2,5-Diketopiperazines: A Review of Source, Synthesis, Bioactivity, Structure, and MS Fragmentation

Page: [1060 - 1085] Pages: 26

  • * (Excluding Mailing and Handling)

Abstract

Background: 2,5-Diketopiperazines (DKPs), also called cyclic dipeptides, are the simplest peptide derivatives in nature that are formed by the condensation of two amino acids. They are an important category of bioactive substances with various structures.

Objective: This review focuses on the natural sources, synthetic processes, biological properties and MS fragmentation regularity of simple DKPs, in order to provide a reference for exploring future scientific and therapeutic potentials of these compounds.

Methods: Pertinent information was collected and organized from several electronic scientific databases (e.g., Web of Science, China Knowledge Resource Integrated, ScienceDirect, PubMed, Wanfang Data and Google Scholar), PhD and MS dissertations. There are 107 articles published from the early 20th century to 2021 that were reviewed in this work.

Results: DKPs have been obtained from a broad range of natural resources, including fungi, bacteria, plants, and animals, and have been synthesized by chemical and biological methods. DKPs have various pharmacological activities, including anticancer, antibacterial, antithrombotic, neuron protective, analgesic, and other activities. Mass spectrometry is the most common method for the structural analysis of DKPs. DKPs can be quickly screened and identified by MS according to the mass spectrum fragmentation pattern.

Conclusion: As a category of relatively unexplored compounds, DKPs have been demonstrated to have various bioactivities, especially with antitumor and antibacterial activities. However, the existing research on DKPs is still in the early stage, and their application in drug development needs to be further studied.

Keywords: 2, 5-Diketopiperazines, cyclic dipeptides, bioactivity, mass spectrometry, fragmentation, mass spectrum fragmentation pattern.

[1]
Li, H.F.; Ye, Y.H.; Guo, J.H. Isolation and identification of cyclodipeptide 7ze3 from Bacillus subtilis. Jiangsu Agri. Sci., 2010, 02, 107-109.
[2]
Curtius, T.; Goebel, F. Uber glycollather. J. Prakt. Chem., 1888, 37(1), 150-181.
[http://dx.doi.org/10.1002/prac.18880370113]
[3]
Huang, R.M.; Yi, X.X.; Zhou, Y.; Su, X.; Peng, Y.; Gao, C.H. An update on 2,5-diketopiperazines from marine organisms. Mar. Drugs, 2014, 12(12), 6213-6235.
[http://dx.doi.org/10.3390/md12126213] [PMID: 25532564]
[4]
Wang, D.X.; Liang, M.T.; Tian, G.J.; Hao, L.; Liu, H.Q. A facile pathway to synthesize diketopiperazine derivatives. Tetrahedron Lett., 2002, 43(5), 865-867.
[http://dx.doi.org/10.1016/S0040-4039(01)02005-6]
[5]
Borthwick, A.D. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev., 2012, 112(7), 3641-3716.
[http://dx.doi.org/10.1021/cr200398y] [PMID: 22575049]
[6]
Wang, Y.; Wang, P.; Ma, H.; Zhu, W. Developments around the bioactive diketopiperazines: A patent review. Expert Opin. Ther. Pat., 2013, 23(11), 1415-1433.
[http://dx.doi.org/10.1517/13543776.2013.828036] [PMID: 23961990]
[7]
Huang, R.; Zhou, X.; Xu, T.; Yang, X.; Liu, Y. Diketopiperazines from marine organisms. Chem. Biodivers., 2010, 7(12), 2809-2829.
[http://dx.doi.org/10.1002/cbdv.200900211] [PMID: 21161995]
[8]
Prasad, C. Bioactive cyclic dipeptides. Peptides, 1995, 16(1), 151-164.
[http://dx.doi.org/10.1016/0196-9781(94)00017-Z] [PMID: 7716068]
[9]
Fenical, W. Chemical studies of marine bacteria: Developing a new resource. Chem. Rev., 1993, 93(5), 1673-1683.
[http://dx.doi.org/10.1021/cr00021a001]
[10]
Zhu, H.; Sun, S.W.; Li, H.; Chang, A.; Liu, Y.C.; Qian, J.; Shen, Y.L. Significantly improved production of Welan gum by Sphingomonas sp. WG through a novel quorum-sensing-interfering dipeptide cyclo(L-Pro-L-Phe). Int. J. Biol. Macromol., 2019, 126, 118-122.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.189] [PMID: 30583004]
[11]
Abderhalden, E.; Komm, E. The formation of diketopiperazines from polypeptides under various conditions. Hoppe Seylers Z. Physiol. Chem., 1924, 139, 147-152.
