Feeding Pattern, Circadian Rhythm, and Immune Function: What do we know about?

Page: [2478 - 2487] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Feeding pattern is related to health status or chronic diseases, and this depends on the individual’s eating habits. Feeding organized with the right time to start and end during the day, promotes an internal biological rhythm, favoring molecular synchronization of the clock genes, which impose an effect on metabolism and immune cells, creating a physiological response related to a healthy profile. On the other hand, a feeding pattern disorganized, without the right time to start and end eating during the day, might lead to nonsynchronization of the clock genes, a disruption condition, which is related to chronic diseases, such as obesity and diabetes type 2. A strategy that should be adopted to favor molecular synchronization is time-restricted eating (TRE), which can organize the initial and end of the eating patterns during the day. Our review points out some cues that suggest TRE as an efficient strategy for healthy profile and can be a good intervention for the treatment of chronic diseases.

Keywords: Clock genes, nutrition, immunonutrition, obesity, circadian rhythm, immune function.

[1]
Almoosawi S, Vingeliene S, Gachon F, et al. Chronotype: Implications for epidemiologic studies on chrono-nutrition and cardiometabolic health. Adv Nutr 2019; 10(1): 30-42.
[http://dx.doi.org/10.1093/advances/nmy070] [PMID: 30500869]
[2]
Sunderram J, Sofou S, Kamisoglu K, Karantza V, Androulakis IP. Time-restricted feeding and the realignment of biological rhythms: Translational opportunities and challenges. J Transl Med 2014; 12: 79.
[http://dx.doi.org/10.1186/1479-5876-12-79] [PMID: 24674294]
[3]
Sierra-Johnson J, Undén AL, Linestrand M, et al. Eating meals irregularly: A novel environmental risk factor for the metabolic syndrome. Obesity 2008; 16(6): 1302-7.
[http://dx.doi.org/10.1038/oby.2008.203] [PMID: 18388902]
[4]
Challet E. The circadian regulation of food intake. Nat Rev Endocrinol 2019; 15(7): 393-405.
[http://dx.doi.org/10.1038/s41574-019-0210-x] [PMID: 31073218]
[5]
Rohleder N, Kirschbaum C. Effects of nutrition on neuro-endocrine stress responses. Curr Opin Clin Nutr Metab Care 2007; 10(4): 504-10.
[http://dx.doi.org/10.1097/MCO.0b013e3281e38808] [PMID: 17563471]
[6]
Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci 2009; 106(11): 4453-8.
[http://dx.doi.org/10.1073/pnas.0808180106] [PMID: 19255424]
[7]
Potter GD, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ. Circadian rhythm and sleep disruption: Causes, metabolic consequences, and countermeasures. Endocr Rev 2016; 37(6): 584-608.
[http://dx.doi.org/10.1210/er.2016-1083] [PMID: 27763782]
[8]
Flanagan A, Bechtold DA, Pot GK, Johnston JD. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J Neurochem 2021; 157(1): 53-72.
[http://dx.doi.org/10.1111/jnc.15246] [PMID: 33222161]
[9]
McHill AW, Phillips AJ, Czeisler CA, et al. Later circadian timing of food intake is associated with increased body fat. Am J Clin Nutr 2017; 106(5): 1213-9.
[http://dx.doi.org/10.3945/ajcn.117.161588] [PMID: 28877894]
[10]
Lundell LS, Parr EB, Devlin BL, et al. Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression. Nat Commun 2020; 11(1): 4643.
[http://dx.doi.org/10.1038/s41467-020-18412-w] [PMID: 32938935]
[11]
Van Drunen R, Eckel-Mahan K. Circadian rhythms of the hypothalamus: From function to physiology. Clocks Sleep 2021; 3(1): 189-226.
[http://dx.doi.org/10.3390/clockssleep3010012] [PMID: 33668705]
[12]
Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci 1971; 68(9): 2112-6.
