Dosimetric Comparison of Different Radionuclides Used in Metastatic Bone Disease Treatment

Page: [44 - 49] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Introduction: This study aimed to determine the critical organ doses in 223Ra, 89Sr, 153Sm, and 32P treatments via dosimetry using the phantoms.

Material and Methods: The OpenDose was used to calculate S values (mGy MBq-1s-1) for bone surface, red bone marrow, urinary bladder wall, testes, ovaries, uterus, and kidneys using male (ICRP110AM) and female (ICRP110AF) phantoms. The cortical thoracic spine was modeled as metastasis. Moreover, the absorbed doses were computed via MIRD formalism according to the activities of 3.3, 148, 2220, and 370 MBq for ICRP110AM and 4.015, 148, 2701, and 370 MBq for ICRP110AF in 223Ra, 89Sr, 153Sm, and 32P treatments, respectively.

Results: Whilst the maximum bone surface doses were found as 1.22E+02 and 8.51E+01 mGy at 32P treatment, the minimum bone surface doses were calculated as 8.42E-02 and 8.26E-02 mGy at 223Ra. In terms of the comparison of red bone marrow, urinary bladder wall, and kidney doses, 153Sm and 89Sr treatments showed maximum doses of 2.45E-03, 1.50E-03, 3.23E-07, 5.45E-06, 1.20E-01, 1.49E-01 mGy and the minimum doses with 3.46E-05, 1.99E-05, 6.33E-09, 8.77E-09, 1.19E-04, 1.15E-04 mGy, respectively. The maximum testes and ovaries-uterus doses were found as 6.17E-08, 7.40E-06, 3.46E-07 mGy in 153Sm treatment, and minimum testes and ovaries doses as 1.70E-09, 1.34E-07 mGy in 223Ra. The minimum uterus dose with 7.03E-09 mGy was determined in 89Sr treatment.

Conclusion: It is observed that 223Ra produces low critical organ doses in the treatment of painful bone metastasis. Among the beta-emitting radionuclides, 89Sr stands out by showing optimal dosimetric results.

Keywords: Dosimetry, medical physics, bone metastases, radionuclides, ovaries doses, uterus dose.

