Herbal Medicines as Potential Inhibitors of SARS-CoV-2 Infection

Page: [2375 - 2386] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Coronavirus disease 2019 (COVID-19) is the result of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding molecular pathogenesis is an essential factor for the allocation of effective preventive measures and the development of targeted therapeutics against COVID-19. The genome of SARS-CoV-2 encodes structural and nonstructural proteins, which can be targets for compounds with potential therapeutic ability. On the other hand, the virus life cycle has stages susceptible to targeting by drug compounds. Many natural antiviral compounds have been studied and evaluated at the cellular and molecular levels with antiviral potential. Meanwhile, many studies over the past few months have shown that plant polysaccharides have a good ability to target proteins and stages of the virus life cycle. In this regard, in this review study, the virus specifications and infectious process and structural and functional components of SARSCoV- 2 will be reviewed, and then the latest studies on the effect of plant compounds with more focus on polysaccharides on viral targets and their inhibitory potential on the infectious process of COVID-19 will be discussed.

Keywords: SARS-CoV-2, COVID-19, herbal medicines, polysaccharides, polyphenols, alkaloids, terpenes.

[1]
Ciotti M, Angeletti S, Minieri M, et al. COVID-19 outbreak: An overview. Chemotherapy 2019; 64(5-6): 215-23.
[http://dx.doi.org/10.1159/000507423] [PMID: 32259829]
[2]
Lee C, Choi WJ. Overview of COVID-19 inflammatory pathogenesis from the therapeutic perspective. Arch Pharm Res 2021; 44(1): 99-116.
[http://dx.doi.org/10.1007/s12272-020-01301-7] [PMID: 33398692]
[3]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[4]
Byard RW, Musgrave IF. Does herbal therapy for COVID-19 have implications for forensic practice? Forensic Sci Med Pathol 2021; 17(3): 377-8.
[http://dx.doi.org/10.1007/s12024-021-00357-1] [PMID: 33475983]
[5]
Sytar O, Brestic M, Hajihashemi S, et al. COVID-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds. Molecules 2021; 26(3): 727.
[http://dx.doi.org/10.3390/molecules26030727] [PMID: 33573318]
[6]
Shi Y, Wang G, Cai X-p, et al. An overview of COVID-19. J Zhejiang Univ Eng Sci 2020; 1.
[7]
Wu Y-C, Chen C-S, Chan Y-J. The outbreak of COVID-19: An overview. J Chin Med Assoc 2020; 83(3): 217-20.
[http://dx.doi.org/10.1097/JCMA.0000000000000270] [PMID: 32134861]
[8]
Nokhodian Z, Ranjbar MM, Nasri P, et al. Current status of COVID-19 pandemic; characteristics, diagnosis, prevention, and treatment. J Res Med Sci 2020; 25: 101.
[9]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[10]
Abd-Alrazaq A, Schneider J, Mifsud B, et al. A comprehensive overview of the COVID-19 literature: Machine learning-based bibliometric analysis. J Med Internet Res 2021; 23(3): e23703.
[http://dx.doi.org/10.2196/23703] [PMID: 33600346]
[11]
Kenari MH, Yousefsani BS, Eghbalian F, Ghobadi A, Jamshidi A, Mahroozade S. Herbal recommendations for treatment of COVID-19 symptoms according to Persian medicine. J Med Plants Res 2021; 20: 1-14.
[12]
Salih MAH. An Overview on the pandemic Coronavirus Disease 2019 (COVID-19). Outbreak. Kurd J Appl Res 2020; pp. 31-6.
[13]
Tolouian AC, Khosravian M, Haghi HR, et al. Herbal medicines in the treatment of coronavirus disease 2019 (COVID-19). J Nephropharmacology 2021; 10: e18.
[14]
Balachandar V, Mahalaxmi I, Kaavya J, et al. COVID-19: Emerging protective measures. Eur Rev Med Pharmacol Sci 2020; 24(6): 3422-5.