[http://dx.doi.org/10.1515/bchm2.1924.139.3-4.147]
[12]
Chen, Y.S. Studies on the metabolic products of Rosellinia necatrix Berlese. Bull. Agric. Chem. Soc. Jpn., 1960, 24(4), 372-381.
[http://dx.doi.org/10.1271/bbb1924.24.372]
[13]
Liang, W.L.; Le, X.; Li, H.J.; Yang, X.L.; Chen, J.X.; Xu, J.; Liu, H.L.; Wang, L.Y.; Wang, K.T.; Hu, K.C.; Yang, D.P.; Lan, W.J. Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya pseudofischeri. Mar. Drugs, 2014, 12(11), 5657-5676.
[http://dx.doi.org/10.3390/md12115657] [PMID: 25421322]
[14]
Zhang, H.C.; Li, H.; An, Z.P.; Zhou, F.; Liu, R. Isolation and identification of cyclic dipeptides from Endophyic aspergillus sp. in Astragali radix. Chin. J. Exper. Trad. Med. Form., 2017, 23(12), 52-57.
[15]
Kumar, N.; Mohandas, C.; Nambisan, B.; Kumar, D.R.S.; Lankalapalli, R.S. Isolation of proline-based cyclic dipeptides from Bacillus sp. N strain associated with rhabditid [corrected] entomopathogenic nematode and its antimicrobial properties. World J. Microbiol. Biotechnol., 2013, 29(2), 355-364.
[http://dx.doi.org/10.1007/s11274-012-1189-9] [PMID: 23065379]
[16]
Yonezawa, K.; Yamada, K.; Kouno, I. New diketopiperazine derivatives isolated from sea urchin-derived bacillus sp. Chem. Pharm. Bull. (Tokyo), 2011, 59(1), 106-108.
[http://dx.doi.org/10.1248/cpb.59.106] [PMID: 21212556]
[17]
He, P.Q.; Li, J.; Liu, C.Y.; Zhang, T.; Wang, P.S.; Lin, X.Z. Inhibitory effect on arctic marine bacterium Pseudoalteromonas sp. 2018 against plant pathogenic fungi, and the study on is metabolites. Adv. Mar. Sci., 2018, 36(1), 98-107.
[18]
Grottelli, S.; Ferrari, I.; Pietrini, G.; Peirce, M.J.; Minelli, A.; Bellezza, I. The role of cyclo(His-Pro) in neurodegeneration. Int. J. Mol. Sci., 2016, 17(8), 1332.
[http://dx.doi.org/10.3390/ijms17081332] [PMID: 27529240]
[19]
Yang, Z.J.; Xiang, L.; Xing, J.; Zheng, Y.N. Research advances in cyclic dipeptides. Mod. Pharm. Clin., 2009, 24(2), 73-81.
[20]
Lopez, L.C.; Morgan, E.D. Explanation of bitter taste of venom of ponerine ant, Pachycondyla apicalis. J. Chem. Ecol., 1997, 23(3), 705-712.
[http://dx.doi.org/10.1023/B:JOEC.0000006405.26872.ef]
[21]
Xing, J.; Yang, Z.; Lv, B.; Xiang, L. Rapid screening for cyclo-dopa and diketopiperazine alkaloids in crude extracts of Portulaca oleracea L. using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2008, 22(9), 1415-1422.
[http://dx.doi.org/10.1002/rcm.3526] [PMID: 18384195]
[22]
Wang, Y.C.; Zhou, J.; Tan, N.H.; Ding, Z.T.; Jiang, X. Cyclic dipeptides from Schizandra chinensis and their syntheses. Yao Xue Xue Bao, 1999, 34(1), 19-22.
[23]
Cheng, Z.H.; Wu, T.; Yu, B.Y. Chemical constituents in the tubers of Ophiopogon japonicus. Nat. Prod. Res. Dev., 2005, 17(1), 1-3.
[24]
Ge, Y.Z.; Ma, Q.Y.; Kong, F.D.; Xie, Q.Y.; An, C.L.; Yu, Z.F.; Zhao, Y.X. Study on chemical constituents from fruiting bodies of Ganoderma australe. Zhongguo Zhongyao Zazhi, 2019, 44(3), 489-494.
[PMID: 30989913]
[25]
Rosenmund, P.; Kaiser, K. Diketopiperazines from Leuchs anhydrides. Angew. Chem. Int. Ed. Engl., 1970, 9(2), 162-163.
[http://dx.doi.org/10.1002/anie.197001621]
[26]
Martins, M.B.; Carvalho, I. Diketopiperazines: Biological activity and synthesis. Tetrahedron, 2007, 63(40), 9923-9932.
[http://dx.doi.org/10.1016/j.tet.2007.04.105]
[27]
Kanoh, K.; Kohno, S.; Katada, J.; Takahashi, J.; Uno, I.; Hayashi, Y. Synthesis and biological activities of phenylahistin derivatives. Bioorg. Med. Chem., 1999, 7(7), 1451-1457.