[http://dx.doi.org/10.1073/pnas.68.9.2112] [PMID: 5002428]
[13]
Vitaterna MH, King DP, Chang AM, et al. Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 1994; 264(5159): 719-25.
[http://dx.doi.org/10.1126/science.8171325] [PMID: 8171325]
[14]
Gekakis N, Staknis D, Nguyen HB, et al. Role of the clock protein in the mammalian circadian mechanism. Science 1998; 280(5369): 1564-9.
[http://dx.doi.org/10.1126/science.280.5369.1564] [PMID: 9616112]
[15]
Ikeda M, Nomura M. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun 1997; 233(1): 258-64.
[http://dx.doi.org/10.1006/bbrc.1997.6371] [PMID: 9144434]
[16]
Bunger MK, Wilsbacher LD, Moran SM, et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000; 103(7): 1009-17.
[http://dx.doi.org/10.1016/S0092-8674(00)00205-1] [PMID: 11163178]
[17]
Takumi T, Taguchi K, Miyake S, et al. A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J 1998; 17(16): 4753-9.
[http://dx.doi.org/10.1093/emboj/17.16.4753] [PMID: 9707434]
[18]
Griffin EA Jr, Staknis D, Weitz CJ. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 1999; 286(5440): 768-71.
[http://dx.doi.org/10.1126/science.286.5440.768] [PMID: 10531061]
[19]
Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002; 110(2): 251-60.
[http://dx.doi.org/10.1016/S0092-8674(02)00825-5] [PMID: 12150932]
[20]
Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 2007; 8(2): 139-48.
[http://dx.doi.org/10.1038/nrm2106] [PMID: 17245414]
[21]
Pereira DS, Tufik S, Pedrazzoli M. Timekeeping molecules: Implications for circadian phenotypes. Braz J Psychiatry 2009; 31: 63-71.
[http://dx.doi.org/10.1590/S1516-44462009000100015]
[22]
Shearman LP, Zylka MJ, Reppert SM, Weaver DR. Expression of basic helix-loop-helix/PAS genes in the mouse suprachiasmatic nucleus. Neuroscience 1999; 89(2): 387-97.
[http://dx.doi.org/10.1016/S0306-4522(98)00325-X] [PMID: 10077321]
[23]
Jakubowicz D, Wainstein J, Landau Z, et al. Influences of breakfast on clock gene expression and postprandial glycemia in healthy individuals and individuals with diabetes: A randomized clinical trial. Diabetes Care 2017; 40(11): 1573-9.
[http://dx.doi.org/10.2337/dc16-2753] [PMID: 28830875]
[24]
Ruddick-Collins LC, Johnston JD, Morgan PJ, Johnstone AM. The big breakfast study: Chrono-nutrition influence on energy expenditure and bodyweight. Nutr Bull 2018; 43(2): 174-83.
[http://dx.doi.org/10.1111/nbu.12323] [PMID: 29861661]
[25]
Meng H, Wang Z, Hoi Y, et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 2007; 38(6): 1924-31.
[http://dx.doi.org/10.1161/STROKEAHA.106.481234] [PMID: 17495215]
[26]
Laurent D, Small C, Lucke-Wold B, et al. Understanding the genetics of intracranial aneurysms: A primer. Clin Neurol Neurosurg 2022; 212: 107060.
[http://dx.doi.org/10.1016/j.clineuro.2021.107060] [PMID: 34863053]
[27]
Romanic AM, Madri JA. Extracellular matrix-degrading proteinases in the nervous system. Brain Pathol 1994; 4(2): 145-56.
[http://dx.doi.org/10.1111/j.1750-3639.1994.tb00825.x] [PMID: 8061860]
[28]
Lively S, Schlichter LC. The microglial activation state regulates migration and roles of matrix-dissolving enzymes for invasion. J Neuroinflammation 2013; 10: 75.
