6] [PMID: 24562499]
[37]
Dragoş D, Tănăsescu MD. The effect of stress on the defense systems. J Med Life 2010; 3(1): 10-8.
[PMID: 20302192]
[38]
Bosch JA, Ring C, de Geus EJC, Veerman ECI, Amerongen AVN. Stress and secretory immunity. Int Rev Neurobiol 2002; 52: 213-53.
[http://dx.doi.org/10.1016/S0074-7742(02)52011-0] [PMID: 12498106]
[39]
Jansen van Vuren E, Steyn SF, Brink CB, Möller M, Viljoen FP, Harvey BH. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed Pharmacother 2021; 135: 111200.
[http://dx.doi.org/10.1016/j.biopha.2020.111200] [PMID: 33421734]
[40]
Valenzano A, Scarinci A, Monda V, et al. The social brain and emotional contagion: COVID-19 effects. Medicina (Kaunas) 2020; 56(12): E640.
[http://dx.doi.org/10.3390/medicina56120640] [PMID: 33255569]
[41]
El-Merahbi R, Löffler M, Mayer A, Sumara G. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett 2015; 589(15): 1728-34.
[http://dx.doi.org/10.1016/j.febslet.2015.05.054] [PMID: 26070423]
[42]
Pytliak M, Vargová V, Mechírová V, Felšöci M. Serotonin receptors - from molecular biology to clinical applications. Physiol Res 2011; 60(1): 15-25.
[http://dx.doi.org/10.33549/physiolres.931903] [PMID: 20945968]
[43]
Maroteaux L, Béchade C, Roumier A. Dimers of serotonin receptors: Impact on ligand affinity and signaling. Biochimie 2019; 161: 23-33.
[http://dx.doi.org/10.1016/j.biochi.2019.01.009] [PMID: 30685449]
[44]
Amidfar M, Kim Y-K. Recent developments on future antidepressant-related serotonin receptors. Curr Pharm Des 2018; 24(22): 2541-8.
[http://dx.doi.org/10.2174/1381612824666180803111240] [PMID: 30073919]
[45]
Herr N, Bode C, Duerschmied D. The effects of serotonin in immune cells. Front Cardiovasc Med 2017; 4: 48.
[http://dx.doi.org/10.3389/fcvm.2017.00048] [PMID: 28775986]
[46]
Zimering MB, Razzaki T, Tsang T, Shin JJ. Inverse association between serotonin 2A receptor antagonist medication use and mortality in severe COVID-19 infection. Endocrinol Diabetes Metab J 2020; 4(4): 1-5.
[47]
Wan M, Ding L, Wang D, Han J, Gao P. Serotonin: A Potent immune cell modulator in autoimmune diseases. Front Immunol 2020; 11: 186.
[http://dx.doi.org/10.3389/fimmu.2020.00186] [PMID: 32117308]
[48]
Nau F, Yu B, Martin D, Nichols CD. Serotonin 5-HT2A receptor activation blocks tnf-α mediated inflammation in vivo. PLoS ONE 2013; 8(10): e75426.
[49]
Marin H, Menza MA. Specific treatment of residual fatigue in depressed patients. Psychiatry (Edgmont) 2004; 1(2): 12-8.
[50]
Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The high costs of low-grade inflammation: Persistent fatigue as a consequence of reduced cellular-energy availability and non-adaptive energy expenditure. Front Behav Neurosci 2018; 12: 78.
[http://dx.doi.org/10.3389/fnbeh.2018.00078] [PMID: 29755330]
[51]
Lemprière S. Single-cell transcriptomics reveals neuroinflammation in severe COVID-19. Nat Rev Neurol 2021; 17(8): 461.
[http://dx.doi.org/10.1038/s41582-021-00536-2] [PMID: 34234324]
[52]
Gonçalves de Andrade E, Šimončičová E, Carrier M, Vecchiarelli HA, Robert M-È, Tremblay M-È. Microglia fighting for neurological and mental health: On the central nervous system frontline of COVID-19 pandemic. Front Cell Neurosci 2021; 15: 647378.
[http://dx.doi.org/10.3389/fncel.2021.647378] [PMID: 33737867]
[53]
Karshikoff B, Sundelin T, Lasselin J. Role of inflammation in human fatigue: Relevance of multidimensional assessments and potential neuronal mechanisms. Front Immunol 2017; 8: 21.
[http://dx.doi.org/10.3389/fimmu.2017.00021] [PMID: 28163706]
[54]
Malynn S, Campos-Torres A, Moynagh P, Haase J. The pro-inflammatory cytokine TNF-α regulates the activity and expression of the serotonin transporter (SERT) in astrocytes. Neurochem Res 2013; 38(4): 694-704.
[http://dx.doi.org/10.1007/s11064-012-0967-y] [PMID: 23338678]
[55]
Jung YJ, Tweedie D, Scerba MT, Greig NH. Neuroinflammation as a factor of neurodegenerative disease: Thalidomide analogs as treatments. Front Cell Dev Biol 2019; 7: 313.
[http://dx.doi.org/10.3389/fcell.2019.00313] [PMID: 31867326]
[56]
Tanaka M, Tajima S, Mizuno K, Ishii A, Konishi Y, Miike T. Frontier studies on fatigue, autonomic nerve dysfunction, and sleep-rhythm disorder. J Physiol Sci 2015; 65(6): 483-98.