[http://dx.doi.org/10.1016/S0968-0896(99)00059-0] [PMID: 10465419]
[28]
Santagada, V.; Fiorino, F.; Perissutti, E.; Severino, B.; Terracciano, S.; Cirino, G.; Caliend, G. A convenient strategy of dimerization by microwave heating and using 2,5-diketopiperazine as scaffold. Tetrahedron Lett., 2003, 44(6), 1145-1148.
[http://dx.doi.org/10.1016/S0040-4039(02)02836-8]
[29]
Bellezza, I.; Grottelli, S.; Mierla, A.L.; Cacciatore, I.; Fornasari, E.; Roscini, L.; Cardinali, G.; Minelli, A. Neuroinflammation and endoplasmic reticulum stress are coregulated by cyclo(His-Pro) to prevent LPS neurotoxicity. Int. J. Biochem. Cell Biol., 2014, 51, 159-169.
[http://dx.doi.org/10.1016/j.biocel.2014.03.023] [PMID: 24699213]
[30]
Xue, Y.C.; Zhang, C.S.; Li, G. Cloning and analysis of the adenylation domain of nonribosomal peptide synthetase gene. J. Microbiol., 2019, 39(1), 20-25.
[31]
Xue, Y.C.; Li, G. Research progress on nonribosomal peptide synthetase assembly mechanism. Chem. Life, 2018, 38(3), 409-414.
[32]
Belin, P.; Moutiez, M.; Lautru, S.; Seguin, J.; Pernodet, J.L.; Gondry, M. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Nat. Prod. Rep., 2012, 29(9), 961-979.
[http://dx.doi.org/10.1039/c2np20010d] [PMID: 22751625]
[33]
Zhang, J.X.; Yao, T.T.; Liu, J.; Li, H.Y.; Li, W.L. Recent advances in cyclodipeptide synthases-dependent biosynthetic pathway. Youji Huaxue, 2019, 39(2), 328-338.
[http://dx.doi.org/10.6023/cjoc201806003]
[34]
Canu, N.; Belin, P.; Thai, R.; Correia, I.; Lequin, O.; Seguin, J.; Moutiez, M.; Gondry, M. Incorporation of non-canonical amino acids into 2,5-diketopiperazines by cyclodipeptide synthases. Angew. Chem. Int. Ed. Engl., 2018, 57(12), 3118-3122.
[http://dx.doi.org/10.1002/anie.201712536] [PMID: 29377457]
[35]
Gondry, M.; Jacques, I.B.; Thai, R.; Babin, M.; Canu, N.; Seguin, J.; Belin, P.; Pernodet, J.L.; Moutiez, M. A comprehensive overview of the cyclodipeptide synthase family enriched with the characterization of 32 new enzymes. Front. Microbiol., 2018, 9, 46-60.
[http://dx.doi.org/10.3389/fmicb.2018.00046] [PMID: 29483897]
[36]
Borgman, P.; Lopez, R.D.; Lane, A.L. The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases. Org. Biomol. Chem., 2019, 17(9), 2305-2314.
[http://dx.doi.org/10.1039/C8OB03063D] [PMID: 30688950]
[37]
Li, D.H.; Gu, Q.Q.; Zhu, W.M.; Liu, H.B.; Fang, Y.C.; Zhu, T.J. Antitum or components from marine actinomycete 11014 I. Cyclic dipeptides. Chin. J. Antibiot., 2005, 30, 449-452.
[38]
Li, D.; Zhu, W.M.; Gu, Q.Q.; Cui, C.B.; Zhu, T.J.; Liu, H.B.; Fang, Y.C. Structural identification and anti-tumor activity of diketopi-perazines from secondary metabolites of marine-derived actinomycete H2003. Mark. Sci., 2007, 05, 45-48.
[39]
Liu, R.; Zhu, T.J.; Zhu, W.M.; Li, D.; Cui, C.B.; Gu, Q.Q. The antitumor active component from marine derived actinomycete S1001. Chin. J. Antibiot., 2006, 31, 36-38.
[40]
Jia, J.M.; Ma, X.C.; Wu, C.F.; Wu, L.J.; Hu, G.S. Cordycedipeptide A, a new cyclodipeptide from the culture liquid of Cordyceps sinensis (Berk.) Sacc. Chem. Pharm. Bull. (Tokyo), 2005, 53(5), 582-583.
[http://dx.doi.org/10.1248/cpb.53.582] [PMID: 15863936]
[41]
Liu, H.B.; Gao, H.; Wang, N.L.; Lin, H.P.; Hong, K.; Yao, X.S. Cyclic dipeptide constituents from the mangrove fungus Penicillium oxalicum (No. 092007). J. Shenyang Pharm. Univ., 2007, 24, 474-478.