[http://dx.doi.org/10.1186/1742-2094-10-75] [PMID: 23786632]
[29]
Bonoiu A, Mahajan SD, Ye L, et al. MMP-9 gene silencing by a quantum dot-siRNA nanoplex delivery to maintain the integrity of the blood brain barrier. Brain Res 2009; 1282: 142-55.
[http://dx.doi.org/10.1016/j.brainres.2009.05.047] [PMID: 19477169]
[30]
Caird J, Napoli C, Taggart C, Farrell M, Bouchier-Hayes D. Matrix metalloproteinases 2 and 9 in human atherosclerotic and non-atherosclerotic cerebral aneurysms. Eur J Neurol 2006; 13(10): 1098-105.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01469.x] [PMID: 16987162]
[31]
Wajima D, Hourani S, Dodd W, et al. Interleukin-6 promotes murine estrogen deficiency-associated cerebral aneurysm rupture. Neurosurgery 2020; 86(4): 583-92.
[http://dx.doi.org/10.1093/neuros/nyz220] [PMID: 31264696]
[32]
Aoki T, Fukuda M, Nishimura M, Nozaki K, Narumiya S. Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation. Acta Neuropathol Commun 2014; 2: 34.
[http://dx.doi.org/10.1186/2051-5960-2-34] [PMID: 24685329]
[33]
Jakubowicz D, Barnea M, Wainstein J, Froy O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity 2013; 21(12): 2504-12.
[http://dx.doi.org/10.1002/oby.20460] [PMID: 23512957]
[34]
Duif I, Wegman J, Mars MM, de Graaf C, Smeets PAM, Aarts E. Effects of distraction on taste-related neural processing: A cross-sectional fMRI study. Am J Clin Nutr 2020; 111(5): 950-61.
[http://dx.doi.org/10.1093/ajcn/nqaa032] [PMID: 32173737]
[35]
Gearhardt AN, Yokum S, Harris JL, Epstein LH, Lumeng JC. Neural response to fast food commercials in adolescents predicts intake. Am J Clin Nutr 2020; 111(3): 493-502.
[http://dx.doi.org/10.1093/ajcn/nqz305] [PMID: 31940031]
[36]
Kopp W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes 2019; 12: 2221-36.
[http://dx.doi.org/10.2147/DMSO.S216791] [PMID: 31695465]
[37]
Akki A, Seymour AM. Western diet impairs metabolic remodelling and contractile efficiency in cardiac hypertrophy. Cardiovasc Res 2009; 81(3): 610-7.
[http://dx.doi.org/10.1093/cvr/cvn316] [PMID: 19028723]
[38]
Bae SA, Fang MZ, Rustgi V, Zarbl H, Androulakis IP. At the interface of lifestyle, behavior, and circadian rhythms: Metabolic implications. Front Nutr 2019; 6: 132.
[http://dx.doi.org/10.3389/fnut.2019.00132] [PMID: 31555652]
[39]
Stenvers DJ, Scheer FAJL, Schrauwen P, la Fleur SE, Kalsbeek A. Circadian clocks and insulin resistance. Nat Rev Endocrinol 2019; 15(2): 75-89.
[http://dx.doi.org/10.1038/s41574-018-0122-1] [PMID: 30531917]
[40]
Nováková M, Sládek M, Sumová A. Human chronotype is determined in bodily cells under real-life conditions. Chronobiol Int 2013; 30(4): 607-17.
[http://dx.doi.org/10.3109/07420528.2012.754455] [PMID: 23445508]
[41]
Xiao Q, Garaulet M, Scheer FAJL. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int J Obes 2019; 43(9): 1701-11.
[http://dx.doi.org/10.1038/s41366-018-0284-x] [PMID: 30705391]
[42]
Berry SE, Valdes AM, Drew DA, et al. Human postprandial responses to food and potential for precision nutrition. Nat Med 2020; 26(6): 964-73.
