A Review on Recent Advancement in Expression Strategies Used in Bacillus subtilis

Page: [733 - 743] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Bacillus subtilis is a Gram-positive bacterium that has gained an unprecedented reputation as an expression system at the industrial scale due to characteristics, such as GRAS (Generally recognized as safe), ease of genetic manipulation, high growth rate on the cheap substrate, and short fermentation cycle. This expression system has been widely accepted for the production of various chemicals, pharmaceutical products, food products, proteins, and enzymes. However, there are various hurdles to optimizing the production of heterologous protein in this expression system due to a lack of understanding regarding metabolic pathways and expression elements. In this review, we have emphasized strategies that can enhance the expression level of heterologous proteins in B. subtilis. These strategies include optimization of B. Subtilis strain, expression elements, such as promotors, UTR (Untranslated region), RBS (Ribosome binding site), signal peptide, and metabolic pathways. Finally, contemporary challenges and future perspectives of B. subtilis as an industrial-scale expression system are discussed.

Keywords: Protein, genetic engineering, promoter, RBS, optimization, UTR, signal peptide.

Graphical Abstract

[1]
Su, Y.; Liu, C.; Fang, H.; Zhang, D. Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Fact., 2020, 19(1), 1-12.
[http://dx.doi.org/10.1186/s12934-020-01436-8] [PMID: 32883293]
[2]
Westers, L.; Westers, H.; Quax, W.J. Bacillus subtilis as cell factory for pharmaceutical proteins: A biotechnological approach to optimize the host organism. Biochim. Biophys. Acta Mol. Cell Res., 2004, 1694(1-3), 299-310.
[http://dx.doi.org/10.1016/j.bbamcr.2004.02.011]
[3]
Chen, J.; Gai, Y.; Fu, G.; Zhou, W.; Zhang, D.; Wen, J. Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein. Biotechnol. Lett., 2015, 37(4), 899-906.
[http://dx.doi.org/10.1007/s10529-014-1755-3] [PMID: 25515799]
[4]
Dong, H.; Zhang, D. Current development in genetic engineering strategies of Bacillus species. Microb. Cell Fact., 2014, 13(1), 63.
[http://dx.doi.org/10.1186/1475-2859-13-63] [PMID: 24885003]
[5]
Liu, L.; Liu, Y.; Shin, H.D.; Chen, R.R.; Wang, N.S.; Li, J.; Du, G.; Chen, J. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl. Microbiol. Biotechnol., 2013, 97(14), 6113-6127.
[http://dx.doi.org/10.1007/s00253-013-4960-4] [PMID: 23749118]
[6]
Gu, Y.; Xu, X.; Wu, Y.; Niu, T.; Liu, Y.; Li, J.; Du, G.; Liu, L. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metab. Eng., 2018, 50, 109-121.
[http://dx.doi.org/10.1016/j.ymben.2018.05.006] [PMID: 29775652]
[7]
Liu, Y.; Li, J.; Du, G.; Chen, J.; Liu, L. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions. Biotechnol. Adv., 2017, 35(1), 20-30.
[http://dx.doi.org/10.1016/j.biotechadv.2016.11.003] [PMID: 27867004]
[8]
Ashlee, M.E.; Richard, L.; Roberto, K. Ecology and genomics of Bacillus subtilis ashlee. Trends Microbiol., 2008, 16(6), 1-11.
[http://dx.doi.org/10.1016/j.tim.2008.03.004]
[9]
Guan, C.; Cui, W.; Cheng, J.; Liu, R.; Liu, Z.; Zhou, L.; Zhou, Z. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis. N. Biotechnol., 2016, 33(3), 372-379.
[http://dx.doi.org/10.1016/j.nbt.2016.01.005] [PMID: 26820123]
[10]
Zhang, J.; Kang, Z.; Ling, Z.; Cao, W.; Liu, L.; Wang, M.; Du, G.; Chen, J. High-level extracellular production of alkaline polygalacturonate lyase in Bacillus subtilis with optimized regulatory elements. Bioresour. Technol., 2013, 146, 543-548.