Graphical Abstract

[1]
Fischer, M.; Kampen, W.U. Radionuclide therapy of bone metastases. Breast Care (Basel), 2012, 7(2), 100-107.
[http://dx.doi.org/10.1159/000337634] [PMID: 22740795]
[2]
Sadremomtaz, A.; Masoumi, M. Comparison between targeted radionuclide therapy of bone metastases based on β-emitting and α-emitting radionuclides. J. Med. Imaging Radiat. Sci., 2019, 50(2), 272-279.
[http://dx.doi.org/10.1016/j.jmir.2018.12.005] [PMID: 31176435]
[3]
Ferreira, S.; Dormehl, I.; Botelho, M.F. Radiopharmaceuticals for bone metastasis therapy and beyond: A voyage from the past to the present and a look to the future. Cancer Biother. Radiopharm., 2012, 27(9), 535-551.
[http://dx.doi.org/10.1089/cbr.2012.1258] [PMID: 23075374]
[4]
Tomasian, A.; Wallace, A.; Northrup, B.; Hillen, T.J.; Jennings, J.W. Spine cryoablation: Pain palliation and local tumor control for vertebral metastases. AJNR Am. J. Neuroradiol., 2016, 37(1), 189-195.
[http://dx.doi.org/10.3174/ajnr.A4521] [PMID: 26427837]
[5]
Finlay, I.G.; Mason, M.D.; Shelley, M. Radioisotopes for the palliation of metastatic bone cancer: A systematic review. Lancet Oncol., 2005, 6(6), 392-400.
[http://dx.doi.org/10.1016/S1470-2045(05)70206-0] [PMID: 15925817]
[6]
Nguyen, J.; Chow, E.; Zeng, L.; Zhang, L.; Culleton, S.; Holden, L.; Mitera, G.; Tsao, M.; Barnes, E.; Danjoux, C.; Sahgal, A. Palliative response and functional interference outcomes using the brief pain inventory for spinal bony metastases treated with conventional radiotherapy. Clin. Oncol. (R. Coll. Radiol.), 2011, 23(7), 485-491.
[http://dx.doi.org/10.1016/j.clon.2011.01.507] [PMID: 21353506]
[7]
Handkiewicz-Junak, D.; Poeppel, T.D.; Bodei, L.; Aktolun, C.; Ezziddin, S.; Giammarile, F.; Delgado-Bolton, R.C.; Gabriel, M. EANM guidelines for radionuclide therapy of bone metastases with beta-emitting radionuclides. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(5), 846-859.
[http://dx.doi.org/10.1007/s00259-018-3947-x] [PMID: 29453701]
[8]
Alavi, M.; Omidvari, S.; Mehdizadeh, A.; Jalilian, A.R.; Bahrami-Samani, A. Metastatic bone pain palliation using (177)Luethylenediaminetetramethylene phosphonic acid. World J. Nucl. Med., 2015, 14(2), 109-115.
[http://dx.doi.org/10.4103/1450-1147.157124] [PMID: 26097421]
[9]
Dolezal, J.; Vizda, J.; Odrazka, K. Prospective evaluation of samarium-153-EDTMP radionuclide treatment for bone metastases in patients with hormone-refractory prostate cancer. Urol. Int., 2007, 78(1), 50-57.
[http://dx.doi.org/10.1159/000096935] [PMID: 17192733]
[10]
Goyal, J.; Antonarakis, E.S. Bone-targeting radiopharmaceuticals for the treatment of prostate cancer with bone metastases. Cancer Lett., 2012, 323(2), 135-146.
[http://dx.doi.org/10.1016/j.canlet.2012.04.001] [PMID: 22521546]
[11]
Henriksen, G.; Fisher, D.R.; Roeske, J.C.; Bruland, Ø.S.; Larsen, R.H. Targeting of osseous sites with alpha-emitting 223Ra: Comparison with the beta-emitter 89Sr in mice. J. Nucl. Med., 2003, 44(2), 252-259.
[PMID: 12571218]
[12]
Pandit-Taskar, N.; Batraki, M.; Divgi, C.R. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J. Nucl. Med., 2004, 45(8), 1358-1365.
[PMID: 15299062]
[13]
Ga, F. Ra-223 dichloride management in a Nuclear Medicine Unit: Experience of a referral institution J Radiol Oncol, 2017, 1(3), 69-78.
[14]
Jain, L.; Thakare, S.V.; Gundra, K. Theoretical investigation for optimizing the production of 223Ra in research reactors for treatment of bone metastases. J. Radioanal. Nucl. Chem., 2020, 325(3), 905-911.
[http://dx.doi.org/10.1007/s10967-020-07159-9]
[15]
Taylor, A.J., Jr Strontium-89 for the palliation of bone pain due to metastatic disease. J. Nucl. Med., 1994, 35(12), 2054.
[PMID: 7527458]
[16]
Farhanghi, M.; Holmes, R.A.; Volkert, W.A.; Logan, K.W.; Singh, A. Samarium-153-EDTMP: Pharmacokinetic, toxicity and pain response using an escalating dose schedule in treatment of metastatic bone cancer. J. Nucl. Med., 1992, 33(8), 1451-1458.
[PMID: 1378887]
[17]
Silberstein, E.B.; Williams, C. Strontium-89 therapy for the pain of osseous metastases. J. Nucl. Med., 1985, 26(4), 345-348.
[PMID: 3920361]
[18]
Saad, F.; Gillessen, S.; Heinrich, D.; Keizman, D.; O’Sullivan, J.M.; Nilsson, S.; Miller, K.; Wirth, M.; Reeves, J.; Seger, M.; Carles, J.; Heidenreich, A. Disease characteristics and completion of treatment in patients with metastatic castration-resistant prostate cancer treated with radium-223 in an international early access program. Clin. Genitourin. Cancer, 2019, 17(5), 348-355.e5.