[http://dx.doi.org/10.1038/s41591-020-0934-0] [PMID: 32528151]
[43]
Morris CJ, Purvis TE, Hu K, Scheer FA. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci 2016; 113(10): E1402-11.
[http://dx.doi.org/10.1073/pnas.1516953113] [PMID: 26858430]
[44]
Leibowitz SF. Hypothalamic paraventricular nucleus: Interaction between alpha 2-noradrenergic system and circulating hormones and nutrients in relation to energy balance. Neurosci Biobehav Rev 1988; 12(2): 101-9.
[http://dx.doi.org/10.1016/S0149-7634(88)80002-2] [PMID: 2845312]
[45]
Cahill LE, Chiuve SE, Mekary RA, et al. Prospective study of breakfast eating and incident coronary heart disease in a cohort of male US health professionals. Circulation 2013; 128(4): 337-43.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001474] [PMID: 23877060]
[46]
Santos HO, Genario R, Macedo RCO, Pareek M, Tinsley GM. Association of breakfast skipping with cardiovascular outcomes and cardiometabolic risk factors: An updated review of clinical evidence. Crit Rev Food Sci Nutr 2022; 62(2): 466-74.
[http://dx.doi.org/10.1080/10408398.2020.1819768] [PMID: 32935557]
[47]
Kelly KP, McGuinness OP, Buchowski M, et al. Eating breakfast and avoiding late-evening snacking sustains lipid oxidation. PLoS Biol 2020; 18(2): e3000622.
[http://dx.doi.org/10.1371/journal.pbio.3000622] [PMID: 32108181]
[48]
Neumann BL, Dunn A, Johnson D, Adams JD, Baum JI. Breakfast macronutrient composition influences thermic effect of feeding and fat oxidation in young women who habitually skip breakfast. Nutrients 2016; 8(8): 8.
[http://dx.doi.org/10.3390/nu8080490] [PMID: 27517958]
[49]
Bandín C, Scheer FA, Luque AJ, et al. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: A randomized, crossover trial. Int J Obes 2015; 39(5): 828-33.
[http://dx.doi.org/10.1038/ijo.2014.182] [PMID: 25311083]
[50]
Meng H, Matthan NR, Ausman LM, Lichtenstein AH. Effect of prior meal macronutrient composition on postprandial glycemic responses and glycemic index and glycemic load value determinations. Am J Clin Nutr 2017; 106(5): 1246-56.
[http://dx.doi.org/10.3945/ajcn.117.162727] [PMID: 28903959]
[51]
Henry CJ, Kaur B, Quek RYC. Chrononutrition in the management of diabetes. Nutr Diabetes 2020; 10(1): 6.
[http://dx.doi.org/10.1038/s41387-020-0109-6] [PMID: 32075959]
[52]
Tamura N, Sasai-Sakuma T, Morita Y, Okawa M, Inoue S, Inoue Y. Prevalence and associated factors of circadian rhythm sleep-wake disorders and insomnia among visually impaired Japanese individuals. BMC Public Health 2021; 21(1): 31.
[http://dx.doi.org/10.1186/s12889-020-09993-8] [PMID: 33407286]
[53]
Ji X, Grandner MA, Liu J. The relationship between micronutrient status and sleep patterns: A systematic review. Public Health Nutr 2017; 20(4): 687-701.
[http://dx.doi.org/10.1017/S1368980016002603] [PMID: 27702409]
[54]
Shukla AP, Andono J, Touhamy SH, et al. Carbohydrate-last meal pattern lowers postprandial glucose and insulin excursions in type 2 diabetes. BMJ Open Diabetes Res Care 2017; 5(1): e000440.
[http://dx.doi.org/10.1136/bmjdrc-2017-000440] [PMID: 28989726]
[55]
Gangwisch JE, Hale L, St-Onge MP, et al. High glycemic index and glycemic load diets as risk factors for insomnia: Analyses from the women’s health initiative. Am J Clin Nutr 2020; 111(2): 429-39.
