Camphor and Menthol as Anticancer Agents: Synthesis, Structure-Activity Relationship and Interaction with Cancer Cell Lines

Page: [614 - 623] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Cancer is a type of human cell degenerative disease that has afflicted a large number of people for years. Cancer is caused due to the abnormal proliferation of cells in any part of the body. Most of the prescribed anticancer drugs are synthetic in nature and have been reported with enormous adverse effects. The researchers are very much enthusiastic about the use of natural compounds and their derivatives, which have been reported with less toxicity. Natural compounds have emerged as promising synergistic compounds with potential anticancer effects. In vitro anticancer activity of natural compounds with special reference to camphor and menthol has been investigated against different cancer cell lines. It has been found that camphor and menthol derivatives have potential cytotoxic activity. The present literature review outlines the various methods for the synthesis of camphor and menthol derivatives, which have potential cytotoxic activity. It highlights various cancer cell lines, which are the target of these camphor and menthol derivatives as ligands, along with structure-activity studies.

Keywords: Cancer, camphor, menthol, anticancer potential, cancer cell lines, structure-activity relationship.

Graphical Abstract

[1]
Zhang, T.; Yang, X.; Zhou, J.; Liu, P.; Wang, H.; Li, A.; Zhou, Y. Benzodiazepine drug use and cancer risk: A dose-response meta analysis of prospective cohort studies. Oncotarget, 2017, 8(60), 102381-102391.
[http://dx.doi.org/10.18632/oncotarget.22057] [PMID: 29254253]
[2]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[3]
Eggert, J. Genetics and genomics in oncology nursing: What does every nurse need to know? Nurs. Clin. North Am., 2017, 52(1), 1-25.
[http://dx.doi.org/10.1016/j.cnur.2016.11.001] [PMID: 28189157]
[4]
Nall, R.R.M.C. What to know about. Med. News Today, 2000, 1-2.
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Carbone, A. Cancer classification at the crossroads. Cancers (Basel), 2020, 12(4), 10-15.
[http://dx.doi.org/10.3390/cancers12040980] [PMID: 32326638]
[7]
Leal, Y.A.; Fernández-Garrote, L.M.; Mohar-Betancourt, A.; Meneses-García, A. The importance of registries in cancer control. Salud Publica Mex., 2016, 58(2), 309-316.
[http://dx.doi.org/10.21149/spm.v58i2.7802] [PMID: 27557391]
[8]
Koo, M.M.; Swann, R.; McPhail, S.; Abel, G.A.; Elliss-Brookes, L.; Rubin, G.P.; Lyratzopoulos, G. Presenting symptoms of cancer and stage at diagnosis: Evidence from a cross-sectional, population-based study. Lancet Oncol., 2020, 21(1), 73-79.
[http://dx.doi.org/10.1016/S1470-2045(19)30595-9] [PMID: 31704137]
[9]
Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Pract, 2017, 4(4), 127-129.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[10]
Koul, B. Types of cancer. Herbs Cancer Treat, 2019, 53-150.
[11]
Cooper, G.M.; Hausman, R.E. The cell: A molecular approach. The Cell, 2007, 4, 649-656.
[12]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M. J. Cancer statistics, 2008. CA Cancer J. Clin., 2008, 58(2), 71-96.
[http://dx.doi.org/10.3322/CA.2007.0010] [PMID: 18287387]
[13]
DeSantis, C.; Ma, J.; Bryan, L.; Jemal, A. Breast cancer statistics, 2013. CA Cancer J. Clin., 2014, 64(1), 52-62.
[http://dx.doi.org/10.3322/caac.21203] [PMID: 24114568]
[14]
Bilal, A.; Naveed, N.; Haider, M.S. A Brief note on cancer and its treatment. Occup. Med. Health Aff., 2021, 9, 1-3.
[15]
Kumar, D.; Sundaree, S.; Johnson, E.O.; Shah, K. An efficient synthesis and biological study of novel indolyl-1,3,4-oxadiazoles as potent anticancer agents. Bioorg. Med. Chem. Lett., 2009, 19(15), 4492-4494.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.172] [PMID: 19559607]
[16]
Gillet, J.P.; Varma, S.; Gottesman, M.M. The clinical relevance of cancer cell lines. J. Natl. Cancer Inst., 2013, 105(7), 452-458.