[PMID: 32271461]
[15]
Rehman IU, Khan HR, Zainab WE, Ahmed A, Ishaq MD, Ullah I. Barriers in Social Distancing during COVID19 pandemic-Is a message for forced lockdown. J Med Res Innov 2020; 4(2): e000222-2.
[http://dx.doi.org/10.32892/jmri.222]
[16]
Domingo JL, Marquès M, Rovira J. Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review. Environ Res 2020; 188: 109861.
[http://dx.doi.org/10.1016/j.envres.2020.109861] [PMID: 32718835]
[17]
Giollo A, Adami G, Gatti D, Idolazzi L, Rossini M. Coronavirus disease 19 (COVID-19) and non-steroidal anti-inflammatory drugs (NSAID). Ann Rheum Dis 2021; 80(2): e12-2.
[http://dx.doi.org/10.1136/annrheumdis-2020-217598] [PMID: 32321720]
[18]
Zhou P, Yang X-L, Wang X-G, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.01.22.914952]
[19]
Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn 2021; 39(9): 3409-18.
[PMID: 32306836]
[20]
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[21]
Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 2005; 102(33): 11876-81.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[22]
Masters PS. Coronavirus genomic RNA packaging. Virology 2019; 537: 198-207.
[http://dx.doi.org/10.1016/j.virol.2019.08.031] [PMID: 31505321]
[23]
Gui M, Liu X, Guo D, et al. Electron microscopy studies of the coronavirus ribonucleoprotein complex. Protein Cell 2017; 8(3): 219-24.
[http://dx.doi.org/10.1007/s13238-016-0352-8] [PMID: 28044277]
[24]
Verma S, Bednar V, Blount A, Hogue BG. Identification of functionally important negatively charged residues in the carboxy end of mouse hepatitis coronavirus A59 nucleocapsid protein. J Virol 2006; 80(9): 4344-55.
[http://dx.doi.org/10.1128/JVI.80.9.4344-4355.2006] [PMID: 16611893]
[25]
Deng X, Baker SC. An “Old” protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses. Virology 2018; 517: 157-63.
[http://dx.doi.org/10.1016/j.virol.2017.12.024] [PMID: 29307596]
[26]
Chang CK, Hou M-H, Chang C-F, Hsiao C-D, Huang TH. The SARS coronavirus nucleocapsid protein--forms and functions. Antiviral Res 2014; 103: 39-50.
[http://dx.doi.org/10.1016/j.antiviral.2013.12.009] [PMID: 24418573]
[27]
Jing H, Liu J, Liu H, Xin H. Histochemical investigation and kinds of alkaloids in leaves of different developmental stages in Thymus quinquecostatus. Sci World J 2014; 2014.
[28]
Debnath B, Singh WS, Das M, et al. Role of plant alkaloids on human health: A review of biological activities. Mater Today Chem 2018; 9: 56-72.
[http://dx.doi.org/10.1016/j.mtchem.2018.05.001]
[29]
Liew SK, Malagobadan S, Arshad NM, Nagoor NH. A review of the structure-activity relationship of natural and synthetic antimetastatic compounds. Biomolecules 2020; 10(1): 10.
[http://dx.doi.org/10.3390/biom10010138] [PMID: 31947704]
[30]
Gissi A, Mangiatordi GF, Sobański T, Netzeva T, Nicolotti O. 116 - Nontest methods for REACH legislation Comprehensive Medicinal Chemistry III. Oxford: Elsevier 2017; pp. 472-90.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12300-5]
[31]
Singla RK, Dubey AK, Garg A, et al. Natural polyphenols: Chemical classification, definition of classes, subcategories, and Structures. J AOAC Int 2019; 102(5): 1397-400.
[http://dx.doi.org/10.5740/jaoacint.19-0133]
[32]
Khoddami A, Wilkes MA, Roberts TH. Techniques for analysis of plant phenolic compounds. Molecules 2013; 18(2): 2328-75.
[http://dx.doi.org/10.3390/molecules18022328] [PMID: 23429347]
[33]
Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 2013; 24(8): 1415-22.
