Application of Computational Simulation Integrating Inhibition Kinetics for Detecting Tyrosinase Inhibitor: Salsalate Is a New Inhibitor

Page: [744 - 759] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Tyrosinase inhibitor developments have been widely attended by investigators for their various applications.

Objective: A combination of virtual screening of docking simulations and biochemical inhibition kinetics was performed to find a new inhibitor of tyrosinase for the clinical application of an antipigment agent.

Methods: We conducted docking simulations to detect tyrosinase key binding residues and used the detected binding residues to screen the NCBI PubChem database for probing tyrosinase binding compounds. The serial inhibition kinetics and spectrofluorimetry measurements were performed to validate the inhibitory effect on tyrosinase.

Results: We have detected 200 candidates and categorized them into four clusters. Among them, we successfully confirmed salsalate as a new inhibitor of tyrosinase measured by serial enzyme kinetics. Salsalate was detected as a reversible inhibitor of tyrosinase displaying a typical mixedtype inhibition manner (IC50 = 22.19 ± 1.01 mM; Ki = 19.98 ± 2.11 mM). Spectrofluorimetry measurement by integrating with 1-anilinonaphthalene-8-sulfonate showed that salsalate mainly induced a slight regional conformation distortion of the tyrosinase active site accompanied by a slight hydrophobic disruption.

Conclusion: Our study suggests that salsalate is a potential anti-pigment drug via inhibition of tyrosinase activity and it might be applicable for dermatologic clinical application. Also, our study enlarges an insight into the salsalate drug application.

Keywords: Tyrosinase, docking simulation, inhibitor, kinetics, salsalate, computational integration.