[http://dx.doi.org/10.1093/ajcn/nqz275] [PMID: 31828298]
[56]
Krueger JM, Majde JA. Humoral links between sleep and the immune system: Research issues. Ann N Y Acad Sci 2003; 992: 9-20.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb03133.x] [PMID: 12794042]
[57]
Halson SL. Sleep in elite athletes and nutritional interventions to enhance sleep. Sports Med 2014; 44(Suppl. 1): S13-23.
[http://dx.doi.org/10.1007/s40279-014-0147-0] [PMID: 24791913]
[58]
Crispim CA, Zimberg IZ, dos Reis BG, Diniz RM, Tufik S, de Mello MT. Relationship between food intake and sleep pattern in healthy individuals. J Clin Sleep Med 2011; 7(6): 659-64.
[http://dx.doi.org/10.5664/jcsm.1476] [PMID: 22171206]
[59]
Regmi P, Heilbronn LK. Time-restricted eating: Benefits, mechanisms, and challenges in translation. iScience 2020; 23(6): 101161.
[http://dx.doi.org/10.1016/j.isci.2020.101161] [PMID: 32480126]
[60]
Pellegrini M, Cioffi I, Evangelista A, et al. Effects of time-restricted feeding on body weight and metabolism. A systematic review and meta-analysis. Rev Endocr Metab Disord 2020; 21(1): 17-33.
[http://dx.doi.org/10.1007/s11154-019-09524-w] [PMID: 31808043]
[61]
Cienfuegos S, Gabel K, Kalam F, et al. Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: A randomized controlled trial in adults with obesity. Cell Metab 2020; 32(3): 366-378.e3.
[http://dx.doi.org/10.1016/j.cmet.2020.06.018] [PMID: 32673591]
[62]
Moon S, Kang J, Kim SH, et al. Beneficial effects of time-restricted eating on metabolic diseases: A systemic review and meta-analysis. Nutrients 2020; 12(5): 12.
[http://dx.doi.org/10.3390/nu12051267] [PMID: 32365676]
[63]
Lowe DA, Wu N, Rohdin-Bibby L, et al. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: The treat randomized clinical trial. JAMA Intern Med 2020; 180(11): 1491-9.
[http://dx.doi.org/10.1001/jamainternmed.2020.4153] [PMID: 32986097]
[64]
Bueno NB, de Melo IS, de Oliveira SL, da Rocha Ataide T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: A meta-analysis of randomised controlled trials. Br J Nutr 2013; 110(7): 1178-87.
[http://dx.doi.org/10.1017/S0007114513000548] [PMID: 23651522]
[65]
Nymo S, Coutinho SR, Jørgensen J, et al. Timeline of changes in appetite during weight loss with a ketogenic diet. Int J Obes 2017; 41(8): 1224-31.
[http://dx.doi.org/10.1038/ijo.2017.96] [PMID: 28439092]
[66]
Roberts MN, Wallace MA, Tomilov AA, et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab 2018; 27(5): 1156.
[http://dx.doi.org/10.1016/j.cmet.2018.04.005] [PMID: 29719228]
[67]
Tognini P, Murakami M, Liu Y, et al. Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab 2017; 26(3): 523-538.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.08.015] [PMID: 28877456]
[68]
Tognini P, Thaiss CA, Elinav E, Sassone-Corsi P. Circadian coordination of antimicrobial responses. Cell Host Microbe 2017; 22(2): 185-92.
[http://dx.doi.org/10.1016/j.chom.2017.07.007] [PMID: 28799904]
[69]
Jamshed H, Beyl RA, Della Manna DL, Yang ES, Ravussin E, Peterson CM. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients 2019; 11(6): 11.
[http://dx.doi.org/10.3390/nu11061234] [PMID: 31151228]
[70]
Dedual MA, Wueest S, Borsigova M, Konrad D. Intermittent fasting improves metabolic flexibility in short-term high-fat diet-fed mice. Am J Physiol Endocrinol Metab 2019; 317(5): E773-82.