[http://dx.doi.org/10.1016/j.jnutbio.2013.05.001] [PMID: 23849454]
[34]
Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007; 8(9): 950-88.
[http://dx.doi.org/10.3390/i8090950]
[35]
Joseph SV, Edirisinghe I, Burton-Freeman BM. Fruit polyphenols: A review of anti-inflammatory effects in humans. Crit Rev Food Sci Nutr 2016; 56(3): 419-44.
[http://dx.doi.org/10.1080/10408398.2013.767221] [PMID: 25616409]
[36]
Appeldoorn MM, Vincken J-P, Gruppen H, Hollman PC. Procyanidin dimers A1, A2, and B2 are absorbed without conjugation or methylation from the small intestine of rats. J Nutr 2009; 139(8): 1469-73.
[http://dx.doi.org/10.3945/jn.109.106765] [PMID: 19494022]
[37]
Heleno SA, Martins A, Queiroz MJR, Ferreira IC. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem 2015; 173: 501-13.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.057] [PMID: 25466052]
[38]
Luca SV, Macovei I, Bujor A, et al. Bioactivity of dietary polyphenols: The role of metabolites. Crit Rev Food Sci Nutr 2020; 60(4): 626-59.
[http://dx.doi.org/10.1080/10408398.2018.1546669] [PMID: 30614249]
[39]
Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 2016; 8(2): 78.
[http://dx.doi.org/10.3390/nu8020078] [PMID: 26861391]
[40]
Wansi JD, Devkota KP, Tshikalange E, Kuete V. Alkaloids from the medicinal plants of Africa. In: Medicinal Plant Research in Africa. Elsevier 2013; pp. 557-605.
[http://dx.doi.org/10.1016/B978-0-12-405927-6.00014-X]
[41]
Yang L, Stöckigt J. Trends for diverse production strategies of plant medicinal alkaloids. Nat Prod Rep 2010; 27(10): 1469-79.
[http://dx.doi.org/10.1039/c005378c] [PMID: 20730220]
[42]
Dostál J. Two faces of alkaloids. J Chem Educ 2000; 77(8): 993.
[http://dx.doi.org/10.1021/ed077p993]
[43]
Aniszewski T. Definition, typology, and occurrence of alkaloids. In: Alkaloids: Chemistry, biology, ecology, and applications Elsevier Amsterdam. 2015.
[44]
Hillier SG, Lathe R. Terpenes, hormones and life: Isoprene rule revisited. J Endocrinol 2019; 242(2): R9-R22.
[http://dx.doi.org/10.1530/JOE-19-0084] [PMID: 31051473]
[45]
de Matos SP, Teixeira HF, de Lima ÁAN, Veiga-Junior VF, Koester LS. Essential oils and isolated terpenes in nanosystems designed for topical administration: A review. Biomolecules 2019; 9(4): 138.
[http://dx.doi.org/10.3390/biom9040138] [PMID: 30959802]
[46]
de Santana Souza MT, Almeida JRGS, de Souza Araujo AA, et al. Structure-activity relationship of terpenes with anti‐inflammatory profile-a systematic review. Basic Clin Pharmacol Toxicol 2014; 115(3): 244-56.
[http://dx.doi.org/10.1111/bcpt.12221]
[47]
González-Burgos E, Gómez-Serranillos MP. Terpene compounds in nature: A review of their potential antioxidant activity. Curr Med Chem 2012; 19(31): 5319-41.
[http://dx.doi.org/10.2174/092986712803833335] [PMID: 22963623]
[48]
Guimarães AG, Serafini MR, Quintans-Júnior LJ. Terpenes and derivatives as a new perspective for pain treatment: A patent review. Expert Opin Ther Pat 2014; 24(3): 243-65.
[http://dx.doi.org/10.1517/13543776.2014.870154] [PMID: 24387185]
[49]
Khan H, Khan Z, Amin S, et al. Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: A review. Biomed Pharmacother 2017; 93: 498-509.