[42]
Brauns, S.C.; Milne, P.; Naudé, R.; Van de Venter, M. Selected cyclic dipeptides inhibit cancer cell growth and induce apoptosis in HT-29 colon cancer cells. Anticancer Res., 2004, 24(3a), 1713-1719.
[PMID: 15274345]
[43]
Hong, S.; Moon, B.H.; Yong, Y.; Shin, S.Y.; Lee, Y.H.; Lim, Y. Inhibitory effect against Akt of cyclic dipeptides isolated from Bacillus sp. J. Microbiol. Biotechnol., 2008, 18(4), 682-685.
[PMID: 18467861]
[44]
Brauns, S.C.; Dealtry, G.; Milne, P.; Naudé, R.; Van de Venter, M. Caspase-3 activation and induction of PARP cleavage by cyclic dipeptide cyclo(Phe-Pro) in HT-29 cells. Anticancer Res., 2005, 25(6B), 4197-4202.
[PMID: 16309216]
[45]
Kilian, G.; Jamie, H.; Brauns, S.C.; Dyason, K.; Milne, P.J. Biological activity of selected tyrosine-containing 2,5-diketopiperazines. Pharmazie, 2005, 60(4), 305-309.
[PMID: 15881613]
[46]
Jamie, H.; Kilian, G.; Dyason, K.; Milne, P.J. The effect of the isomers of cyclo(Trp-Pro) on heart and ion-channel activity. J. Pharm. Pharmacol., 2002, 54(12), 1659-1665.
[http://dx.doi.org/10.1211/002235702252] [PMID: 12542896]
[47]
Unal, C.B.; Owen, M.D.; Millington, W.R. Cyclo(Gly-Gln) inhibits the cardiorespiratory depression produced by β-endorphin and morphine. Brain Res., 1997, 747(1), 52-59.
[http://dx.doi.org/10.1016/S0006-8993(96)01261-9] [PMID: 9042527]
[48]
Lucietto, F.R.; Milne, P.J.; Kilian, G.; Frost, C.L.; Van De Venter, M. The biological activity of the histidine-containing diketopiperazines cyclo(His-Ala) and cyclo(His-Gly). Peptides, 2006, 27(11), 2706-2714.
[http://dx.doi.org/10.1016/j.peptides.2006.04.023] [PMID: 16797105]
[49]
Li, H.J.; Lin, Y.C.; Liu, X.H.; Zhou, S.N.; Vrijmoed, L.L.P. The peptides from mangrove endophytic fungus No.2524 (I). Acta Sci. Natur. Univ. Sunyatseni, 2002, 41, 110-112.
[50]
McCleland, K.; Milne, P.J.; Lucieto, F.R.; Frost, C.; Brauns, S.C.; Van De Venter, M.; Du Plessis, J.; Dyason, K. An investigation into the biological activity of the selected histidine-containing diketopiperazines cyclo(His-Phe) and cyclo(His-Tyr). J. Pharm. Pharmacol., 2004, 56(9), 1143-1153.
[http://dx.doi.org/10.1211/0022357044139] [PMID: 15324483]
[51]
Sun, Q.; Liu, A.; Ma, Y.; Wang, A.; Guo, X.; Teng, W.; Jiang, Y. Effects of forced swimming stress on thyroid function, pituitary thyroid-stimulating hormone and hypothalamus thyrotropin releasing hormone expression in adrenalectomy Wistar rats. Exp. Ther. Med., 2016, 12(5), 3167-3174.
[http://dx.doi.org/10.3892/etm.2016.3790] [PMID: 27882133]
[52]
Cornacchia, C.; Cacciatore, I.; Baldassarre, L.; Mollica, A.; Feliciani, F.; Pinnen, F. 2,5-diketopiperazines as neuroprotective agents. Mini Rev. Med. Chem., 2012, 12(1), 2-12.
[http://dx.doi.org/10.2174/138955712798868959] [PMID: 22070690]
[53]
Faden, A.I.; Fox, G.B.; Di, X.; Knoblach, S.M.; Cernak, I.; Mullins, P.; Nikolaeva, M.; Kozikowski, A.P. Neuroprotective and nootropic actions of a novel cyclized dipeptide after controlled cortical impact injury in mice. J. Cereb. Blood Flow Metab., 2003, 23(3), 355-363.
[http://dx.doi.org/10.1097/01.WCB.0000046144.31247.33] [PMID: 12621310]
[54]
Faden, A.I.; Movsesyan, V.A.; Knoblach, S.M.; Ahmed, F.; Cernak, I. Neuroprotective effects of novel small peptides in vitro and after brain injury. Neuropharmacology, 2005, 49(3), 410-424.
