Expression and Purification of Human Granzyme B Fusion Protein to Induce Targeted Apoptosis in PSMA Positive Prostate Cancer Cells

Page: [631 - 640] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Granzyme B can induce apoptosis in target cells by direct and indirect activation of caspases and cleavage of central caspase substrates. Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein and its expression increases following prostate cancer progression.

Objective: In this study, we designed a fusion protein including mutant granzyme B, the influenza virus hemagglutinin HA-2 N-terminal, and PSMA ligand to construct GrB-HA-PSMA ligand fusion protein as a molecular agent for selective targeting of PSMA-positive (LNCaP) cells.

Methods: The DNA sequence of our designed structure was synthesized and cloned into a pET28a expression vector. The recombinant protein was expressed in E. coli origami bacteria and then purified. The expression of the recombinant protein was verified by SDS PAGE and ELISA method. Furthermore, ELISA and flow cytometry assays were utilized to investigate the efficiency of binding and permeability of the recombinant protein into the LNCaP cells. Finally, cell proliferation and apoptosis rate were evaluated by MTT assay and flow cytometry assay, respectively. HeLa and PC3 cell lines were used as controls.

Results: The results showed that GrB-HA-PSMA ligand fusion protein could specifically bind and internalize into the PSMA-positive cells. Furthermore, treatment of the cells with GrB-HA-PSMA ligand fusion protein resulted in increased apoptotic cell death and decreased proliferation of LNCaP cells.

Conclusion: Our findings indicate the specificity of GrB-HA-PSMA ligand fusion protein for PSMA-positive cells and suggest that this fusion protein is a potential candidate for prostate cancer targeted therapy.

Keywords: Prostate cancer, protein therapy, immunotoxin, granzyme B, PSMA, fusion protein.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Pourmand, G.; Salem, S.; Mehrsai, A.; Lotfi, M.; Amirzargar, M.A.; Mazdak, H.; Roshani, A.; Kheirollahi, A.; Kalantar, E.; Baradaran, N.; Saboury, B.; Allameh, F.; Karami, A.; Ahmadi, H.; Jahani, Y. The risk factors of prostate cancer: A multicentric case-control study in Iran. Asian Pac. J. Cancer Prev., 2007, 8(3), 422-428.
[PMID: 18159981]
[3]
Panigrahi, G.K.; Praharaj, P.P.; Kittaka, H.; Mridha, A.R.; Black, O.M.; Singh, R.; Mercer, R.; van Bokhoven, A.; Torkko, K.C.; Agarwal, C.; Agarwal, R.; Abd Elmageed, Z.Y.; Yadav, H.; Mishra, S.K.; Deep, G. Exosome proteomic analyses identify inflammatory phenotype and novel biomarkers in African American prostate cancer patients. Cancer Med., 2019, 8(3), 1110-1123.
[http://dx.doi.org/10.1002/cam4.1885] [PMID: 30623593]
[4]
Siri, F.H.; Salehiniya, H. Pancreatic cancer in Iran: An epidemiological review. J. Gastrointest. Cancer, 2020, 51(2), 418-424.
[http://dx.doi.org/10.1007/s12029-019-00279-w] [PMID: 31385233]
[5]
Wagenlehner, F.M.; Elkahwaji, J.E.; Algaba, F.; Bjerklund-Johansen, T.; Naber, K.G.; Hartung, R.; Weidner, W. The role of inflammation and infection in the pathogenesis of prostate carcinoma. BJU Int., 2007, 100(4), 733-737.
[http://dx.doi.org/10.1111/j.1464-410X.2007.07091.x] [PMID: 17662075]
[6]
Kreitman, R.J. Immunotoxins for targeted cancer therapy. AAPS J., 2006, 8(3), E532-E551.
[http://dx.doi.org/10.1208/aapsj080363] [PMID: 17025272]
[7]
Klebanoff, C.A.; Acquavella, N.; Yu, Z.; Restifo, N.P. Therapeutic cancer vaccines: Are we there yet? Immunol. Rev., 2011, 239(1), 27-44.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00979.x] [PMID: 21198663]
[8]
Akbari, B.; Farajnia, S.; Ahdi Khosroshahi, S.; Safari, F.; Yousefi, M.; Dariushnejad, H.; Rahbarnia, L. Immunotoxins in cancer therapy: Review and update. Int. Rev. Immunol., 2017, 36(4), 207-219.