[http://dx.doi.org/10.1016/j.biortech.2013.07.129] [PMID: 23973973]
[11]
Song, Y.; Nikoloff, J.M.; Zhang, D. Improving protein production on the level of regulation of both expression and secretion pathways in Bacillus subtilis. J. Microbiol. Biotechnol., 2015, 25(7), 963-977.
[http://dx.doi.org/10.4014/jmb.1501.01028] [PMID: 25737123]
[12]
Chen, J.; Zhu, Y.; Fu, G.; Song, Y.; Jin, Z.; Sun, Y.; Zhang, D. High-level intra- and extra-cellular production of D-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis. J. Ind. Microbiol. Biotechnol., 2016, 43(11), 1577-1591.
[http://dx.doi.org/10.1007/s10295-016-1819-6] [PMID: 27544767]
[13]
Aslankoohi, E.; Rezaei, M.N.; Vervoort, Y.; Courtin, C.M.; Verstrepen, K.J. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation. PLoS One, 2015, 10(3), e0119364.
[http://dx.doi.org/10.1371/journal.pone.0119364] [PMID: 25764309]
[14]
Wenzel, M.; Müller, A.; Siemann-Herzberg, M.; Altenbuchner, J. Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Appl. Environ. Microbiol., 2011, 77(18), 6419-6425.
[http://dx.doi.org/10.1128/AEM.05219-11] [PMID: 21803899]
[15]
Wang, Y.; Weng, J.; Waseem, R.; Yin, X.; Zhang, R.; Shen, Q. Bacillus subtilis genome editing using ssDNA with short homology regions. Nucleic Acids Res., 2012, 40(12), e91.
[http://dx.doi.org/10.1093/nar/gks248] [PMID: 22422839]
[16]
Westbrook, A.W.; Moo-Young, M.; Chou, C.P. Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis. Appl. Environ. Microbiol., 2016, 82(16), 4876-4895.
[http://dx.doi.org/10.1128/AEM.01159-16] [PMID: 27260361]
[17]
Jin, P.; Kang, Z.; Yuan, P.; Du, G.; Chen, J. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab. Eng., 2016, 35, 21-30.
[http://dx.doi.org/10.1016/j.ymben.2016.01.008] [PMID: 26851304]
[18]
Vavrová, L.; Muchová, K.; Barák, I. Comparison of different Bacillus subtilis expression systems. Res. Microbiol., 2010, 161(9), 791-797.
[http://dx.doi.org/10.1016/j.resmic.2010.09.004] [PMID: 20863884]
[19]
Westbrook, A.W.; Ren, X.; Moo-Young, M.; Chou, C.P. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnol. Bioeng., 2018, 115(1), 216-231.
[http://dx.doi.org/10.1002/bit.26459] [PMID: 28941282]
[20]
Zhou, C.; Ye, B.; Cheng, S.; Zhao, L.; Liu, Y.; Jiang, J.; Yan, X. Promoter engineering enables overproduction of foreign proteins from a single copy expression cassette in Bacillus subtilis. Microb. Cell Fact., 2019, 18(1), 111.
[http://dx.doi.org/10.1186/s12934-019-1159-0] [PMID: 31200722]
[21]
Jin, P.; Zhang, L.; Yuan, P.; Kang, Z.; Du, G.; Chen, J. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr. Polym., 2016, 140, 424-432.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.065] [PMID: 26876870]
[22]
Liu, L.; Liu, Y.; Shin, H.D.; Chen, R.; Li, J.; Du, G.; Chen, J. Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Appl. Microbiol. Biotechnol., 2013, 97(14), 6149-6158.
[http://dx.doi.org/10.1007/s00253-013-4995-6] [PMID: 23754704]
[23]
Feng, J.; Gu, Y.; Quan, Y.; Cao, M.; Gao, W.; Zhang, W.; Wang, S.; Yang, C.; Song, C. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Metab. Eng., 2015, 32, 106-115.