[http://dx.doi.org/10.1093/jnci/djt007] [PMID: 23434901]
[17]
Louzada, S.; Adega, F.; Chaves, R. Defining the sister rat mammary tumor cell lines HH-16 cl.2/1 and HH-16.cl.4 as an in vitro cell model for Erbb2. PLoS One, 2012, 7(1), e29923.
[http://dx.doi.org/10.1371/journal.pone.0029923] [PMID: 22253826]
[18]
Staveren, W.C.G.V.; Solis, D.Y.W.; Hebrant, A.; Detours, V.; Dumont, J.E.; Maenhaut, C. Human cancer cell lines: Experimental models for cancer cells in situ for cancer stem cells BBA-Rev. Cancer, 2009, 1795(2), 92-103.
[PMID: 19365830]
[19]
Vargo-Gogola, T.; Rosen, J.M. Modelling breast cancer: One size does not fit all. Nat. Rev. Cancer, 2007, 7(9), 659-672.
[http://dx.doi.org/10.1038/nrc2193] [PMID: 17721431]
[20]
Lacroix, M.; Leclercq, G.; Vi, M. Relevance of breast cancer cell lines as models for breast tumours: An update. Breast Cancer Res. Treat., 2004, 83(3), 249-289.
[http://dx.doi.org/10.1023/B:BREA.0000014042.54925.cc] [PMID: 14758095]
[21]
Leonetti, C.; Scarsella, M.; Zupi, G.; Zoli, W.; Amadori, D.; Medri, L.; Fabbri, F.; Rosetti, M.; Ulivi, P.; Cecconetto, L.; Bolla, M.; Tesei, A. Efficacy of a nitric oxide-releasing nonsteroidal anti-inflammatory drug and cytotoxic drugs in human colon cancer cell lines in vitro and xenografts. Mol. Cancer Ther., 2006, 5(4), 919-926.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0536] [PMID: 16648562]
[22]
Burdall, S.E.; Hanby, A.M.; Lansdown, M.R.J.; Speirs, V. Breast cancer cell lines: Friend or foe? Breast Cancer Res., 2003, 5(2), 89-95.
[http://dx.doi.org/10.1186/bcr577] [PMID: 12631387]
[23]
Mirabelli, P.; Coppola, L.; Salvatore, M. Cancer cell lines are useful model systems for medical research. Cancers (Basel), 2019, 11(8), 1-18.
[http://dx.doi.org/10.3390/cancers11081098] [PMID: 31374935]
[24]
Ferreira, D.; Adega, F.; Chaves, R. The importance of cancer cell lines as in vitro models in cancer methylome analysis and anticancer drugs testing. Oncogen Cancer Proteomics, 2013, 139-166.
[http://dx.doi.org/10.5772/53110]
[25]
Masters, J.R.W. Human cancer cell lines: Fact and fantasy. Nat. Rev. Mol. Cell Biol., 2000, 1(3), 233-236.
[http://dx.doi.org/10.1038/35043102] [PMID: 11252900]
[26]
Neve, R.M.; Chin, K.; Fridlyand, J.; Yeh, J.; Baehner, F.L.; Fevr, T.; Clark, L.; Bayani, N.; Coppe, J.P.; Tong, F.; Speed, T.; Spellman, P.T.; DeVries, S.; Lapuk, A.; Wang, N.J.; Kuo, W.L.; Stilwell, J.L.; Pinkel, D.; Albertson, D.G.; Waldman, F.M.; McCormick, F.; Dickson, R.B.; Johnson, M.D.; Lippman, M.; Ethier, S.; Gazdar, A.; Gray, J.W. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 2006, 10(6), 515-527.
[http://dx.doi.org/10.1016/j.ccr.2006.10.008] [PMID: 17157791]
[27]
Sokolova, A.S.; Yarovaya, C.O.; Shernyukov, C.A.; Pokrovsky, C.E.; Pokrovsky, C.A.; Lavrinenko, V.A.; Zarubaev, V.V.; Tretiak, T.S.; Anfimov, P.M.; Kiselev, O.I.; Beklemishev, A.B.; Salakhutdinov, N.F. New quaternary ammonium camphor derivatives and their antiviral activity, genotoxic effects and cytotoxicity. Bioorg. Med. Chem., 2013, 21(21), 6690-6698.