[http://dx.doi.org/10.1016/j.biopha.2017.06.077] [PMID: 28675856]
[50]
Serafini G, Pompili M, Innamorati M, et al. Glycosides, depression and suicidal behaviour: The role of glycoside-linked proteins. Molecules 2011; 16(3): 2688-713.
[http://dx.doi.org/10.3390/molecules16032688] [PMID: 21441870]
[51]
Kren V, Martínková L. Glycosides in medicine: “The role of glycosidic residue in biological activity”. Curr Med Chem 2001; 8(11): 1303-28.
[http://dx.doi.org/10.2174/0929867013372193] [PMID: 11562268]
[52]
Awuchi CG. The biochemistry, toxicology, and uses of the pharmacologically active phytochemicals: Alkaloids, terpenes, polyphenols, and glycosides. J Food Pharm Sci 2019; 7(3): 131-50.
[http://dx.doi.org/10.22146/jfps.666]
[53]
He H. Vaccines and antiviral agents. Eds. Romanowski V. In: Current Issues in Molecular Virology-Viral Genetics and Biotechnological Applications. IntechOpen 2013.
[54]
Jassim SAA, Naji MA. Novel antiviral agents: A medicinal plant perspective. J Appl Microbiol 2003; 95(3): 412-27.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02026.x] [PMID: 12911688]
[55]
Pour PM, Fakhri S, Asgary S, Farzaei MH, Echeverría J. The signaling pathways, and therapeutic targets of antiviral agents: Focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Front Pharmacol 2019; 10: 1207.
[http://dx.doi.org/10.3389/fphar.2019.01207] [PMID: 31787892]
[56]
Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z. Antiviral potentials of medicinal plants. Virus Res 2008; 131(2): 111-20.
[http://dx.doi.org/10.1016/j.virusres.2007.09.008] [PMID: 17981353]
[57]
Adhikari B, Marasini BP, Rayamajhee B, et al. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytother Res 2021; 35(3): 1298-312.
[http://dx.doi.org/10.1002/ptr.6893] [PMID: 33037698]
[58]
Saxena A. Drug targets for COVID-19 therapeutics: Ongoing global efforts. J Biosci 2020; 45(1): 1-24.
[http://dx.doi.org/10.1007/s12038-020-00067-w] [PMID: 32661214]
[59]
Siddiqui AJ, Danciu C, Ashraf SA, et al. Plants-derived biomolecules as potent antiviral phytomedicines: New insights on ethnobotanical evidences against coronaviruses. Plants 2020; 9(9): 1244.
[http://dx.doi.org/10.3390/plants9091244] [PMID: 32967179]
[60]
Lau K-M, Lee K-M, Koon C-M, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol 2008; 118(1): 79-85.
[http://dx.doi.org/10.1016/j.jep.2008.03.018] [PMID: 18479853]
[61]
Wu B-W, Pan T-L, Leu Y-L, et al. Antiviral effects of Salvia miltiorrhiza (Danshen) against enterovirus 71. Am J Chin Med 2007; 35(1): 153-68.
[http://dx.doi.org/10.1142/S0192415X07004709] [PMID: 17265559]
[62]
Yin Z-K, Feng Z-M, Jiang J-S, Zhang X, Zhang P-C, Yang Y-N. Two new tanshinone derivatives from the rhizomes of Salvia miltiorrhiza and their antiviral activities. J Asian Nat Prod Res 2020; 22(1): 24-9.
[http://dx.doi.org/10.1080/10286020.2019.1645132] [PMID: 31368354]
[63]
Lv Z, Chu Y, Wang Y. HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV AIDS (Auckl) 2015; 7: 95-104.
[PMID: 25897264]
[64]
Park J-Y, Jeong HJ, Kim JH, et al. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull 2012; 35(11): 2036-42.