[http://dx.doi.org/10.1016/j.neuropharm.2005.04.001] [PMID: 15907950]
[55]
Hlinák, Z.; Vinsová, J.; Kasafírek, E. Effect of alaptide, its analogues and oxiracetam on memory for an elevated plus- maze in mice. Eur. J. Pharmacol., 1996, 314(1-2), 1-7.
[http://dx.doi.org/10.1016/S0014-2999(96)00485-2] [PMID: 8957212]
[56]
de Carvalho, M.P.; Abraham, W.R. Antimicrobial and biofilm inhibiting diketopiperazines. Curr. Med. Chem., 2012, 19(21), 3564-3577.
[http://dx.doi.org/10.2174/092986712801323243] [PMID: 22709011]
[57]
Rhee, K.H. Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties. Int. J. Antimicrob. Agents, 2004, 24(5), 423-427.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.05.005] [PMID: 15519471]
[58]
Lautru, S.; Gondry, M.; Genet, R.; Pernodet, J.L. The albonoursin gene Cluster of S. noursei biosynthesis of diketopiperazine metabolites independent of nonribosomal peptide synthetases. Chem. Biol., 2002, 9(12), 1355-1364.
[http://dx.doi.org/10.1016/S1074-5521(02)00285-5] [PMID: 12498889]
[59]
Ström, K.; Sjögren, J.; Broberg, A.; Schnürer, J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol., 2002, 68(9), 4322-4327.
[http://dx.doi.org/10.1128/AEM.68.9.4322-4327.2002] [PMID: 12200282]
[60]
Klose, K.E. Increased chatter: Cyclic dipeptides as molecules of chemical communication in Vibrio spp. J. Bacteriol., 2006, 188(6), 2025-2026.
[http://dx.doi.org/10.1128/JB.188.6.2025-2026.2006] [PMID: 16513731]
[61]
Bina, X.R.; Bina, J.E. The cyclic dipeptide cyclo(Phe-Pro) inhibits cholera toxin and toxin-coregulated pilus production in O1 El Tor Vibrio cholerae. J. Bacteriol., 2010, 192(14), 3829-3832.
[http://dx.doi.org/10.1128/JB.00191-10] [PMID: 20453095]
[62]
Park, D.K.; Lee, K.E.; Baek, C.H.; Kim, I.H.; Kwon, J.H.; Lee, W.K.; Lee, K.H.; Kim, B.S.; Choi, S.H.; Kim, K.S. Cyclo(Phe-Pro) modulates the expression of ompU in Vibrio spp. J. Bacteriol., 2006, 188(6), 2214-2221.
[http://dx.doi.org/10.1128/JB.188.6.2214-2221.2006] [PMID: 16513751]
[63]
Koo, K.B.; Suh, H.J.; Ra, K.S.; Choi, J.W. Protective effect of cyclo(his-pro) on streptozotocin-induced cytotoxicity and apoptosis in vitro. J. Microbiol. Biotechnol., 2011, 21(2), 218-227.
[http://dx.doi.org/10.4014/jmb.1012.12003] [PMID: 21364307]
[64]
Ueda, H. Review of kyotorphin research: A mysterious opioid analgesic dipeptide and its molecular, physiological, and pharmacological characteristics. Front. Med. Technol., 2021, 3, 662697.
[http://dx.doi.org/10.3389/fmedt.2021.662697] [PMID: 35047919]
[65]
Sato, T.; Sakurada, S.; Sakurada, T.; Kisara, K.; Sasaki, Y.; Akutsu, Y.; Suzuki, K. Comparison of the antinociceptive effect between the cyclic dipeptide cyclo[Tyr(Et)-homoarginine] and the linear dipeptide Boc-Tyr(Et)-homoarginine-OMe in rats. Jpn. J. Pharmacol., 1984, 34(1), 1-8.
[http://dx.doi.org/10.1016/S0021-5198(19)52365-4] [PMID: 6716712]
[66]
Bhargava, H.N. The effect of melanotrophin release inhibiting factor (MIF) and cyclo (Leu-Gly) on the tolerance to morphine-induced antinociception in the rat: A dose-response study. Br. J. Pharmacol., 1981, 72(4), 707-714.
[http://dx.doi.org/10.1111/j.1476-5381.1981.tb09152.x] [PMID: 6116510]
[67]
Ding, Z.T.; Zhou, J.; Tan, N.H. Cyclic dipeptides from the root of Psammosilene tunicoides. Chin. Tradit. Herbal Drugs, 2000, 31(11), 803-805.
[68]
E, H.C.; Tang, H.; Liu, B.S.; Sun, P.; Li, L.; Li, Z.Y.; Zhang, W. Cyclodipeptides from the actinomycete Kytococcus sp. associated with the sea cucumber Apostichopus japonicus. Chin. J. Mar. Drugs, 2013, 32, 31-36.