[http://dx.doi.org/10.1016/j.bmc.2013.08.014] [PMID: 23993669]
[28]
Zhang, Y.; Wang, Y.; Zhao, Y.; Gu, W.; Zhu, Y.; Wang, S. Novel camphor-based pyrimidine derivatives induced cancer cell death through a ROS-mediated mitochondrial apoptosis pathway. RSC Advances, 2019, 9(51), 29711-29720.
[http://dx.doi.org/10.1039/C9RA05900H] [PMID: 35531556]
[29]
Nagai, K.; Fukuno, S.; Omachi, A.; Omotani, S.; Hatsuda, Y.; Myotoku, M.; Konishi, H. Enhanced anti-cancer activity by menthol in HepG2 cells exposed to paclitaxel and vincristine: Possible involvement of CYP3A4 downregulation. Drug Metab. Pers. Ther., 2019, 34(1), 1-5.
[http://dx.doi.org/10.1515/dmpt-2018-0029] [PMID: 30840584]
[30]
Li, Q.; Wang, X.; Yang, Z.; Wang, B.; Li, S. Menthol induces cell death via the TRPM8 channel in the human bladder cancer cell line T24. Oncology, 2009, 77(6), 335-341.
[http://dx.doi.org/10.1159/000264627] [PMID: 19955836]
[31]
Park, E.J.; Kim, S.H.; Kim, B.J.; Kim, S.Y.; So, I.; Jeon, J.H. Menthol enhances an antiproliferative activity of 1α, 25-dihydroxyvitamin D3 in LNCaP cells. J. Clin. Biochem. Nutr., 2009, 44(2), 125-130.
[http://dx.doi.org/10.3164/jcbn.08-201] [PMID: 19308266]
[32]
Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M. Camphor (Cinnamomum camphora), a traditional remedy with the history of treating several diseases. Int. J. Case Rep. Imag., 2013, 4(2), 86.
[http://dx.doi.org/10.5348/ijcri-2013-02-267-RA-1]
[33]
Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and their derivatives—recent development in biological and medical applications. Int. J. Mol. Sci., 2020, 21(19), 1-38.
[http://dx.doi.org/10.3390/ijms21197078] [PMID: 32992914]
[34]
Zielińska-Błajet, M.; Pietrusiak, P.; Feder-Kubis, J. Selected monocyclic monoterpenes and their derivatives as effective anticancer therapeutic agents. Int. J. Mol. Sci., 2021, 22(9), 1-46.
[http://dx.doi.org/10.3390/ijms22094763] [PMID: 33946245]
[35]
Mann, J.; Davidson, R.S.; Hobbs, J.B.; Banthorpe, D.V.; Harborne, J.B. Natural products: Their chemistry and biological significance; Longman Scientific & Technical; New York Wiley, 1994.
[36]
O’Neil, M.J.; Smith, A.; Heckelman, P.E.; Budavari, S. The merck index-An encyclopedia of chemicals, drugs, and biologicals; Merck and Co. Inc: NJ, 2001, pp. 767-4342.
[37]
Sell, C.S. A fragrant introduction to terpenoid chemistry; Royal Society of Chemistry 1st ed, 2007, p. 421.
[38]
Zuccarini, P.; Soldani, G. Camphor: Benefits and risks of a widely used natural product. Acta Biol. Szeged., 2009, 53(2), 77-82.
[39]
Sherkheli, M.A.; Benecke, H.; Doerner, J.F.; Kletke, O.; Vogt-Eisele, A.K.; Gisselmann, G.; Hatt, H. Monoterpenoids induce agonist-specific desensitization of transient receptor potential vanilloid-3 (TRPV3) ion channels. J. Pharm. Pharm. Sci., 2009, 12(1), 116-128.
[http://dx.doi.org/10.18433/J37C7K] [PMID: 19470296]
[40]
Chelliah, D.A. Biological activity prediction of an ethno medicinal plant cinnamomum camphora through Bio-informatics. Ethnobot. Leafl., 2008, 12, 181-190.
[41]
Sokolova, A.S.; Yarovaya, O.I.; Shernyukov, A.V.; Gatilov, Y.V.; Razumova, Y.V.; Zarubaev, V.V.; Tretiak, T.S.; Pokrovsky, A.G.; Kiselev, O.I.; Salakhutdinov, N.F. Discovery of a new class of antiviral compounds: Camphor imine derivatives. Eur. J. Med. Chem., 2015, 105, 263-273.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.010] [PMID: 26498572]
[42]
Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry, 2013, 96, 15-25.