[http://dx.doi.org/10.1248/bpb.b12-00623] [PMID: 22971649]
[65]
Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 2014; 29(1): 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[66]
Cho JK, Curtis-Long MJ, Lee KH, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem 2013; 21(11): 3051-7.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[67]
Lin C-W, Tsai F-J, Tsai C-H, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res 2005; 68(1): 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[68]
Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem 2010; 18(22): 7940-7.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[69]
Li SY, Chen C, Zhang HQ, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 2005; 67(1): 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[70]
Law S, Leung AW, Xu C. Is the traditional Chinese herb “Artemisia annua” possible to fight against COVID-19? Integr Med Res 2020; 9(3): 100474.
[http://dx.doi.org/10.1016/j.imr.2020.100474] [PMID: 32742919]
[71]
Akram M, Tahir IM, Shah SMA, et al. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother Res 2018; 32(5): 811-22.
[http://dx.doi.org/10.1002/ptr.6024] [PMID: 29356205]
[72]
Kamei M, Nishimura H, Takahashi T, et al. Anti-influenza virus effects of cocoa. J Sci Food Agric 2016; 96(4): 1150-8.
[http://dx.doi.org/10.1002/jsfa.7197] [PMID: 25847473]
[73]
Mishra S, Aeri V, Gaur PK, Jachak SM. Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa Linn. BioMed Res Int 2014; 2014: 808302.
[74]
Thomford NE, Awortwe C, Dzobo K, et al. Inhibition of CYP2B6 by medicinal plant extracts: Implication for use of efavirenz and nevirapine-based highly active anti-retroviral therapy (HAART) in resource-limited settings. Molecules 2016; 21(2): 211.
[http://dx.doi.org/10.3390/molecules21020211] [PMID: 26891286]
[75]
Lee B-R, Lee J-H, An H-J. Effects of Taraxacum officinale on fatigue and immunological parameters in mice. Molecules 2012; 17(11): 13253-65.
[http://dx.doi.org/10.3390/molecules171113253] [PMID: 23135630]
[76]
Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int J Biol Macromol 2020; 164(164): 331-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.106] [PMID: 32679328]
[77]
Aquino RS. Glycosaminoglycans and infection. Front Biosci (Landmark Ed) 2016; 21(6): 1260-77.
[78]
Ghannam A, Abbas A, Alek H, Al-Waari Z, Al-Ktaifani M. Enhancement of local plant immunity against tobacco mosaic virus infection after treatment with sulphated-carrageenan from red alga (Hypnea musciformis). Physiol Mol Plant Pathol 2013; 84: 19-27.
[http://dx.doi.org/10.1016/j.pmpp.2013.07.001]
[79]
Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 2018; 109: 273-86.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.078] [PMID: 29248555]
[80]
Campo VL, Kawano DF, da Silva DB Jr. Carvalho IJCp. Carrageenans: Biological properties, chemical modifications and structural analysis-A review. Molecules 2009; 77: 167-80.
[81]
Vishchuk OS, Tarbeeva DV, Ermakova SP, Zvyagintseva TNJC. Structural characteristics and biological activity of Fucoidans from the brown algae Alaria sp. and Saccharina japonica of different reproductive status. Chem Biodivers 2012; 9(4): 817-28.
[http://dx.doi.org/10.1002/cbdv.201100266] [PMID: 22492498]
[82]
Ikeda A, Takemura A, Ono HJCP. Preparation of low-molecular weight alginic acid by acid hydrolysis. Carbohydr Polym 2000; 42(4): 421-5.
[http://dx.doi.org/10.1016/S0144-8617(99)00183-6]
[83]
Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BH. Microbial alginate production, modification and its applications. Microb Biotechnol 2013; 6(6): 637-50.
[http://dx.doi.org/10.1111/1751-7915.12076] [PMID: 24034361]
[84]
Liu J, Willför S, Xu CJBC, Fibre D. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre 2015; 5(1): 31-61.
[http://dx.doi.org/10.1016/j.bcdf.2014.12.001]
[85]
Kumar A, Prasoon P, Kumari C, et al. SARS-CoV-2-specific virulence factors in COVID-19. J Med Virol 2021; 93(3): 1343-50.