[69]
Axel, C.; Zannini, E.; Arendt, E.K.; Waters, D.M.; Czerny, M. Quantification of cyclic dipeptides from cultures of Lactobacillus brevis R2Δ by HRGC/MS using stable isotope dilution assay. Anal. Bioanal. Chem., 2014, 406(9-10), 2433-2444.
[http://dx.doi.org/10.1007/s00216-014-7620-3] [PMID: 24477717]
[70]
Ding, Z.T.; Bao, Z.J.; Yang, X.Q.; Jiang, M. Three cyclic dipeptides from the root of Psammosilene tunicoides. Zhongguo Zhongyao Zazhi, 2003, 28(4), 337-339.
[PMID: 15139143]
[71]
Gong, J.; Tang, H.; Geng, W.L.; Liu, B.S.; Sun, P.; Li, L.; Li, Z.Y.; Zhang, W. Cyclic dipeptides in actinomycete Brevibacterium sp. Associated with sea cucumber Apostichopus japonicus selenka: Isolation and identification. Acad. J. Second Mil. Med. Univ., 2012, 33, 1284-1287.
[72]
Ai, F.; Xu, Q.Z.; Yang, Y.; Liu, X.Y.; Shi, X.Q.; Song, Z.G.; Jiao, B.H. Bioactive cyclodipeptides extracted from marine microbes in east China sea. Acad. J. Second Military Med. Univ., 2006, 27(1), 22-24.
[73]
Wang, N.; Cui, C.B.; Li, C.W. A new cyclic dipeptide penicimutide: The activated production of cyclic dipeptides by introduction of neomycin-resistance in the marine-derived fungus Penicillium purpurogenum G59. Arch. Pharm. Res., 2016, 39(6), 762-770.
[http://dx.doi.org/10.1007/s12272-016-0751-7] [PMID: 27129688]
[74]
Bofinger, M.R.; de Sousa, L.S.; Fontes, J.E.N.; Marsaioli, A.J. Diketopiperazines as cross-communication quorum-sensing signals between Cronobacter sakazakii and Bacillus cereus. ACS Omega, 2017, 2(3), 1003-1008.
[http://dx.doi.org/10.1021/acsomega.6b00513] [PMID: 30023625]
[75]
Yang, B.; Dong, J.D.; Zhou, X.F.; Yang, X.W.; Lee, K.J.; Wang, L.S.; Zhang, S.; Liu, Y.H. Proline-containing dipeptides from a marine sponge of a Callyspongia species. Helv. Chim. Acta, 2009, 92(6), 1112-1117.
[http://dx.doi.org/10.1002/hlca.200800422]
[76]
Adamiano, A.; Goffredo, S.; Dubinsky, Z.; Levy, O.; Fermani, S.; Fabbri, D.; Falini, G. Analytical pyrolysis-based study on intra-skeletal organic matrices from Mediterranean corals. Anal. Bioanal. Chem., 2014, 406(24), 6021-6033.
[http://dx.doi.org/10.1007/s00216-014-7995-1] [PMID: 25015043]
[77]
Wang, J.H.; Quan, C.S.; Qi, X.H.; Li, X.; Fan, S.D. Determination of diketopiperazines of Burkholderia cepacia CF-66 by gas chromatography-mass spectrometry. Anal. Bioanal. Chem., 2010, 396(5), 1773-1779.
[http://dx.doi.org/10.1007/s00216-009-3379-3] [PMID: 20062980]
[78]
Wang, J.H.; Quan, C.S.; Wang, X.; Zhao, P.C.; Fan, S.D. Discovery and characterization of the natural cyclic dipeptides in Bacillus amyloliquefaciens Q-426. In: The Chemical Industry and Engineering Society of China; , 2010.
[79]
Mioso, R.; Marante, F.J.; Laguna, I.H. Chemical constituents of the fermentation broth of the marine-derived fungus Penicillium roqueforti. Rev. Iberoam. Micol., 2015, 32(3), 147-152.
[http://dx.doi.org/10.1016/j.riam.2014.01.004] [PMID: 24857746]
[80]
Zhen, X.; Gong, T.; Liu, F.; Zhang, P.C.; Zhou, W.Q.; Li, Y.; Zhu, P. A new analogue of echinomycin and a new cyclic dipeptide from a marine-derived Streptomyces sp. LS298. Mar. Drugs, 2015, 13(11), 6947-6961.
[http://dx.doi.org/10.3390/md13116947] [PMID: 26593927]
[81]
Nishanth, S.K.; Nambisan, B.; Dileep, C. Three bioactive cyclic dipeptides from the Bacillus sp. N strain associated with entomopathogenic nematode. Peptides, 2014, 53, 59-69.