[57]
Mizuno K, Tanaka M, Yamaguti K, Kajimoto O, Kuratsune H, Watanabe Y. Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behav Brain Funct 2011; 7(1): 17.
[http://dx.doi.org/10.1186/1744-9081-7-17] [PMID: 21605411]
[58]
Rotenberg S, McGrath JJ. Inter-relation between autonomic and HPA axis activity in children and adolescents. Biol Psychol 2016; 117: 16-25.
[http://dx.doi.org/10.1016/j.biopsycho.2016.01.015] [PMID: 26835595]
[59]
Kerr CW, Drake J, Milch RA, Brazeau DA, Skretny JA, Brazeau GA. Effects of methylphenidate on fatigue and depression: A randomized, double-blind, placebo-controlled trial. J Pain Symptom Manage 2012; 43(1): 68-77.
[60]
Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87: 255-70.
[http://dx.doi.org/10.1016/j.neubiorev.2018.02.001] [PMID: 29428394]
[61]
Zvejniece L, Zvejniece B, Videja M, et al. Neuroprotective and anti-inflammatory activity of DAT inhibitor R-phenylpiracetam in experimental models of inflammation in male mice. Inflammopharmacology 2020; 28(5): 1283-92.
[http://dx.doi.org/10.1007/s10787-020-00705-7] [PMID: 32279140]
[62]
Mitchell GK, Hardy JR, Nikles CJ, et al. The effect of methylphenidate on fatigue in advanced cancer: An aggregated N-of-1 trial. J Pain Symptom Manage 2015; 50(3): 289-96.
[http://dx.doi.org/10.1016/j.jpainsymman.2015.03.009] [PMID: 25896104]
[63]
Duval F, Mokrani M-C, Monreal J, et al. Interaction between the serotonergic system and HPA and HPT axes in patients with major depression: Implications for pathogenesis of suicidal behavior. Dialogues Clin Neurosci 2002; 4(4): 417.
[http://dx.doi.org/10.31887/DCNS.2002.4.4/fduval] [PMID: 22033833]
[64]
Lenze EJ, Mattar C, Zorumski CF, et al. Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: A randomized clinical trial. JAMA 2020; 324(22): 2292-300.
[http://dx.doi.org/10.1001/jama.2020.22760] [PMID: 33180097]
[65]
Hoertel N, Sánchez-Rico M, Vernet R, et al. Observational study of haloperidol in hospitalized patients with COVID-19. PLoS One 2021; 16(2): e0247122.
[http://dx.doi.org/10.1371/journal.pone.0247122] [PMID: 33606790]
[66]
Hoertel N, Sánchez-Rico M, Vernet R, et al. Observational study of chlorpromazine in hospitalized patients with COVID-19. Clin Drug Investig 2021; 41(3): 221-33.
[http://dx.doi.org/10.1007/s40261-021-01001-0] [PMID: 33559821]
[67]
Fred SM, Kuivanen S, Ugurlu H, Casarotto PC, Levanov L, Saksela K. Antidepressant and antipsychotic drugs reduce viral infection by SARS-CoV-2 and fluoxetine shows antiviral activity against the novel variants in vitro. Front Pharmacol 2022; 12: 755600.
[68]
Mueller JK, Riederer P, Müller WE. Neuropsychiatric drugs against COVID-19: What is the clinical evidence? Pharmacopsychiatry 2022; 55(1): 7-15.
[http://dx.doi.org/10.1055/a-1717-2381] [PMID: 35079985]
[69]
National Institute of Mental Health and Neurosciences. Mental health in the times of COVID-19 pandemic: Guidance for general medical and specialised mental health care settings. 2020. Available from: https://nimhans.ac.in/wp-content/uploads/2020/04/MentalHealthIssuesCOVID-19NIMHANS.pdf
[70]
Rahola JG. Psicofármacos en la pandemia por COVID-19. Asociación Española de Psiquiatría Privada. 2020. Available from: https://www.asepp.es/media/upload/pdf//psicofarmacos-en-la-pandemia-por-covid-19_editora_2_200_1.pdf
[71]
National Institute for Health and Care Excellence (NICE) in collaboration with NHS England and NHS Improvement. Managing COVID-19 symptoms (including at the end of life) in the community: Summary of NICE guidelines. BMJ 2020; 369: m1461.
[72]
Luykx JJ, van Veen SMP, Risselada A, Naarding P, Tijdink JK, Vinkers CH. Safe and informed prescribing of psychotropic medication during the COVID-19 pandemic. Br J Psychiatry 2020; 217(3): 471-4.
[http://dx.doi.org/10.1192/bjp.2020.92] [PMID: 32362299]
[73]
Bishara D, Kalafatis C, Taylor D. Emerging and experimental treatments for COVID-19 and drug interactions with psychotropic agents. Ther Adv Psychopharmacol 2020; 10: 2045125320935306.
[http://dx.doi.org/10.1177/2045125320935306] [PMID: 32612804]
[74]
Zhang K, Zhou X, Liu H, Hashimoto K. Treatment concerns for psychiatric symptoms in patients with COVID-19 with or without psychiatric disorders. Br J Psychiatry 2020; 217(1): 351.
[http://dx.doi.org/10.1192/bjp.2020.84] [PMID: 32270760]
[75]
Chatterjee SS, Malathesh BC, Das S, Singh OP. Interactions of recommended COVID-19 drugs with commonly used psychotropics. Asian J Psychiatr 2020; 52: 102173.
[http://dx.doi.org/10.1016/j.ajp.2020.102173] [PMID: 32446195]