[http://dx.doi.org/10.1002/jmv.26615] [PMID: 33085084]
[86]
Chen L, Huang G. The antiviral activity of polysaccharides and their derivatives. Int J Biol Macromol 2018; 115: 77-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.056] [PMID: 29654857]
[87]
Milewska A, Chi Y, Szczepanski A, et al. HTCC as a Polymeric Inhibitor of SARS-CoV-2 and MERS-CoV. J Virol 2021; 95(4): e01622-20.
[http://dx.doi.org/10.1128/JVI.01622-20] [PMID: 33219167]
[88]
Morokutti-Kurz M, Fröba M, Graf P, et al. Iota-carrageenan neutralizes SARS-CoV-2 and inhibits viral replication in vitro. PLoS One 2021; 16(2): e0237480.
[http://dx.doi.org/10.1371/journal.pone.0237480] [PMID: 33596218]
[89]
Kwon PS, Oh H, Kwon SJ, et al. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov 2020; 6(1): 50.
[http://dx.doi.org/10.1038/s41421-020-00192-8] [PMID: 32714563]
[90]
Sepúlveda-Crespo D, Ceña-Díez R, Jiménez JL, Ángeles Muñoz-Fernández M. Mechanistic studies of viral entry: an overview of dendrimer-based microbicides as entry inhibitors against both HIV and HSV-2 overlapped infections. Med Res Rev 2017; 37(1): 149-79.
[http://dx.doi.org/10.1002/med.21405] [PMID: 27518199]
[91]
Wang W, Wang S-X, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: An overview. Mar Drugs 2012; 10(12): 2795-816.
[http://dx.doi.org/10.3390/md10122795] [PMID: 23235364]
[92]
Ciejka J, Botwina P, Nowakowska M, Szczubiałka K, Pyrc K. Synthetic sulfonated derivatives of poly(allylamine hydrochloride) as inhibitors of human metapneumovirus. PLoS One 2019; 14(3): e0214646.
[http://dx.doi.org/10.1371/journal.pone.0214646] [PMID: 30921418]
[93]
Grassauer A, Weinmuellner R, Meier C, Pretsch A, Prieschl-Grassauer E, Unger H. Iota-Carrageenan is a potent inhibitor of rhinovirus infection. Virol J 2008; 5(1): 1-13.
[http://dx.doi.org/10.1186/1743-422X-5-107]
[94]
Kim M, Yim JH, Kim S-Y, et al. In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antiviral Res 2012; 93(2): 253-9.
[http://dx.doi.org/10.1016/j.antiviral.2011.12.006] [PMID: 22197247]
[95]
Pujol CA, Ray S, Ray B, Damonte EB. Antiviral activity against dengue virus of diverse classes of algal sulfated polysaccharides. Int J Biol Macromol 2012; 51(4): 412-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.05.028] [PMID: 22652218]
[96]
Song S, Peng H, Wang Q, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct 2020; 11(9): 7415-20.
[http://dx.doi.org/10.1039/D0FO02017F] [PMID: 32966484]
[97]
Dang S-S, Jia X-L, Song P, et al. Inhibitory effect of emodin and Astragalus polysaccharide on the replication of HBV. World J Gastroenterol 2009; 15(45): 5669-73.
[http://dx.doi.org/10.3748/wjg.15.5669] [PMID: 19960563]
[98]
Zhang P, Liu X, Liu H, et al. Astragalus polysaccharides inhibit avian infectious bronchitis virus infection by regulating viral replication. World J Gastroenterol 2018; 114: 124-8.
[http://dx.doi.org/10.1016/j.micpath.2017.11.026] [PMID: 29170045]
[99]
Yang T, Jia M, Zhou S, Pan F, Mei Q. Antivirus and immune enhancement activities of sulfated polysaccharide from Angelica sinensis. Int J Biol Macromol 2012; 50(3): 768-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.11.027] [PMID: 22155400]
[100]
Chen MZ, Xie HG, Yang LW, Liao ZH, Yu J. In vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis. Virol Sin 2010; 25(5): 341-51.