[http://dx.doi.org/10.1152/ajpendo.00187.2019] [PMID: 31503513]
[71]
Joaquim L, Faria A, Loureiro H, Matafome P. Benefits, mechanisms, and risks of intermittent fasting in metabolic syndrome and type 2 diabetes. J Physiol Biochem 2022; 78: 295-305.
[http://dx.doi.org/10.1007/s13105-021-00839-4] [PMID: 34985730]
[72]
Antoni R, Johnston KL, Collins AL, Robertson MD. Effects of intermittent fasting on glucose and lipid metabolism. Proc Nutr Soc 2017; 76(3): 361-8.
[http://dx.doi.org/10.1017/S0029665116002986] [PMID: 28091348]
[73]
Frazier K, Frith M, Harris D, Leone VA. Mediators of host-microbe circadian rhythms in immunity and metabolism. Biology 2020; 9(12): 9.
[http://dx.doi.org/10.3390/biology9120417] [PMID: 33255707]
[74]
Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15(6): 848-60.
[http://dx.doi.org/10.1016/j.cmet.2012.04.019] [PMID: 22608008]
[75]
Scheiermann C, Gibbs J, Ince L, Loudon A. Clocking in to immunity. Nat Rev Immunol 2018; 18(7): 423-37.
[http://dx.doi.org/10.1038/s41577-018-0008-4] [PMID: 29662121]
[76]
Haspel JA, Anafi R, Brown MK, et al. Perfect timing: Circadian rhythms, sleep, and immunity - an NIH workshop summary. JCI Insight 2020; 5(1): 5.
[http://dx.doi.org/10.1172/jci.insight.131487] [PMID: 31941836]
[77]
Halberg F, Johnson EA, Brown BW, Bittner JJ. Susceptibility rhythm to E. coli endotoxin and bioassay. Proc Soc Exp Biol Med 1960; 103: 142-4.
[http://dx.doi.org/10.3181/00379727-103-25439]
[78]
Keller M, Mazuch J, Abraham U, et al. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci 2009; 106(50): 21407-12.
[http://dx.doi.org/10.1073/pnas.0906361106] [PMID: 19955445]
[79]
Cissé YM, Borniger JC, Lemanski E, Walker WH II, Nelson RJ. Time-restricted feeding alters the innate immune response to bacterial endotoxin. J Immunol 2018; 200(2): 681-7.
[http://dx.doi.org/10.4049/jimmunol.1701136] [PMID: 29203514]
[80]
Zhang Z, Hunter L, Wu G, et al. Genome-wide effect of pulmonary airway epithelial cell-specific Bmal1 deletion. FASEB J 2019; 33(5): 6226-38.
[http://dx.doi.org/10.1096/fj.201801682R] [PMID: 30794439]
[81]
Pearson GL, Savenkova M, Barnwell JJ, Karatsoreos IN. Circadian desynchronization alters metabolic and immune responses following lipopolysaccharide inoculation in male mice. Brain Behav Immun 2020; 88: 220-9.
[http://dx.doi.org/10.1016/j.bbi.2020.05.033] [PMID: 32413558]
[82]
Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 2014; 20(6): 1006-17.
[http://dx.doi.org/10.1016/j.cmet.2014.11.008] [PMID: 25470548]
[83]
Delahaye LB, Bloomer RJ, Butawan MB, et al. Time-restricted feeding of a high-fat diet in male C57BL/6 mice reduces adiposity but does not protect against increased systemic inflammation. Appl Physiol Nutr Metab 2018; 43(10): 1033-42.
[http://dx.doi.org/10.1139/apnm-2017-0706] [PMID: 29717885]
[84]
Gasmi M, Sellami M, Denham J, et al. Time-restricted feeding influences immune responses without compromising muscle performance in older men. Nutrition 2018; 51-52: 29-37.