[http://dx.doi.org/10.1016/j.ymben.2015.09.011] [PMID: 26410449]
[24]
Patel, A.R.; Mokashe, N.U.; Chaudhari, D.S.; Jadhav, A.G.; Patil, U.K. Production optimisation and characterisation of extracellular protease secreted by newly isolated Bacillus subtilis AU-2 strain obtained from Tribolium castaneum gut. Biocatal. Agric. Biotechnol., 2019, 19, 101122.
[http://dx.doi.org/10.1016/j.bcab.2019.101122]
[25]
Feng, Y.; Liu, S.; Jiao, Y.; Gao, H.; Wang, M.; Du, G.; Chen, J. Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy. Appl. Microbiol. Biotechnol., 2017, 101(4), 1509-1520.
[http://dx.doi.org/10.1007/s00253-016-7816-x] [PMID: 27796436]
[26]
Cao, H.; van Heel, A.J.; Ahmed, H.; Mols, M.; Kuipers, O.P. Cell surface engineering of Bacillus subtilis improves production yields of heterologously expressed α-amylases. Microb. Cell Fact., 2017, 16(1), 56.
[http://dx.doi.org/10.1186/s12934-017-0674-0] [PMID: 28376879]
[27]
Watzlawick, H.; Altenbuchner, J. Multiple integration of the gene ganA into the Bacillus subtilis chromosome for enhanced β-galactosidase production using the CRISPR/Cas9 system. AMB Express, 2019, 9(1), 158.
[http://dx.doi.org/10.1186/s13568-019-0884-4] [PMID: 31571017]
[28]
Lan Thanh Bien, T.; Tsuji, S.; Tanaka, K.; Takenaka, S.; Yoshida, K. Secretion of heterologous thermostable cellulases in Bacillus subtilis. J. Gen. Appl. Microbiol., 2014, 60(5), 175-182.
[http://dx.doi.org/10.2323/jgam.60.175] [PMID: 25420422]
[29]
Lee, Y.H.; Nam, K.H.; Helmann, J.D. A mutation of the RNA polymerase β′ subunit (rpoC) confers cephalosporin resistance in Bacillus subtilis. Antimicrob. Agents Chemother., 2013, 57(1), 56-65.
[http://dx.doi.org/10.1128/AAC.01449-12] [PMID: 23070162]
[30]
Yan, Q.; Fong, S.S. Study of in vitro transcriptional binding effects and noise using constitutive promoters combined with UP element sequences in Escherichia coli. J. Biol. Eng., 2017, 11(1), 33.
[http://dx.doi.org/10.1186/s13036-017-0075-2] [PMID: 29118850]
[31]
Phan, T.T.P.; Nguyen, H.D.; Schumann, W. Establishment of a simple and rapid method to screen for strong promoters in Bacillus subtilis. Protein Expr. Purif., 2010, 71(2), 174-178.
[http://dx.doi.org/10.1016/j.pep.2009.11.010] [PMID: 19963063]
[32]
Zhang, K.; Su, L.; Duan, X.; Liu, L.; Wu, J. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system. Microb. Cell Fact., 2017, 16(1), 32.
[http://dx.doi.org/10.1186/s12934-017-0649-1] [PMID: 28219382]
[33]
Meng, F.; Zhu, X.; Nie, T.; Lu, F.; Bie, X.; Lu, Y.; Trouth, F.; Lu, Z. Enhanced expression of pullulanase in Bacillus subtilis by new strong promoters mined from transcriptome data, both alone and in combination. Front. Microbiol., 2018, 9, 2635.
[http://dx.doi.org/10.3389/fmicb.2018.02635] [PMID: 30450090]
[34]
Guan, C.; Cui, W.; Cheng, J.; Zhou, L.; Guo, J.; Hu, X.; Xiao, G.; Zhou, Z. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis. Microb. Cell Fact., 2015, 14(1), 150.