[http://dx.doi.org/10.1016/j.phytochem.2013.08.005] [PMID: 24054028]
[43]
Kim, S.H.; Lee, S.; Piccolo, S.R.; Allen-Brady, K.; Park, E.J.; Chun, J.N.; Kim, T.W.; Cho, N.H.; Kim, I.G.; So, I.; Jeon, J.H. Menthol induces cell-cycle arrest in PC-3 cells by down-regulating G2/M genes, including polo-like kinase 1. Biochem. Biophys. Res. Commun., 2012, 422(3), 436-441.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.010] [PMID: 22580005]
[44]
Wang, Y.; Wang, X.; Yang, Z.; Zhu, G.; Chen, D.; Meng, Z. Menthol inhibits the proliferation and motility of prostate cancer DU145 cells. Pathol. Oncol. Res., 2012, 18(4), 903-910.
[http://dx.doi.org/10.1007/s12253-012-9520-1] [PMID: 22437241]
[45]
Gusain, P.; Ohki, S.; Hoshino, K.; Tsujino, Y.; Shimokawa, N.; Takagi, M. Chirality –dependent interaction of D- and L- menthol with biomembrane medoles. Membranes (Basel), 2017, 7(4), 69.
[http://dx.doi.org/10.3390/membranes7040069] [PMID: 29244740]
[46]
Riaz, M.; van Jaarsveld, M.T.; Hollestelle, A.; Prager-van der Smissen, W.J.C.; Heine, A.A.J.; Boersma, A.W.; Liu, J.; Helmijr, J.; Ozturk, B.; Smid, M.; Wiemer, E.A.; Foekens, J.A.; Martens, J.W.M. miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Res., 2013, 15(2), R33.
[http://dx.doi.org/10.1186/bcr3415] [PMID: 23601657]
[47]
Dai, X.; Cheng, H.; Bai, Z.; Li, J. Breast cancer cell line classification and Its relevance with breast tumor subtyping. J. Cancer, 2017, 8(16), 3131-3141.
[http://dx.doi.org/10.7150/jca.18457] [PMID: 29158785]
[48]
Brodaczewska, K.K.; Szczylik, C.; Fiedorowicz, M.; Porta, C.; Czarnecka, A.M. Choosing the right cell line for renal cell cancer research. Mol. Cancer, 2016, 15(1), 83.
[http://dx.doi.org/10.1186/s12943-016-0565-8] [PMID: 27993170]
[49]
Mohammed, F.; Rashid-Doubell, F.; Taha, S.; Cassidy, S.; Fredericks, S. Effects of curcumin complexes on MDA MB 231 breast cancer cell proliferation. Int. J. Oncol., 2020, 57(2), 445-455.
[http://dx.doi.org/10.3892/ijo.2020.5065] [PMID: 32626932]
[50]
Garbar, C.; Mascaux, C.; Giustiniani, J.; Merrouche, Y.; Bensussan, A. Chemotherapy treatment induces an increase of autophagy in the luminal breast cancer cell MCF7, but not in the triple-negative MDA-MB231. Sci. Rep., 2017, 7(1), 7201.
[http://dx.doi.org/10.1038/s41598-017-07489-x] [PMID: 28775276]
[51]
Guan, F.; Ding, Y.; Zhang, Y.; Zhou, Y.; Li, M.; Wang, C. Curcumin suppresses proliferation and migration of MDA-MB-231 breast cancer cells through autophagy-dependent Akt degradation. PLoS One, 2016, 11(1), e0146553.
[http://dx.doi.org/10.1371/journal.pone.0146553] [PMID: 26752181]
[52]
Shokova, E.A.; Kim, J.K.; Kovalev, V.V. Camphor and its derivatives. Unusual transformations and biological activity. Russ. J. Org. Chem., 2016, 52(4), 459-488.
[http://dx.doi.org/10.1134/S1070428016040011]
[53]
Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[54]
Coelho, M.; Moz, M.; Correia, G.; Teixeira, A.; Medeiros, R.; Ribeiro, L. Antiproliferative effects of β-blockers on human colorectal cancer cells. Oncol. Rep., 2015, 33(5), 2513-2520.
