Background: Granzyme B can induce apoptosis in target cells by direct and indirect activation of caspases and cleavage of central caspase substrates. Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein and its expression increases following prostate cancer progression.
Objective: In this study, we designed a fusion protein including mutant granzyme B, the influenza virus hemagglutinin HA-2 N-terminal, and PSMA ligand to construct GrB-HA-PSMA ligand fusion protein as a molecular agent for selective targeting of PSMA-positive (LNCaP) cells.
Methods: The DNA sequence of our designed structure was synthesized and cloned into a pET28a expression vector. The recombinant protein was expressed in E. coli origami bacteria and then purified. The expression of the recombinant protein was verified by SDS PAGE and ELISA method. Furthermore, ELISA and flow cytometry assays were utilized to investigate the efficiency of binding and permeability of the recombinant protein into the LNCaP cells. Finally, cell proliferation and apoptosis rate were evaluated by MTT assay and flow cytometry assay, respectively. HeLa and PC3 cell lines were used as controls.
Results: The results showed that GrB-HA-PSMA ligand fusion protein could specifically bind and internalize into the PSMA-positive cells. Furthermore, treatment of the cells with GrB-HA-PSMA ligand fusion protein resulted in increased apoptotic cell death and decreased proliferation of LNCaP cells.
Conclusion: Our findings indicate the specificity of GrB-HA-PSMA ligand fusion protein for PSMA-positive cells and suggest that this fusion protein is a potential candidate for prostate cancer targeted therapy.
Keywords: Prostate cancer, protein therapy, immunotoxin, granzyme B, PSMA, fusion protein.