[http://dx.doi.org/10.1186/s12934-015-0341-2] [PMID: 26392346]
[35]
Guan, C.; Cui, W.; Cheng, J.; Zhou, L.; Liu, Z.; Zhou, Z. Development of an efficient autoinducible expression system by promoter engineering in Bacillus subtilis. Microb. Cell Fact., 2016, 15(1), 66.
[http://dx.doi.org/10.1186/s12934-016-0464-0] [PMID: 27112779]
[36]
Song, Y.; Fu, G.; Dong, H.; Li, J.; Du, Y.; Zhang, D. High-efficiency secretion of β-Mannanase in Bacillus subtilis through protein synthesis and secretion optimization. J. Agric. Food Chem., 2017, 65(12), 2540-2548.
[http://dx.doi.org/10.1021/acs.jafc.6b05528] [PMID: 28262014]
[37]
Bechhofer, D.H. Chapter 6 messenger RNA decay and maturation in Bacillus subtilis. In: Progress in Molecular Biology and Translational Science; Academic Press: USA, 2009; pp. 231-273.
[http://dx.doi.org/10.1016/S0079-6603(08)00806-4]
[38]
Hambraeus, G.; Karhumaa, K.; Rutberg, B.A. 5′ stem-loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. Microbiology, 2002, 148(Pt 6), 1795-1803.
[http://dx.doi.org/10.1099/00221287-148-6-1795] [PMID: 12055299]
[39]
Sharp, J.S.; Bechhofer, D.H. Effect of translational signals on mRNA decay in Bacillus subtilis. J. Bacteriol., 2003, 185(18), 5372-5379.
[http://dx.doi.org/10.1128/JB.185.18.5372-5379.2003] [PMID: 12949089]
[40]
Phan, T.T.P.; Nguyen, H.D.; Schumann, W. Construction of a 5′-controllable stabilizing element (CoSE) for over-production of heterologous proteins at high levels in Bacillus subtilis. J. Biotechnol., 2013, 168(1), 32-39.
[http://dx.doi.org/10.1016/j.jbiotec.2013.07.031] [PMID: 23954327]
[41]
Seo, S.W.; Yang, J.S.; Cho, H.S.; Yang, J.; Kim, S.C.; Park, J.M.; Kim, S.; Jung, G.Y. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels. Sci. Rep., 2014, 4(1), 4515.
[http://dx.doi.org/10.1038/srep04515] [PMID: 24682040]
[42]
Cui, W.; Han, L.; Cheng, J.; Liu, Z.; Zhou, L.; Guo, J.; Zhou, Z. Engineering an inducible gene expression system for Bacillus subtilis from a strong constitutive promoter and a theophylline-activated synthetic riboswitch. Microb. Cell Fact., 2016, 15(1), 199.
[http://dx.doi.org/10.1186/s12934-016-0599-z] [PMID: 27876054]
[43]
Yang, H.; Qu, J.; Zou, W.; Shen, W.; Chen, X. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl. Microbiol. Biotechnol., 2021, 105(18), 6607-6626.
[http://dx.doi.org/10.1007/s00253-021-11533-2] [PMID: 34468804]
[44]
Lu, Z.; Yang, S.; Yuan, X.; Shi, Y.; Ouyang, L.; Jiang, S.; Yi, L.; Zhang, G. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis. Nucleic Acids Res., 2019, 47(7), e40.
[http://dx.doi.org/10.1093/nar/gkz072] [PMID: 30767015]
[45]
Sharp, J. S.; Bechhofer, D. H. Effect of 5 ¢ -Proximal elements on decay of a model mRNA in Bacillus subtilis. 2005, 57, 484-495.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04683.x]
[46]
Frederique, B.; Sylvain, D.; Ciarán, C. Initiating ribosomes and a 5′/3′-UTR interaction control ribonuclease action to tightly couple B. subtilis Hbs mRNA stability with translation. Nucleic Acids Res., 2017, 45(19), 11386-11400.
[47]
Condon, C. What is the role of RNase J in mRNA turnover? RNA Biol., 2010, 7(3), 316-321.