[http://dx.doi.org/10.1080/08830185.2017.1284211] [PMID: 28282218]
[9]
Liu, W.; Onda, M.; Lee, B.; Kreitman, R.J.; Hassan, R.; Xiang, L.; Pastan, I. Recombinant immunotoxin engineered for low immunogenicity and antigenicity by identifying and silencing human B-cell epitopes. Proc. Natl. Acad. Sci., 2012, 109(29), 11782-11787.
[http://dx.doi.org/10.1073/pnas.1209292109] [PMID: 22753489]
[10]
Cao, Y.; Marks, J.D.; Huang, Q.; Rudnick, S.I.; Xiong, C.; Hittelman, W.N.; Wen, X.; Marks, J.W.; Cheung, L.H.; Boland, K.; Li, C.; Adams, G.P.; Rosenblum, M.G. Single-chain antibody-based immunotoxins targeting Her2/NEU: Design optimization and impact of affinity on antitumor efficacy and off-target toxicity. Mol. Cancer Ther., 2012, 11(1), 143-153.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0519] [PMID: 22090420]
[11]
Hehmann-Titt, G.; Schiffer, S.; Berges, N.; Melmer, G.; Barth, S. Improving the therapeutic potential of human granzyme B for targeted cancer therapy. Antibodies, 2013, 2(1), 19-49.
[http://dx.doi.org/10.3390/antib2010019]
[12]
Weidle, U.H.; Georges, G.; Brinkmann, U. Fully human targeted cytotoxic fusion proteins: New anticancer agents on the horizon. Cancer Genom. Proteom., 2012, 9(3), 119-133.
[PMID: 22593247]
[13]
Darmon, A.J.; Nicholson, D.W.; Bleackley, R.C. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature, 1995, 377(6548), 446-448.
[http://dx.doi.org/10.1038/377446a0] [PMID: 7566124]
[14]
Yang, X.; Stennicke, H.R.; Wang, B.; Green, D.R.; Jänicke, R.U.; Srinivasan, A.; Seth, P.; Salvesen, G.S.; Froelich, C.J. Granzyme B mimics apical caspases. Description of a unified pathway for transactivation of executioner caspase-3 and -7. J. Biol. Chem., 1998, 273(51), 34278-34283.
[http://dx.doi.org/10.1074/jbc.273.51.34278] [PMID: 9852092]
[15]
Adrain, C.; Murphy, B.M.; Martin, S.J. Molecular ordering of the caspase activation cascade initiated by the cytotoxic T lymphocyte/natural killer (CTL/NK) protease granzyme B. J. Biol. Chem., 2005, 280(6), 4663-4673.
[http://dx.doi.org/10.1074/jbc.M410915200] [PMID: 15569669]
[16]
Medema, J.P.; Toes, R.E.; Scaffidi, C.; Zheng, T.S.; Flavell, R.A.; Melief, C.J.; Peter, M.E.; Offringa, R.; Krammer, P.H. Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. Eur. J. Immunol., 1997, 27(12), 3492-3498.
[http://dx.doi.org/10.1002/eji.1830271250] [PMID: 9464839]
[17]
Froelich, C.J.; Orth, K.; Turbov, J.; Seth, P.; Gottlieb, R.; Babior, B.; Shah, G.M.; Bleackley, R.C.; Dixit, V.M.; Hanna, W. New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J. Biol. Chem., 1996, 271(46), 29073-29079.
[http://dx.doi.org/10.1074/jbc.271.46.29073] [PMID: 8910561]
[18]
Trapani, J.A.; Klein, J.L.; White, P.C.; Dupont, B. Molecular cloning of an inducible serine esterase gene from human cytotoxic lymphocytes. Proc. Natl. Acad. Sci., 1988, 85(18), 6924-6928.
[http://dx.doi.org/10.1073/pnas.85.18.6924] [PMID: 3261871]
[19]
Smyth, M.J.; Trapani, J.A. Granzymes: Exogenous proteinases that induce target cell apoptosis. Immunol. Today, 1995, 16(4), 202-206.