[http://dx.doi.org/10.3892/or.2015.3874] [PMID: 25812650]
[55]
Kataoka, H.; Nabeshima, K.; Komada, N.; Koono, M. New human colorectal carcinoma cell lines that secrete proteinase inhibitors in vitro. Virchows Arch. B., 1989, 57(3), 157-165.
[http://dx.doi.org/10.1007/BF02899077] [PMID: 2570482]
[56]
Fernandes, T.A.; Mendes, F.; Roseiro, A.P.S.; Santos, I.; Carvalho, M.F.N.N. Insight into the cytotoxicity of polynuclear Cu(I) camphor complexes. Polyhedron, 2015, 87, 215-219.
[http://dx.doi.org/10.1016/j.poly.2014.11.020]
[57]
Zhao, Y.; Wang, Y.; Zhang, C.; Xu, X.; Wang, S. Synthesis of novel camphor sulfamoxime ether derivatives and its application in antitumor activity. Youji Huaxue, 2021, 41(3), 1224.
[http://dx.doi.org/10.6023/cjoc202009050]
[58]
Cardoso, M.S.; Correia, I.; Galv, A.M.; Mar, F.; Carvalho, M.F.N.N. Synthesis of Ag(I) camphor sulphonylimine complexes and assessment of their cytotoxic properties against cisplatin-resistant A2780cisR and A2780 cell lines. J. Inorg. Biochem., 2016, 1-31.
[PMID: 27835775]
[59]
Carvalho, M.F.N.N.; Botelho do Rego, A.M.; Galvão, A.M.; Herrmann, R.; Marques, F. Search for cytotoxic compounds against ovarian cancer cells: Synthesis, characterization and assessment of the activity of new camphor carboxylate and camphor carboxamide silver complexes. J. Inorg. Biochem., 2018, 188, 88-95.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.08.011] [PMID: 30125832]
[60]
Okamoto, Y.; Ohkubo, T.; Ikebe, T.; Yamazaki, J. Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines. Int. J. Oncol., 2012, 40(5), 1431-1440.
[PMID: 22267123]
[61]
Fallon, M.T.; Storey, D.J.; Krishan, A.; Weir, C.J.; Mitchell, R.; Fleetwood-Walker, S.M.; Scott, A.C.; Colvin, L.A. Cancer treatment-related neuropathic pain: Proof of concept study with menthol--a TRPM8 agonist. Support. Care Cancer, 2015, 23(9), 2769-2777.
[http://dx.doi.org/10.1007/s00520-015-2642-8] [PMID: 25680765]
[62]
Bernhardt, G.; Biersack, B.; Bollwein, S.; Schobert, R.; Zoldakova, M. Terpene conjugates of diaminedichloridoplatinum(II) complexes: Antiproliferative effects in HL-60 leukemia, 518A2 melanoma, and HT-29 colon cancer cells. Chem. Biodivers., 2008, 5(8), 1645-1659.
[http://dx.doi.org/10.1002/cbdv.200890152] [PMID: 18729100]
[63]
Kudryavtsev, K.V.; Ivantcova, P.M.; Muhle-Goll, C.; Churakov, A.V.; Sokolov, M.N.; Dyuba, A.V.; Arutyunyan, A.M.; Howard, J.A.K.; Yu, C.C.; Guh, J.H.; Zefirov, N.S.; Bräse, S. Menthols as chiral auxiliaries for asymmetric cycloadditive oligomerization: Syntheses and studies of β-proline hexamers. Org. Lett., 2015, 17(24), 6178-6181.
[http://dx.doi.org/10.1021/acs.orglett.5b03154] [PMID: 26624275]
[64]
Effenberger-Neidnicht, K.; Breyer, S.; Mahal, K.; Sasse, F.; Schobert, R. Modification of uptake and subcellular distribution of doxorubicin by N-acylhydrazone residues as visualised by intrinsic fluorescence. Cancer Chemother. Pharmacol., 2012, 69(1), 85-90.
[http://dx.doi.org/10.1007/s00280-011-1675-z] [PMID: 21607555]
[65]
Mahal, K.; Schill, E.; Breyer, S.; Pachmann, U.; Pachmann, K.; Schobert, R.; Biersack, B. Activity of a doxorubicin menthol conjugate against circulating epithelial tumor cells of cancer patients. J. Pharm. Sci. Pharmacol., 2015, 1(3), 233-236.
[http://dx.doi.org/10.1166/jpsp.2014.1027]