[http://dx.doi.org/10.1016/j.nut.2017.12.014] [PMID: 29571007]
[85]
Cheng CW, Adams GB, Perin L, et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 2014; 14(6): 810-23.
[http://dx.doi.org/10.1016/j.stem.2014.04.014] [PMID: 24905167]
[86]
Hara R, Wan K, Wakamatsu H, et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 2001; 6(3): 269-78.
[http://dx.doi.org/10.1046/j.1365-2443.2001.00419.x] [PMID: 11260270]
[87]
Zhang J, Zhan Z, Li X, et al. Intermittent fasting protects against Alzheimer’s disease possible through restoring aquaporin-4 polarity. Front Mol Neurosci 2017; 10: 395.
[http://dx.doi.org/10.3389/fnmol.2017.00395] [PMID: 29238290]
[88]
Tarasoff-Conway JM, Carare RO, Osorio RS, et al. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 2015; 11(8): 457-70.
[http://dx.doi.org/10.1038/nrneurol.2015.119] [PMID: 26195256]
[89]
Findlay JA, Hamilton DL, Ashford ML. BACE1 activity impairs neuronal glucose oxidation: Rescue by beta-hydroxybutyrate and lipoic acid. Front Cell Neurosci 2015; 9: 382.
[http://dx.doi.org/10.3389/fncel.2015.00382] [PMID: 26483636]
[90]
Xie G, Tian W, Wei T, Liu F. The neuroprotective effects of β-hydroxybutyrate on Aβ-injected rat hippocampus in vivo and in Aβ-treated PC-12 cells in vitro. Free Radic Res 2015; 49(2): 139-50.
[http://dx.doi.org/10.3109/10715762.2014.987274] [PMID: 25410532]
[91]
Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: A beginner’s guide. Neurochem Res 2015; 40(12): 2583-99.
[http://dx.doi.org/10.1007/s11064-015-1581-6] [PMID: 25947369]
[92]
Madsen PL, Schmidt JF, Wildschiødtz G, et al. Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J Appl Physiol 1991; 70(6): 2597-601.
[http://dx.doi.org/10.1152/jappl.1991.70.6.2597] [PMID: 1885454]
[93]
Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science 2013; 342(6156): 373-7.
[http://dx.doi.org/10.1126/science.1241224] [PMID: 24136970]
[94]
Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 2003; 42(1): 33-84.
[http://dx.doi.org/10.1016/S0165-0173(03)00143-7] [PMID: 12668290]
[95]
O’Donnell J, Zeppenfeld D, McConnell E, Pena S, Nedergaard M. Norepinephrine: A neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res 2012; 37(11): 2496-512.
[http://dx.doi.org/10.1007/s11064-012-0818-x] [PMID: 22717696]
[96]
Lütjohann D, Breuer O, Ahlborg G, et al. Cholesterol homeostasis in human brain: Evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci 1996; 93(18): 9799-804.
[http://dx.doi.org/10.1073/pnas.93.18.9799] [PMID: 8790411]
[97]
Björkhem I, Lütjohann D, Diczfalusy U, Ståhle L, Ahlborg G, Wahren J. Cholesterol homeostasis in human brain: Turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 1998; 39(8): 1594-600.
[http://dx.doi.org/10.1016/S0022-2275(20)32188-X] [PMID: 9717719]
[98]
Fagan AM, Holtzman DM, Munson G, et al. Unique lipoproteins secreted by primary astrocytes from wild type, apoE (-/-), and human apoE transgenic mice. J Biol Chem 1999; 274(42): 30001-7.
[http://dx.doi.org/10.1074/jbc.274.42.30001] [PMID: 10514484]
[99]
Rangroo Thrane V, Thrane AS, Plog BA, et al. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep 2013; 3: 2582.
[http://dx.doi.org/10.1038/srep02582] [PMID: 24002448]