[http://dx.doi.org/10.1016/0167-5699(95)80122-7] [PMID: 7734049]
[20]
Heibein, J.A.; Barry, M.; Motyka, B.; Bleackley, R.C. Granzyme B-induced loss of mitochondrial inner membrane potential (Delta Psi m) and cytochrome C release are caspase independent. J. Immunol., 1999, 163(9), 4683-4693.
[PMID: 10528165]
[21]
Sarin, A.; Williams, M.S.; Alexander-Miller, M.A.; Berzofsky, J.A.; Zacharchuk, C.M.; Henkart, P.A. Target cell lysis by CTL granule exocytosis is independent of ICE/Ced-3 family proteases. Immunity, 1997, 6(2), 209-215.
[http://dx.doi.org/10.1016/S1074-7613(00)80427-6] [PMID: 9047242]
[22]
Sun, J.; Bird, C.H.; Sutton, V.; McDonald, L.; Coughlin, P.B.; De Jong, T.A.; Trapani, J.A.; Bird, P.I. A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes. J. Biol. Chem., 1996, 271(44), 27802-27809.
[http://dx.doi.org/10.1074/jbc.271.44.27802] [PMID: 8910377]
[23]
de Koning, P.J.; Kummer, J.A.; de Poot, S.A.; Quadir, R.; Broekhuizen, R.; McGettrick, A.F.; Higgins, W.J.; Devreese, B.; Worrall, D.M.; Bovenschen, N. Intracellular serine protease inhibitor SERPINB4 inhibits granzyme M-induced cell death. PLoS One, 2011, 6(8), e22645.
[http://dx.doi.org/10.1371/journal.pone.0022645] [PMID: 21857942]
[24]
Bladergroen, B.A.; Meijer, C.J.; ten Berge, R.L.; Hack, C.E.; Muris, J.J.; Dukers, D.F.; Chott, A.; Kazama, Y.; Oudejans, J.J.; van Berkum, O.; Kummer, J.A. Expression of the granzyme B inhibitor, protease inhibitor 9, by tumor cells in patients with non-Hodgkin and Hodgkin lymphoma: A novel protective mechanism for tumor cells to circumvent the immune system? Blood, 2002, 99(1), 232-237.
[http://dx.doi.org/10.1182/blood.V99.1.232] [PMID: 11756176]
[25]
Losasso, V.; Schiffer, S.; Barth, S.; Carloni, P. Design of human granzyme B variants resistant to serpin B9. Proteins, 2012, 80(11), 2514-2522.
[http://dx.doi.org/10.1002/prot.24133] [PMID: 22733450]
[26]
Bostwick, D.G.; Pacelli, A.; Blute, M.; Roche, P.; Murphy, G.P. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: A study of 184 cases. Cancer, 1998, 82(11), 2256-2261.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980601)82:11<2256::AID-CNCR22>3.0.CO;2-S] [PMID: 9610707]
[27]
Shen, D.; Xie, F.; Edwards, W.B. Evaluation of phage display discovered peptides as ligands for prostate-specific membrane antigen (PSMA). PLoS One, 2013, 8(7), e68339.
[http://dx.doi.org/10.1371/journal.pone.0068339] [PMID: 23935860]
[28]
Liu, H.; Rajasekaran, A.K.; Moy, P.; Xia, Y.; Kim, S.; Navarro, V.; Rahmati, R.; Bander, N.H. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res., 1998, 58(18), 4055-4060.
[PMID: 9751609]
[29]
Wagner, E.; Plank, C.; Zatloukal, K.; Cotten, M.; Birnstiel, M.L. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: Toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci., 1992, 89(17), 7934-7938.
[http://dx.doi.org/10.1073/pnas.89.17.7934] [PMID: 1518816]
[30]
Wadia, J.S.; Stan, R.V.; Dowdy, S.F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med., 2004, 10(3), 310-315.
[http://dx.doi.org/10.1038/nm996] [PMID: 14770178]
[31]
Plank, C.; Oberhauser, B.; Mechtler, K.; Koch, C.; Wagner, E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem., 1994, 269(17), 12918-12924.
[http://dx.doi.org/10.1016/S0021-9258(18)99963-1] [PMID: 8175709]
[32]
Navarro-Quiroga, I.; Antonio González-Barrios, J.; Barron-Moreno, F.; González-Bernal, V.; Martinez-Arguelles, D.B.; Martinez-Fong, D. Improved neurotensin-vector-mediated gene transfer by the coupling of hemagglutinin HA2 fusogenic peptide and Vp1 SV40 nuclear localization signal. Brain Res. Mol. Brain Res., 2002, 105(1-2), 86-97.