[http://dx.doi.org/10.4161/rna.7.3.11913] [PMID: 20458164]
[48]
Hess, G.F.; Graham, R.S. Efficiency of transcriptional terminators in Bacillus subtilis. Gene, 1990, 95(1), 137-141.
[49]
Li, T.; Ding, Y.; Zhang, J.; Jiao, G.; Sun, L.; Liu, Z.; Qiu, L. Improving the expression of recombinant pullulanase by increasing MRNA stability in Escherichia coli SD-PulA SD-PulA-3t. Electron. J. Biotechnol., 2017, 29, 63-67.
[http://dx.doi.org/10.1016/j.ejbt.2017.07.001]
[50]
Deana, A.; Belasco, J.G. Lost in translation: The influence of ribosomes on bacterial mRNA decay. Genes Dev., 2005, 19(21), 2526-2533.
[http://dx.doi.org/10.1101/gad.1348805] [PMID: 16264189]
[51]
Vargas-Blanco, D.A.; Shell, S.S. Regulation of mRNA stability during bacterial stress responses. Front. Microbiol., 2020, 11, 2111.
[http://dx.doi.org/10.3389/fmicb.2020.02111] [PMID: 33013770]
[52]
Volkenborn, K.; Kuschmierz, L.; Benz, N.; Lenz, P.; Knapp, A.; Jaeger, K.E. The length of ribosomal binding site spacer sequence controls the production yield for intracellular and secreted proteins by Bacillus subtilis. Microb. Cell Fact., 2020, 19(1), 154.
[http://dx.doi.org/10.1186/s12934-020-01404-2] [PMID: 32727460]
[53]
Mars, R.A.T.; Nicolas, P.; Denham, E.L.; Dijl, M. Van, Regulatory RNAs in Bacillus subtilis: A gram-positive perspective on bacterial RNA-mediated regulation of gene expression. 2016, 80(4), 1029-1057.
[http://dx.doi.org/10.1128/MMBR.00026-16]
[54]
Goodman, D.B.; Church, G.M.; Kosuri, S. Causes and effects of N-Terminal codon bias in bacterial genes. Science, 2013, 342(6157), 475-479.
[http://dx.doi.org/10.1126/science.1241934]
[55]
Zhang, Q.; Wu, Y.; Gong, M.; Zhang, H.; Liu, Y.; Lv, X.; Li, J.; Du, G.; Liu, L. Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays Biochem., 2021, 65(2), 173-185.
[http://dx.doi.org/10.1042/EBC20210011] [PMID: 34028523]
[56]
Ma, W.; Liu, Y.; Wang, Y.; Lv, X.; Li, J.; Du, G.; Liu, L. Combinatorial fine-tuning of GNA1 and GlmS expression by 5′-terminus fusion engineering leads to overproduction of N-Acetylglucosamine in Bacillus subtilis. Biotechnol. J., 2019, 14(3), e1800264.
[http://dx.doi.org/10.1002/biot.201800264] [PMID: 30105781]
[57]
Zhang, K.; Su, L.; Wu, J. Recent advances in recombinant protein production by Bacillus subtilis. Annu. Rev. Food Sci. Technol., 2020, 11(1), 295-318.
[http://dx.doi.org/10.1146/annurev-food-032519-051750] [PMID: 31905010]
[58]
Wei, X.; Zhou, Y.; Chen, J.; Cai, D.; Wang, D.; Qi, G.; Chen, S. Efficient expression of nattokinase in Bacillus licheniformis: Host strain construction and signal peptide optimization. J. Ind. Microbiol. Biotechnol., 2015, 42(2), 287-295.
[http://dx.doi.org/10.1007/s10295-014-1559-4] [PMID: 25475755]
[59]
Zhao, L.; Ye, B.; Zhang, Q.; Cheng, D.; Zhou, C.; Cheng, S.; Yan, X. Construction of second generation protease-deficient hosts of Bacillus subtilis for secretion of foreign proteins. Biotechnol. Bioeng., 2019, 116(8), 2052-2060.