[http://dx.doi.org/10.1016/j.peptides.2013.11.017] [PMID: 24291459]
[82]
Guo, Q.; Guo, D.; Zhao, B.; Xu, J.; Li, R. Two cyclic dipeptides from Pseudomonas fluorescens GcM5-1A carried by the pine wood nematode and their toxicities to Japanese black pine suspension cells and seedlings in vitro. J. Nematol., 2007, 39(3), 243-247.
[PMID: 19259494]
[83]
Chen, X.; Mou, Y.; Ling, J.; Wang, N.; Wang, X.; Hu, J. Cyclic dipeptides produced by fungus Eupenicillium brefeldianum HMP-F96 induced extracellular alkalinization and H2O 2 production in tobacco cell suspensions. World J. Microbiol. Biotechnol., 2015, 31(1), 247-253.
[http://dx.doi.org/10.1007/s11274-014-1759-0] [PMID: 25344087]
[84]
Gu, J.Y.; Liu, H.B.; Cui, C.B.; Gu, Q.Q. Isolation and identification of cyclic dipeptides from a marine-derived Streptomyces albogriseolus. Period. Ocean Univ. China, 2005, 35(4), 618-620.
[85]
Park, S.Y.; Shim, S.H. Characterization of metabolites from cultures of Cellulosimicrobium cellulans. J. Korean Soc. Appl. Biol. Chem., 2014, 57(4), 481-484.
[http://dx.doi.org/10.1007/s13765-014-4118-9]
[86]
Hu, Y.M.; Wang, H.; Ye, W.C.; Liu, G. Aqueous constituents from Stellaria media (L.)Cyr. Zhongguo Yaoke Daxue Xuebao, 2005, 36(6), 523-525.
[87]
Hong, Z.L.; Wang, W.X.; Xiong, J.; Chen, J.; Yu, L.P.; Yang, G.X.; Hu, J.F. Chemical constituents from fermented mycelium of Paecilomyces hepiali. Chin. Tradit. Herbal Drugs, 2013, 44, 947-950.
[88]
Kumar, S.N.; Mohandas, C.; Nambisan, B. Purification, structural elucidation and bioactivity of tryptophan containing diketopiperazines, from Comamonas testosteroni associated with a rhabditid entomopathogenic nematode against major human-pathogenic bacteria. Peptides, 2014, 53, 48-58.
[http://dx.doi.org/10.1016/j.peptides.2013.09.019] [PMID: 24120705]
[89]
Yao, Y.; Tian, L.; Li, J.; Pei, Y.H. Cyclo-dipeptide metabolites from the broth of marine bacterium Bacillus sp. Zhongguo Yaowu Huaxue Zazhi, 2007, 17(5), 310-313.
[90]
Furtado, N.A.J.C.; Vessecchi, R.; Tomaz, J.C.; Galembeck, S.E.; Bastos, J.K.; Lopes, N.P.; Crotti, A.E.M. Fragmentation of diketopiperazines from Aspergillus fumigatus by electrospray ionization tandem mass spectrometry (ESI-MS/MS). J. Mass Spectrom., 2007, 42(10), 1279-1286.
[http://dx.doi.org/10.1002/jms.1166] [PMID: 17902100]
[91]
Guo, Y.C.; Cao, S.X.; Zong, X.K.; Liao, X.C.; Zhao, Y.F. ESI-MSn study on the fragmentation of protonated cyclic-dipeptides. Spectroscopy (Springf.), 2009, 23(3-4), 131-139.
[http://dx.doi.org/10.1155/2009/580182]
[92]
Li, Y.; Li, X.; Kim, S.K.; Kang, J.S.; Choi, H.D.; Rho, J.R.; Son, B.W. Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chem. Pharm. Bull. (Tokyo), 2004, 52(3), 375-376.
[http://dx.doi.org/10.1248/cpb.52.375] [PMID: 14993767]
[93]
Fleischhauer, J.; Grötzinger, J.; Kramer, B.; Krüger, P.; Wollmer, A.; Woody, R.W.; Zobel, E. Calculation of the circular dichroism spectrum of cyclo-(L-tyr-L-tyr) based on a molecular dynamics simulation. Biophys. Chem., 1994, 49(2), 141-152.
[http://dx.doi.org/10.1016/0301-4622(93)E0065-D] [PMID: 8155814]
[94]
Caira, M.R.; Buyukbingol, E.; Adejare, A.; Millington, W.R. Crystal structure of the dipeptide cyclo(glycyl-l-glutamine). Anal. Sci., 2002, 18(10), 1175-1176.