[http://dx.doi.org/10.1007/s12250-010-3137-x] [PMID: 20960180]
[101]
Guo C, Zhu Z, Yu P, et al. Inhibitory effect of iota-carrageenan on porcine reproductive and respiratory syndrome virus in vitro. Antivir Ther 2019; 24(4): 261-70.
[http://dx.doi.org/10.3851/IMP3295] [PMID: 30747721]
[102]
Wu L, Wang W, Zhang X, Zhao X, Yu G. Anti-HBV activity and mechanism of marine-derived polyguluronate sulfate (PGS) in vitro. Carbohydr Polym 2016; 143: 139-48.
[http://dx.doi.org/10.1016/j.carbpol.2016.01.065] [PMID: 27083353]
[103]
Muralidharan A, Russell MS, Larocque L, et al. Chitosan alters inactivated respiratory syncytial virus vaccine elicited immune responses without affecting lung histopathology in mice. Vaccine 2019; 37(30): 4031-9.
[http://dx.doi.org/10.1016/j.vaccine.2019.06.003] [PMID: 31186190]
[104]
Ren G, Xu L, Lu T, Yin J. Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus. Int J Biol Macromol 2018; 115: 1202-10.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.132] [PMID: 29704603]
[105]
Kallon S, Li X, Ji J, et al. Astragalus polysaccharide enhances immunity and inhibits H9N2 avian influenza virus in vitro and in vivo. J Anim Sci Biotechnol 2013; 4(1): 22.
[http://dx.doi.org/10.1186/2049-1891-4-22] [PMID: 23786718]
[106]
Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunol Rev 2012; 249(1): 158-75.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01146.x] [PMID: 22889221]
[107]
Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G. Natural polysaccharide nanomaterials: an overview of their immunological properties. Int J Mol Sci 2019; 20(20): 20.
[http://dx.doi.org/10.3390/ijms20205092] [PMID: 31615111]
[108]
Pontiggia D, Benedetti M, Costantini S, De Lorenzo G, Cervone F. Dampening the DAMPs: How plants maintain the homeostasis of cell wall molecular patterns and avoid hyper-immunity. Front Plant Sci 2020; 11: 613259.
[http://dx.doi.org/10.3389/fpls.2020.613259] [PMID: 33391327]
[109]
Liang Z, Zhu H, Wang X, et al. Adjuvants for coronavirus vaccines. Front Immunol 2020; 11: 2896.
[http://dx.doi.org/10.3389/fimmu.2020.589833]
[110]
Ghendon Y, Markushin S, Krivtsov G, Akopova I. Chitosan as an adjuvant for parenterally administered inactivated influenza vaccines. Arch Virol 2008; 153(5): 831-7.
[http://dx.doi.org/10.1007/s00705-008-0047-4] [PMID: 18297235]
[111]
Gu P, Wusiman A, Wang S, et al. Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant to enhance immune responses. Carbohydr Polym 2019; 223: 115128.
[http://dx.doi.org/10.1016/j.carbpol.2019.115128] [PMID: 31427012]
[112]
Gu P, Wusiman A, Zhang Y, et al. Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant for H9N2 vaccine to improve immune responses in chickens compared to Alum and oil-based adjuvants. Vet Microbiol 2020; 251: 108894.
[http://dx.doi.org/10.1016/j.vetmic.2020.108894] [PMID: 33096470]
[113]
Honda-Okubo Y, Barnard D, Ong CH, Peng B-H, Tseng C-TK, Petrovsky N. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol 2015; 89(6): 2995-3007.
[http://dx.doi.org/10.1128/JVI.02980-14] [PMID: 25520500]
[114]
Abdullahi AY, Kallon S, Yu X, Zhang Y. Vaccination with astragalus and ginseng polysaccharides improves immune response of chickens against H5N1 avian influenza virus. BioMed Res Int 2016; 2016: 1510264.
[115]
Du X, Zhao B, Li J, et al. Astragalus polysaccharides enhance immune responses of HBV DNA vaccination via promoting the dendritic cell maturation and suppressing Treg frequency in mice. Int Immunopharmacol 2012; 14(4): 463-70.