[http://dx.doi.org/10.1002/bit.26992] [PMID: 30989640]
[60]
Wang, Y.; Chen, Z.; Zhao, R.; Jin, T.; Zhang, X.; Chen, X. Deleting multiple lytic genes enhances biomass yield and production of recombinant proteins by Bacillus subtilis. Microb. Cell Fact., 2014, 13(1), 129.
[http://dx.doi.org/10.1186/s12934-014-0129-9] [PMID: 25176138]
[61]
Chen, J.; Fu, G.; Gai, Y.; Zheng, P.; Zhang, D.; Wen, J. Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: Identification of bottlenecks by systematic gene overexpression. Microb. Cell Fact., 2015, 14(1), 92.
[http://dx.doi.org/10.1186/s12934-015-0282-9] [PMID: 26112883]
[62]
Vitikainen, M.; Pummi, T.; Airaksinen, U.; Wahlström, E.; Wu, H.; Sarvas, M.; Kontinen, V.P. Quantitation of the capacity of the secretion apparatus and requirement for PrsA in growth and secretion of α-amylase in Bacillus subtilis. J. Bacteriol., 2001, 183(6), 1881-1890.
[http://dx.doi.org/10.1128/JB.183.6.1881-1890.2001] [PMID: 11222585]
[63]
Yang, S.; Kang, Z.; Cao, W.; Du, G.; Chen, J. Construction of a novel, stable, food-grade expression system by engineering the endogenous toxin-antitoxin system in Bacillus subtilis. J. Biotechnol., 2016, 219, 40-47.
[http://dx.doi.org/10.1016/j.jbiotec.2015.12.029] [PMID: 26721182]
[64]
Brantl, S.; Müller, P. Toxin-antitoxin systems in Bacillus subtilis. Toxins, 2019, 11(5), 1-18.
[http://dx.doi.org/10.3390/toxins11050262] [PMID: 31075979]
[65]
Sauer, C.; Syvertsson, S.; Bohorquez, L.C.; Cruz, R.; Harwood, C.R.; van Rij, T.; Hamoen, L.W. Effect of genome position on heterologous gene expression in Bacillus subtilis: An unbiased analysis. ACS Synth. Biol., 2016, 5(9), 942-947.
[http://dx.doi.org/10.1021/acssynbio.6b00065] [PMID: 27197833]
[66]
Guiziou, S.; Sauveplane, V.; Chang, H.J.; Clerté, C.; Declerck, N.; Jules, M.; Bonnet, J. A part toolbox to tune genetic expression in Bacillus subtilis. Nucleic Acids Res., 2016, 44(15), 7495-7508.
[http://dx.doi.org/10.1093/nar/gkw624] [PMID: 27402159]
[67]
Peters, J.M.; Colavin, A.; Shi, H.; Czarny, T.L.; Larson, M.H.; Wong, S.; Hawkins, J.S.; Lu, C.H.S.; Koo, B.M.; Marta, E.; Shiver, A.L.; Whitehead, E.H.; Weissman, J.S.; Brown, E.D.; Qi, L.S.; Huang, K.C.; Gross, C.A.A. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell, 2016, 165(6), 1493-1506.
[http://dx.doi.org/10.1016/j.cell.2016.05.003] [PMID: 27238023]
[68]
Koo, B.M.; Kritikos, G.; Farelli, J.D.; Todor, H.; Tong, K.; Kimsey, H.; Wapinski, I.; Galardini, M.; Cabal, A.; Peters, J.M.; Hachmann, A.B.; Rudner, D.Z.; Allen, K.N.; Typas, A.; Gross, C.A. Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst., 2017, 4(3), 291-305.e7.
[http://dx.doi.org/10.1016/j.cels.2016.12.013] [PMID: 28189581]
[69]
Welsch, N.; Homuth, G.; Schweder, T. Stepwise optimization of a low-temperature Bacillus subtilis expression system for “difficult to express” proteins. Appl. Microbiol. Biotechnol., 2015, 99(15), 6363-6376.