Graphical Abstract

[1]
Kanteev, M.; Goldfeder, M.; Fishman, A. Structure-function correlations in tyrosinases. Protein Sci., 2015, 24(9), 1360-1369.
[http://dx.doi.org/10.1002/pro.2734] [PMID: 26104241]
[2]
Decker, H.; Tuczek, F. Tyrosinase/catecholoxidase activity of hemocyanins: Structural basis and molecular mechanism. Trends Biochem. Sci., 2000, 25(8), 392-397.
[http://dx.doi.org/10.1016/S0968-0004(00)01602-9] [PMID: 10916160]
[3]
Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 403-425.
[http://dx.doi.org/10.1080/14756366.2016.1256882] [PMID: 28097901]
[4]
Hollinger, J.C.; Angra, K.; Halder, R.M. Are natural ingredients effective in the management of hyperpigmentation? A systematic review. J. Clin. Aesthet. Dermatol., 2018, 11(2), 28-37.
[PMID: 29552273]
[5]
Zhu, W.; Gao, J. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J. Investig. Dermatol. Symp. Proc., 2008, 13(1), 20-24.
[http://dx.doi.org/10.1038/jidsymp.2008.8] [PMID: 18369335]
[6]
Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 279-309.
[http://dx.doi.org/10.1080/14756366.2018.1545767] [PMID: 30734608]
[7]
Moon, K.M.; Kwon, E.B.; Lee, B.; Kim, C.Y. Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules, 2020, 25(12), 2754.
[http://dx.doi.org/10.3390/molecules25122754] [PMID: 32549214]
[8]
Ito, S.; Sugumaran, M.; Wakamatsu, K. Chemical reactivities of ortho-quinones produced in living organisms: Fate of quinonoid products formed by tyrosinase and phenoloxidase action on phenols and catechols. Int. J. Mol. Sci., 2020, 21(17), 6080.
[http://dx.doi.org/10.3390/ijms21176080] [PMID: 32846902]
[9]
Pan, Z.Z.; Li, H.L.; Yu, X.J.; Zuo, Q.X.; Zheng, G.X.; Shi, Y.; Liu, X.; Lin, Y.M.; Liang, G.; Wang, Q.; Chen, Q.X. Synthesis and antityrosinase activities of alkyl 3,4-dihydroxybenzoates. J. Agric. Food Chem., 2011, 59(12), 6645-6649.
[http://dx.doi.org/10.1021/jf200990g] [PMID: 21595493]
[10]
Smit, N.; Vicanova, J.; Pavel, S. The hunt for natural skin whitening agents. Int. J. Mol. Sci., 2009, 10(12), 5326-5349.
[http://dx.doi.org/10.3390/ijms10125326] [PMID: 20054473]
[11]
Gillbro, J.M.; Olsson, M.J. The melanogenesis and mechanisms of skin-lightening agents--existing and new approaches. Int. J. Cosmet. Sci., 2011, 33(3), 210-221.
[http://dx.doi.org/10.1111/j.1468-2494.2010.00616.x] [PMID: 21265866]
[12]
Searle, T.; Al-Niaimi, F.; Ali, F.R. Hydroquinone: Myths and reality. Clin. Exp. Dermatol., 2021, 46(4), 636-640.
[http://dx.doi.org/10.1111/ced.14480] [PMID: 33159818]
[13]
Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10(6), 2440-2475.
[http://dx.doi.org/10.3390/ijms10062440] [PMID: 19582213]
[14]
Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry, 2011, 50(24), 5477-5486.
[http://dx.doi.org/10.1021/bi200395t] [PMID: 21598903]
[15]
Inlow, J.K. Homology models of four Agaricus bisporus tyrosinases. Int. J. Biol. Macromol., 2012, 50(1), 283-293.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.11.010] [PMID: 22119959]
[16]
Seo, S.Y.; Sharma, V.K.; Sharma, N. Mushroom tyrosinase: Recent prospects. J. Agric. Food Chem., 2003, 51(10), 2837-2853.
[http://dx.doi.org/10.1021/jf020826f] [PMID: 12720364]
[17]
Mendes, E.; Perry, M.J.; Francisco, A.P. Design and discovery of mushroom tyrosinase inhibitors and their therapeutic applications. Expert Opin. Drug Discov., 2014, 9(5), 533-554.
[http://dx.doi.org/10.1517/17460441.2014.907789] [PMID: 24708040]
[18]
Trott, O.; Olson, A.J. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[19]
Xiong, S.L.; Lim, G.T.; Yin, S.J.; Lee, J.; Si, Y.X.; Yang, J.M.; Park, Y.D.; Qian, G.Y. The inhibitory effect of pyrogallol on tyrosinase activity and structure: Integration study of inhibition kinetics with molecular dynamics simulation. Int. J. Biol. Macromol., 2019, 121, 463-471.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.046] [PMID: 30326223]
[20]
Si, Y.X.; Ji, S.; Fang, N.Y.; Wang, W.; Yang, J.M.; Qian, G.Y.; Park, Y.D.; Lee, J.; Yin, S.J. Effects of piperonylic acid on tyrosinase: Mixed-type inhibition kinetics and computational simulations. Process Biochem., 2013, 48(11), 1706-1714.
[http://dx.doi.org/10.1016/j.procbio.2013.08.006]
[21]