[http://dx.doi.org/10.1016/j.intimp.2012.09.006] [PMID: 23006659]
[116]
Li J, Zhong Y, Li H, et al. Enhancement of Astragalus polysaccharide on the immune responses in pigs inoculated with foot-and-mouth disease virus vaccine. Int J Biol Macromol 2011; 49(3): 362-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.05.015] [PMID: 21640133]
[117]
Sen IK, Chakraborty I, Mandal AK, Bhanja SK, Patra S, Maity P. A review on antiviral and immunomodulatory polysaccharides from Indian medicinal plants, which may be beneficial to COVID-19 infected patients. Int J Biol Macromol 2021; 181: 462-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.162] [PMID: 33794238]
[118]
Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int J Mol Sci 2012; 13(12): 16785-95.
[http://dx.doi.org/10.3390/ijms131216785] [PMID: 23222683]
[119]
Huseen NHA. Docking study of naringin binding with COVID-19 main protease enzyme. Iraqi J Pharm Sci 2020; 29(2): 231-8.
[http://dx.doi.org/10.31351/vol29iss2pp231-238]
[120]
Saakre M, Mathew D, Ravisankar V. Perspectives on plant flavonoid quercetin-based drugs for novel SARS-CoV-2. Beni Suef Univ J Basic Appl Sci 2021; 10(1): 21.
[http://dx.doi.org/10.1186/s43088-021-00107-w] [PMID: 33782651]
[121]
Saeedi-Boroujeni A, Mahmoudian-Sani M-R. Anti-inflammatory potential of quercetin in COVID-19 treatment. J Inflamm 2021; 18(1): 3.
[http://dx.doi.org/10.1186/s12950-021-00268-6] [PMID: 33509217]
[122]
Ibrahim MAA, Mohamed EAR, Abdelrahman AHM, et al. Rutin and flavone analogs as prospective SARS-CoV-2 main protease inhibitors: In silico drug discovery study. J Mol Graph Model 2021; 105: 107904.
[http://dx.doi.org/10.1016/j.jmgm.2021.107904] [PMID: 33798836]
[123]
Roy A, Lim L, Srivastava S, Lu Y, Song J. Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants. PLoS One 2017; 12(7): e0180632.
[http://dx.doi.org/10.1371/journal.pone.0180632] [PMID: 28700665]
[124]
Kotwal GJ. Genetic diversity-independent neutralization of pandemic viruses (e.g. HIV), potentially pandemic (e.g. H5N1 strain of influenza) and carcinogenic (e.g. HBV and HCV) viruses and possible agents of bioterrorism (variola) by enveloped virus neutralizing compounds (EVNCs). Vaccine 2008; 26(24): 3055-8.
[http://dx.doi.org/10.1016/j.vaccine.2007.12.008] [PMID: 18241960]
[125]
Abdo N, Moheyeldin O, Shehata MG, El Sohaimy S. Inhibition of COVID-19 RNA-dependent RNA polymerase by natural bioactive compounds: Molecular docking analysis. Egypt J Chem 2021; 64: 1989-2001.
[126]
Wang S-C, Chen Y, Wang Y-C, et al. Tannic acid suppresses SARS-CoV-2 as a dual inhibitor of the viral main protease and the cellular TMPRSS2 protease. Am J Cancer Res 2020; 10(12): 4538-46.
[PMID: 33415017]
[127]
Yang C, Pan X, Xu X, et al. Salvianolic acid C potently inhibits SARS-CoV-2 infection by blocking the formation of six-helix bundle core of spike protein. Signal Transduct Target Ther 2020; 5(1): 220.
[http://dx.doi.org/10.1038/s41392-020-00325-1] [PMID: 33024075]
[128]
Khalil A, Tazeddinova D. The upshot of Polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal. Nat Prod Bioprospect 2020; 10(6): 411-29.
[http://dx.doi.org/10.1007/s13659-020-00271-z] [PMID: 33057955]