[http://dx.doi.org/10.2116/analsci.18.1175] [PMID: 12400671]
[95]
Guo, Y.; Cao, S.; Wei, D.; Zong, X.; Yuan, X.; Tang, M.; Zhao, Y. Fragmentation of deprotonated cyclic dipeptides by electrospray ionization mass spectrometry. J. Mass Spectrom., 2009, 44(8), 1188-1194.
[http://dx.doi.org/10.1002/jms.1595] [PMID: 19462414]
[96]
Chen, Y.H.; Liou, S.E.; Chen, C.C. Two-step mass spectrometric approach for the identification of diketopiperazines in chicken essence. Eur. Food Res. Technol., 2004, 218(6), 589-597.
[http://dx.doi.org/10.1007/s00217-004-0901-x]
[97]
Yamamoto, K.; Hayashi, M.; Murakami, Y.; Araki, Y.; Otsuka, Y.; Kashiwagi, T.; Shimamura, T.; Ukeda, H. Development of LC-MS/MS analysis of cyclic dipeptides and its application to tea extract. Biosci. Biotechnol. Biochem., 2016, 80(1), 172-177.
[http://dx.doi.org/10.1080/09168451.2015.1075865] [PMID: 26299992]
[98]
Gu, Q.; Fu, L.; Wang, Y.; Lin, J. Identification and characterization of extracellular cyclic dipeptides as quorum-sensing signal molecules from Shewanella baltica, the specific spoilage organism of Pseudosciaena crocea during 4°C storage. J. Agric. Food Chem., 2013, 61(47), 11645-11652.
[http://dx.doi.org/10.1021/jf403918x] [PMID: 24206027]
[99]
Bratakos, S.M.; Sinanoglou, V.J.; Matsoukas, M.T.; Siapi, E.; Papahatjis, D.P.; Riganakos, K.; Zoumpoulakis, P. Fragmentation patterns of aromatic 2,5-diketopiperazines using liquid ehromatography/mass spectrometry. Curr. Anal. Chem., 2016, 12(5), 439-449.
[http://dx.doi.org/10.2174/1573411011666150812225728]
[100]
Stanstrup, J.; Rasmussen, J.E.; Ritz, C.; Holmer-Jensen, J.; Hermansen, K.; Dragsted, L.O. Intakes of whey protein hydrolysate and whole whey proteins are discriminated by LC-MS metabolomics. Metabolomics, 2014, 10(4), 719-736.
[http://dx.doi.org/10.1007/s11306-013-0607-9]
[101]
Chen, M.Z.; Dewis, M.L.; Kraut, K.; Merritt, D.; Reiber, L.; Trinnaman, L.; Da Costa, N.C. 2, 5-diketopiperazines (cyclic dipeptides) in beef: Identification, synthesis, and sensory evaluation. J. Food Sci., 2009, 74(2), C100-C105.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01062.x] [PMID: 19323722]
[102]
Sun, Y.; Lu, K.; Ma, L.; Cao, S.; Zhao, Y. Isolation and identification of the mixture of L-hydroxyproline oligo-peptides by reversed-phase high performance liquid chromatography and electrospray ionization tandem mass spectrometry. Se Pu, 2007, 25(4), 524-527.
[PMID: 17970111]
[103]
Liu, R.; Kim, A.H.; Kwak, M.K.; Kang, S.O. Proline-based cyclic dipeptides from korean fermented vegetable kimchi and from Leuconostoc mesenteroides LBP-K06 have activities against multidrug-resistant bacteria. Front. Microbiol., 2017, 8, 761.
[http://dx.doi.org/10.3389/fmicb.2017.00761] [PMID: 28512456]
[104]
Liao, Q.J.; An, M.Z.; Li, Y.H.; Zhou, H.L.; Wang, X.Q.; Wang, F.; Guo, Y. Study of dipeptide and cyclodipeptide in yellow water of distillers grains. Liquor-Making. Sci. Tech. (Paris), 2018, 10, 17-23.
[105]
Stark, T.; Hofmann, T. Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao). J. Agric. Food Chem., 2005, 53(18), 7222-7231.
[http://dx.doi.org/10.1021/jf051313m] [PMID: 16131134]
[106]
Ryan, L.A.M.; Dal Bello, F.; Arendt, E.K.; Koehler, P. Detection and quantitation of 2,5-diketopiperazines in wheat sourdough and bread. J. Agric. Food Chem., 2009, 57(20), 9563-9568.
[http://dx.doi.org/10.1021/jf902033v] [PMID: 19807105]
[107]
Fabbri, D.; Adamiano, A.; Falini, G.; De Marco, R.; Mancini, I. Analytical pyrolysis of dipeptides containing proline and amino acids with polar side chains. Novel 2,5-diketopiperazine markers in the pyrolysates of proteins. J. Anal. Appl. Pyrolysis, 2012, 95, 145-155.
[http://dx.doi.org/10.1016/j.jaap.2012.02.001]