[http://dx.doi.org/10.1016/S0169-328X(02)00396-0] [PMID: 12399111]
[33]
Michiue, H.; Tomizawa, K.; Wei, F.Y.; Matsushita, M.; Lu, Y.F.; Ichikawa, T.; Tamiya, T.; Date, I.; Matsui, H. The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction. J. Biol. Chem., 2005, 280(9), 8285-8289.
[http://dx.doi.org/10.1074/jbc.M412430200] [PMID: 15611109]
[34]
Neundorf, I.; Rennert, R.; Hoyer, J.; Schramm, F.; Löbner, K.; Kitanovic, I.; Wölfl, S. Fusion of a short HA2-derived peptide sequence to cell-penetrating peptides improves cytosolic uptake, but enhances cytotoxic activity. Pharmaceuticals, 2009, 2(2), 49-65.
[http://dx.doi.org/10.3390/ph2020049] [PMID: 27713223]
[35]
Schiffer, S.; Rosinke, R.; Jost, E.; Hehmann-Titt, G.; Huhn, M.; Melmer, G.; Barth, S.; Thepen, T. Targeted ex vivo reduction of CD64-positive monocytes in chronic myelomonocytic leukemia and acute myelomonocytic leukemia using human granzyme B-based cytolytic fusion proteins. Int. J. Cancer, 2014, 135(6), 1497-1508.
[http://dx.doi.org/10.1002/ijc.28786] [PMID: 24523193]
[36]
Niesen, J.; Hehmann-Titt, G.; Woitok, M.; Fendel, R.; Barth, S.; Fischer, R.; Stein, C. A novel fully-human cytolytic fusion protein based on granzyme B shows in vitro cytotoxicity and ex vivo binding to solid tumors overexpressing the epidermal growth factor receptor. Cancer Lett., 2016, 374(2), 229-240.
[http://dx.doi.org/10.1016/j.canlet.2016.02.020] [PMID: 26912070]
[37]
Mathew, M.; Verma, R.S. Humanized immunotoxins: A new generation of immunotoxins for targeted cancer therapy. Cancer Sci., 2009, 100(8), 1359-1365.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01192.x] [PMID: 19459847]
[38]
Hlongwane, P.; Mungra, N.; Madheswaran, S.; Akinrinmade, O.A.; Chetty, S.; Barth, S. Human granzyme B based targeted cytolytic fusion proteins. Biomedicines, 2018, 6(2), E72.
[http://dx.doi.org/10.3390/biomedicines6020072] [PMID: 29925790]
[39]
Talanian, R.V.; Yang, X.; Turbov, J.; Seth, P.; Ghayur, T.; Casiano, C.A.; Orth, K.; Froelich, C.J. Granule-mediated killing: Pathways for granzyme B-initiated apoptosis. J. Exp. Med., 1997, 186(8), 1323-1331.
[http://dx.doi.org/10.1084/jem.186.8.1323] [PMID: 9334372]
[40]
Pinkoski, M.J.; Winkler, U.; Hudig, D.; Bleackley, R.C. Binding of granzyme B in the nucleus of target cells. Recognition of an 80-kilodalton protein. J. Biol. Chem., 1996, 271(17), 10225-10229.
[http://dx.doi.org/10.1074/jbc.271.17.10225] [PMID: 8626587]
[41]
Kurschus, F.C.; Fellows, E.; Stegmann, E.; Jenne, D.E. Granzyme B delivery via perforin is restricted by size, but not by heparan sulfate-dependent endocytosis. Proc. Natl. Acad. Sci., 2008, 105(37), 13799-13804.
[http://dx.doi.org/10.1073/pnas.0801724105] [PMID: 18772390]
[42]
Bots, M.; Medema, J.P. Granzymes at a glance. J. Cell Sci., 2006, 119(Pt 24), 5011-5014.