[http://dx.doi.org/10.1007/s00253-015-6552-y] [PMID: 25851716]
[70]
Dormeyer, M.; Egelkamp, R.; Thiele, M.J.; Hammer, E.; Gunka, K.; Stannek, L.; Völker, U.; Commichau, F.M. A novel engineering tool in the Bacillus subtilis toolbox: Inducer-free activation of gene expression by selection-driven promoter decryptification. Microbiology, 2015, 161(Pt 2), 354-361.
[http://dx.doi.org/10.1099/mic.0.000001] [PMID: 25473090]
[71]
Xiang, M.; Kang, Q.; Zhang, D. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell. Synth. Syst. Biotechnol., 2020, 5(4), 245-251.
[http://dx.doi.org/10.1016/j.synbio.2020.07.005] [PMID: 32775709]
[72]
Cress, B.F.; Trantas, E.A.; Ververidis, F.; Linhardt, R.J.; Koffas, M.A.G. Sensitive cells: Enabling tools for static and dynamic control of microbial metabolic pathways. Curr. Opin. Biotechnol., 2015, 36, 205-214.
[http://dx.doi.org/10.1016/j.copbio.2015.09.007] [PMID: 26453934]
[73]
Holtz, W.J.; Keasling, J.D. Engineering static and dynamic control of synthetic pathways. Cell, 2010, 140(1), 19-23.
[http://dx.doi.org/10.1016/j.cell.2009.12.029] [PMID: 20085699]
[74]
Biggs, B.W.; De Paepe, B.; Santos, C.N.S.; De Mey, M.; Kumaran Ajikumar, P. Multivariate modular metabolic engineering for pathway and strain optimization. Curr. Opin. Biotechnol., 2014, 29(1), 156-162.
[http://dx.doi.org/10.1016/j.copbio.2014.05.005] [PMID: 24927371]
[75]
Liu, Y.; Liu, L.; Shin, H.D.; Chen, R.R.; Li, J.; Du, G.; Chen, J. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Metab. Eng., 2013, 19, 107-115.
[http://dx.doi.org/10.1016/j.ymben.2013.07.002] [PMID: 23876412]
[76]
Wang, H.; Wang, Y.; Yang, R. Recent progress in Bacillus subtilis spore-surface display: Concept, progress, and future. Appl. Microbiol. Biotechnol., 2017, 101(3), 933-949.
[http://dx.doi.org/10.1007/s00253-016-8080-9] [PMID: 28062973]
[77]
Tamiev, D.; Lantz, A.; Vezeau, G.; Salis, H.; Reuel, N.F. Controlling heterogeneity and increasing titer from riboswitch-regulated Bacillus subtilis spores for time-delayed protein expression applications. bioRxiv, 2019, 2019, 592659.
[http://dx.doi.org/10.1101/592659]
[78]
Cai, D.; Rao, Y.; Zhan, Y.; Wang, Q.; Chen, S. Engineering Bacillus for efficient production of heterologous protein: Current progress, challenge and prospect. J. Appl. Microbiol., 2019, 126(6), 1632-1642.
[http://dx.doi.org/10.1111/jam.14192] [PMID: 30609144]
[79]
Xia, R.; Yang, Y.; Pan, X.; Gao, C.; Yao, Y.; Liu, X.; Teame, T.; Zhang, F.; Hu, J.; Ran, C.; Zhang, Z.; Liu-Clarke, J.; Zhou, Z. Improving the production of AHL lactonase AiiO-AIO6 from Ochrobactrum sp. M231 in intracellular protease-deficient Bacillus subtilis. AMB Express, 2020, 10(1), 138.
[http://dx.doi.org/10.1186/s13568-020-01075-7] [PMID: 32757095]
[80]
Zhang, K.; Su, L.; Wu, J. Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding. Appl. Microbiol. Biotechnol., 2018, 102(12), 5089-5103.
[http://dx.doi.org/10.1007/s00253-018-8965-x] [PMID: 29675805]