[http://dx.doi.org/10.1016/j.clgc.2019.05.012] [PMID: 31311763]
[19]
Loke, K.S.H.; Padhy, A.K.; Ng, D.C.E.; Goh, A.S.W.; Divgi, C. Dosimetric considerations in radioimmunotherapy and systemic radionuclide therapies: A review. World J. Nucl. Med., 2011, 10(2), 122-138.
[http://dx.doi.org/10.4103/1450-1147.89780] [PMID: 22144871]
[20]
International Commission on Radiological Protection. Radiation dose to patients from radiopharmaceuticals: A report of a Task Group of Committee 2 of the International Commission on Radiological Protection(ICRP publication Radiation protection), 1; Pergamon Press: Oxford, 1988, p. 377.
[21]
Eary, J.F.; Collins, C.; Stabin, M.; Vernon, C.; Petersdorf, S.; Baker, M.; Hartnett, S.; Ferency, S.; Addison, S.J.; Appelbaum, F. Samarium-153-EDTMP biodistribution and dosimetry estimation. J. Nucl. Med., 1993, 34(7), 1031-1036.
[PMID: 7686217]
[22]
Poeppel, T.D.; Handkiewicz-Junak, D.; Andreeff, M.; Becherer, A.; Bockisch, A.; Fricke, E.; Geworski, L.; Heinzel, A.; Krause, B.J.; Krause, T.; Mitterhauser, M.; Sonnenschein, W.; Bodei, L.; Delgado-Bolton, R.C.; Gabriel, M. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(5), 824-845.
[http://dx.doi.org/10.1007/s00259-017-3900-4] [PMID: 29234845]
[23]
Chauvin, M.; Borys, D.; Botta, F.; Bzowski, P.; Dabin, J.; Denis-Bacelar, A.M.; Desbrée, A.; Falzone, N.; Lee, B.Q.; Mairani, A.; Malaroda, A.; Mathieu, G.; McKay, E.; Mora-Ramirez, E.; Robinson, A.P.; Sarrut, D.; Struelens, L.; Gil, A.V.; Bardiès, M. OpenDose: Open-access resource for nuclear medicine dosimetry. J. Nucl. Med., 2020, 61(10), 1514-1519.
[http://dx.doi.org/10.2967/jnumed.119.240366] [PMID: 32169912]
[24]
Menzel, H.G.; Clement, C.; DeLuca, P. ICRP publication 110. Realistic reference phantoms: An ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann. ICRP, 2009, 39(2), 1-164.
[PMID: 19897132]
[25]
Weber, D.A. The MIRD method of estimating absorbed dose Brookhaven National Lab, 1991. Available from: http://inis.iaea.org/Search/search.aspx? orig_q=RN: 22084035
[26]
Vaidyanathan, G.; Zalutsky, M.R. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy. Curr. Radiopharm., 2011, 4(4), 283-294.
[http://dx.doi.org/10.2174/1874471011104040283] [PMID: 22202151]
[27]
Maini, C.L.; Bergomi, S.; Romano, L.; Sciuto, R. 153Sm-EDTMP for bone pain palliation in skeletal metastases. Eur. J. Nucl. Med. Mol. Imaging, 2004, 31(Suppl. 1), S171-S178.
[http://dx.doi.org/10.1007/s00259-004-1540-y] [PMID: 15127241]
[28]
Shao, G.; Wang, Y.; Liu, X.; Zhao, M.; Song, J.; Huang, P.; Wang, F.; Wang, Z. Investigation of newly prepared biodegradable 32P-chromic phosphate-polylactide-co-glycolide seeds and their therapeutic response evaluation for glioma brachytherapy. Contrast Media Mol. Imaging, 2018, 2018(Apr), 2630480. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5-949199/ [Internet].
[http://dx.doi.org/10.1155/2018/2630480] [PMID: 29853804]
[29]
Choi, J.Y. Treatment of bone metastasis with bone-targeting radiopharmaceuticals. Nucl. Med. Mol. Imaging, 2018, 52(3), 200-207.
[http://dx.doi.org/10.1007/s13139-017-0509-2] [PMID: 29942398]
[30]
Murray, I.; Du, Y. Systemic radiotherapy of bone metastases with radionuclides. Clin. Oncol. (R. Coll. Radiol.), 2021, 33(2), 98-105.
[http://dx.doi.org/10.1016/j.clon.2020.11.028] [PMID: 33353771]
[31]
Lee, C.; Lee, C.; Shah, A.P.; Bolch, W.E. An assessment of bone marrow and bone endosteum dosimetry methods for photon sources. Phys. Med. Biol., 2006, 51(21), 5391-5407.
[http://dx.doi.org/10.1088/0031-9155/51/21/001] [PMID: 17047259]
[32]
Xie, T.; Han, D.; Liu, Y.; Sun, W.; Liu, Q. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons. Med. Phys., 2010, 37(5), 2167-2178.
[http://dx.doi.org/10.1118/1.3380223] [PMID: 20527551]
[33]
Dauer, L.T.; Williamson, M.J.; Humm, J.; O’Donoghue, J.; Ghani, R.; Awadallah, R. Radiation safety considerations for the use of 223RaCl2 DE in men with castration-resistant prostate cancer. Health Phys., 2014, 106(4), 494-504.
[http://dx.doi.org/10.1097/HP.0b013e3182a82b37] [PMID: 24562070]
[34]
Haquin, G; Vexler, A; Pelled, O; Riemer, T; Kaniun, N; Datz, H Biological half-life measurements of radioactive strontium in hormonal-resistant prostate cancer patients. Final Program and books of abstracts., 2004, 35(31), 3.