[http://dx.doi.org/10.1242/jcs.03239] [PMID: 17158907]
[43]
Besenicar, M.P.; Metkar, S.; Wang, B.; Froelich, C.J.; Anderluh, G. Granzyme B translocates across the lipid membrane only in the presence of lytic agents. Biochem. Biophys. Res. Commun., 2008, 371(3), 391-394.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.071] [PMID: 18439904]
[44]
Soriano, C.; Mukaro, V.; Hodge, G.; Ahern, J.; Holmes, M.; Jersmann, H.; Moffat, D.; Meredith, D.; Jurisevic, C.; Reynolds, P.N.; Hodge, S. Increased proteinase inhibitor-9 (PI-9) and reduced granzyme B in lung cancer: Mechanism for immune evasion? Lung Cancer, 2012, 77(1), 38-45.
[http://dx.doi.org/10.1016/j.lungcan.2012.01.017] [PMID: 22387007]
[45]
Ray, M.; Hostetter, D.R.; Loeb, C.R.; Simko, J.; Craik, C.S. Inhibition of Granzyme B by PI-9 protects prostate cancer cells from apoptosis. Prostate, 2012, 72(8), 846-855.
[http://dx.doi.org/10.1002/pros.21486] [PMID: 21919028]
[46]
Jiang, X.; Ellison, S.J.; Alarid, E.T.; Shapiro, D.J. Interplay between the levels of estrogen and estrogen receptor controls the level of the granzyme inhibitor, proteinase inhibitor 9 and susceptibility to immune surveillance by natural killer cells. Oncogene, 2007, 26(28), 4106-4114.
[http://dx.doi.org/10.1038/sj.onc.1210197] [PMID: 17237823]
[47]
Li, X.; Zhang, G.; An, G.; Liu, S.; Lai, Y. Expression, purification and anticancer analysis of GST-tagged human perforin and granzyme B proteins in human laryngeal cancer Hep-2 cells. Protein Expr. Purif., 2014, 95, 38-43.
[http://dx.doi.org/10.1016/j.pep.2013.11.009] [PMID: 24291445]
[48]
Berkmen, M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expr. Purif., 2012, 82(1), 240-251.
[http://dx.doi.org/10.1016/j.pep.2011.10.009] [PMID: 22085722]
[49]
Ross, J.S.; Sheehan, C.E.; Fisher, H.A.; Kaufman, R.P., Jr; Kaur, P.; Gray, K.; Webb, I.; Gray, G.S.; Mosher, R.; Kallakury, B.V. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin. Cancer Res., 2003, 9(17), 6357-6362.
[PMID: 14695135]
[50]
Ghosh, A.; Heston, W.D. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell. Biochem., 2004, 91(3), 528-539.
[http://dx.doi.org/10.1002/jcb.10661] [PMID: 14755683]
[51]
Flores, O.; Santra, S.; Kaittanis, C.; Bassiouni, R.; Khaled, A.S.; Khaled, A.R.; Grimm, J.; Perez, J.M. PSMA-targeted theranostic nanocarrier for prostate cancer. Theranostics, 2017, 7(9), 2477-2494.
[http://dx.doi.org/10.7150/thno.18879] [PMID: 28744329]
[52]
Takata, H.; Uchiyama, S.; Nakamura, N.; Nakashima, S.; Kobayashi, S.; Sone, T.; Kimura, S.; Lahmers, S.; Granzier, H.; Labeit, S.; Matsunaga, S.; Fukui, K. A comparative proteome analysis of human metaphase chromosomes isolated from two different cell lines reveals a set of conserved chromosome-associated proteins. Genes Cells, 2007, 12(3), 269-284.
[http://dx.doi.org/10.1111/j.1365-2443.2007.01051.x] [PMID: 17352734]
[53]
Sardana, G.; Jung, K.; Stephan, C.; Diamandis, E.P. Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: Discovery and validation of candidate prostate cancer biomarkers. J. Proteome Res., 2008, 7(8), 3329-3338.
[http://dx.doi.org/10.1021/pr8003216] [PMID: 18578523]
[54]
Sintsov, A.V.; Kovalenko, E.I.; Khanin, M.A. Apoptosis induced by granzyme B. Bioorg. Khim., 2008, 34(6), 725-733.
[PMID: 19088744]
[55]
Simpson, N.H.; Singh, R.P.; Perani, A.; Goldenzon, C.; Al-Rubeai, M. In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the BCL-2 gene. Biotechnol. Bioeng., 1998, 59(1), 90-98.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19980705)59:1<90::AID-BIT12>3.0.CO;2-6] [PMID: 10099318]