Cheng, Y.; Prusoff, W.H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol., 1973, 22(23), 3099-3108.
[http://dx.doi.org/10.1016/0006-2952(73)90196-2] [PMID: 4202581]
[22]
Wang, Z.J.; Ji, S.; Si, Y.X.; Yang, J.M.; Qian, G.Y.; Lee, J.; Yin, S.J. The effect of validamycin A on tyrosinase: Inhibition kinetics and computational simulation. Int. J. Biol. Macromol., 2013, 55, 15-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.12.040] [PMID: 23295203]
[23]
Si, Y.X.; Yin, S.J.; Oh, S.; Wang, Z.J.; Ye, S.; Yan, L.; Yang, J.M.; Park, Y.D.; Lee, J.; Qian, G.Y. An integrated study of tyrosinase inhibition by rutin: Progress using a computational simulation. J. Biomol. Struct. Dyn., 2012, 29(5), 999-1012.
[http://dx.doi.org/10.1080/073911012010525028] [PMID: 22292957]
[24]
Pei, C.J.; Lee, J.; Si, Y.X.; Oh, S.; Xu, W.A.; Yin, S.J.; Qian, G.Y.; Han, H.Y. Inhibition of tyrosinase by gastrodin: An integrated kinetic-computational simulation analysis. Process Biochem., 2013, 48(1), 162-168.
[http://dx.doi.org/10.1016/j.procbio.2012.11.004]
[25]
Wang, Z.J.; Si, Y.X.; Oh, S.; Yang, J.M.; Yin, S.J.; Park, Y.D.; Lee, J.; Qian, G.Y. The effect of fucoidan on tyrosinase: Computational molecular dynamics integrating inhibition kinetics. J. Biomol. Struct. Dyn., 2012, 30(4), 460-473.
[http://dx.doi.org/10.1080/07391102.2012.682211] [PMID: 22694253]
[26]
Si, Y.X.; Ji, S.; Wang, W.; Fang, N.Y.; Jin, Q.X.; Park, Y.D.; Qian, G.Y.; Lee, J.; Han, H.Y.; Yin, S.J. Effects of boldine on tyrosinase: Inhibition kinetics and computational simulation. Process Biochem., 2013, 48(1), 152-161.
[http://dx.doi.org/10.1016/j.procbio.2012.11.001]
[27]
Wang, Z.J.; Lee, J.; Si, Y.X.; Oh, S.; Yang, J.M.; Shen, D.; Qian, G.Y.; Yin, S.J. Toward the inhibitory effect of acetylsalicylic acid on tyrosinase: Integrating kinetics studies and computational simulations. Process Biochem., 2013, 48(2), 260-266.
[http://dx.doi.org/10.1016/j.procbio.2012.12.019]
[28]
Liu, H.J.; Ji, S.; Fan, Y.Q.; Yan, L.; Yang, J.M.; Zhou, H.M.; Lee, J.; Wang, Y.L. The effect of D-(-)-arabinose on tyrosinase: An integrated study using computational simulation and inhibition kinetics. Enzyme Res., 2012, 2012, 731427.
[http://dx.doi.org/10.1155/2012/731427] [PMID: 23365724]
[29]
Rogers, D.J.; Tanimoto, T.T. A computer program for classifying plants. Science, 1960, 132(3434), 1115-1118.
[http://dx.doi.org/10.1126/science.132.3434.1115] [PMID: 17790723]
[30]
Ridker, P.M.; Lüscher, T.F. Anti-inflammatory therapies for cardiovascular disease. Eur. Heart J., 2014, 35(27), 1782-1791.
[http://dx.doi.org/10.1093/eurheartj/ehu203] [PMID: 24864079]
[31]
Davies, N.M.; Jamali, F.; Skeith, K.J. Nonsteroidal antiinflammatory drug-induced enteropathy and severe chronic anemia in a patient with rheumatoid arthritis. Arthritis Rheum., 1996, 39(2), 321-324.
[http://dx.doi.org/10.1002/art.1780390222] [PMID: 8849386]
[32]
McCarty, M.F. Salsalate may have broad utility in the prevention and treatment of vascular disorders and the metabolic syndrome. Med. Hypotheses, 2010, 75(3), 276-281.
[http://dx.doi.org/10.1016/j.mehy.2009.12.027] [PMID: 20080359]
[33]
Anderson, K.; Wherle, L.; Park, M.; Nelson, K.; Nguyen, L. Salsalate, an old, inexpensive drug with potential new indications: A review of the evidence from 3 recent studies. Am. Health Drug Benefits, 2014, 7(4), 231-235.
[PMID: 25126374]
[34]
Faghihimani, E.; Aminorroaya, A.; Rezvanian, H.; Adibi, P.; Ismail-Beigi, F.; Amini, M. Salsalate improves glycemic control in patients with newly diagnosed type 2 diabetes. Acta Diabetol., 2013, 50(4), 537-543.
[http://dx.doi.org/10.1007/s00592-011-0329-2] [PMID: 21938543]
[35]
Goldfine, A.B.; Silver, R.; Aldhahi, W.; Cai, D.; Tatro, E.; Lee, J.; Shoelson, S.E. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin. Transl. Sci., 2008, 1(1), 36-43.
[http://dx.doi.org/10.1111/j.1752-8062.2008.00026.x] [PMID: 19337387]
[36]
Chiku, K.; Dohi, H.; Saito, A.; Ebise, H.; Kouzai, Y.; Shinoyama, H.; Nishida, Y.; Ando, A. Enzymatic synthesis of 4-hydroxyphenyl beta-D-oligoxylosides and their notable tyrosinase inhibitory activity. Biosci. Biotechnol. Biochem., 2009, 73(5), 1123-1128.
[http://dx.doi.org/10.1271/bbb.80885] [PMID: 19420707]