Aquasomes: Advanced Vesicular-based Nanocarrier Systems

Page: [2404 - 2414] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Aquasomes are novel trilayered non-lipoidal vesicular nanocarriers that demonstrate structural similarity to ceramic nanoparticles with theranostic activity for diseases like ovarian cancer and antigen delivery.

Objective: The objective of the present article is to highlight the multifaceted potential of aquasomes over other nanocarriers for the treatment of various treatments like hemophilia A, cancer, and hepatitis.

Methods: Aquasomes enter the target cell by modifying the surface chemistry, extending drug release. The solid core of aquasomes provides structural stability whereas their oligomeric coatings protect drugs from dehydration. This vesicular delivery system was successfully utilized for the delivery of acid-labile enzymes, antigens, vaccines, etc. The aquasomes nanocarrier exhibits a larger surface area, volume, and mass ratio that allows the drug to penetrate inside the cells and a prolonged drug release profile. Moreover, aquasomes consist of a high mechanical strength, reduced or no biodegradability during storage, and a good body response that facilitates deeper penetration into capillaries which makes them more special and interesting.

Results: Aquasomes are a potential alternative over other nanocarriers for insulin, antigen, and oxygen delivery.

Conclusion: In the near future, aquasomes-based nano-drug delivery systems can be a fascinating field for research in nanotechnology.

Keywords: Aquasomes, biodegradation, drug delivery, lipid vesicles, nanocarriers, vesicular carriers.

[1]
Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm J 2011; 19(3): 129-41.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[2]
Jain S, Jain V, Mahajan SC. Lipid based vesicular drug delivery systems. Adv Pharm J 2014. 2014.
[http://dx.doi.org/10.1155/2014/574673]
[3]
Shefrin S, Sreelaxmi CS, Vishnu V, Sreeja CN. Enzymosomes: A rising effectual tool for targeted drug delivery system. Int J Appl Pharm 2017; 9(6): 1-9.
[http://dx.doi.org/10.22159/ijap.2017v9i6.22556]
[4]
Mbah CC, Attama AA. Vesicular carriers as innovative nanodrug delivery formulations. Org Mater Smart Nanocarriers Drug Deliv 2018; pp. 519-59.
[http://dx.doi.org/10.1016/B978-0-12-813663-8.00012-9]
[5]
Mbah CC, Builders PF, Agubata CO, Attama AA. Development of ethosomal vesicular carrier for topical application of griseofulvin: Effect of ethanol concentration. J Pharm Investig 2019; 49(1): 27-36.
[http://dx.doi.org/10.1007/s40005-017-0367-z]
[6]
More SB, Nandgude TD, Poddar SS. Vesicles as a tool for enhanced topical drug delivery. Asian J Pharm 2016; 10(3): S196-208.
[7]
Ojha A, Sharma Y. Different approaches for delivering the drug through vesicular carriers. Int J Res Develop Pharm Life Sci 2018; 7(4): 3071-82.
[http://dx.doi.org/10.21276/IJRDPL.2278-0238.2018.7(4).3071-3082]
[8]
Gulati M, Singh SK, Kaur P, Yadav AK, Pondman KM, Kishore U. Aquasomes: The journey so far and the road ahead. In: NanoNPP. USA: Mc Graw Hill 2014; pp. 105-11.
[9]
Patel S, Aundhia C, Seth A, Shah N, Pandya K, Patel D. Aquasomes: A novel approach in drug carrier system 2016.
[10]
Parashar A. Literature review on aquasomes A drug carrier system. Indian J Med Res Pharm Sci 2017; 4(11): 27-30.
[11]
Banerjee S, Sen KK. Aquasomes: A novel nanoparticulate drug carrier. J Drug Deliv Sci Technol 2018; 43: 446-52.
[http://dx.doi.org/10.1016/j.jddst.2017.11.011]
[12]
Patil AC, Shewale SS, Rayate YT, Nitalikar MM, Mohite SK. Review on Aquasome novel drug delivery system. Res J Top Cosmet Sci 2018; 9(1): 19-24.
[http://dx.doi.org/10.5958/2321-5844.2018.00005.5]
[13]
Wani SU, Yerawar AN. Aquasomes: A novel nanocarrier for drug delivery. ChemInform 2011; 42-6.
[http://dx.doi.org/10.1002/chin.201146279]
[14]
Tariq M, Chaudhary SS, Imtiyaz S. Introduction to kushta: A herbo-mineral Unani formulation. J Pharm Sci Innov 2013; 2: 14-7.
[15]
Parmar KK, Galib BJ, Patgiri BJ. Pharmaceutical standardization of Jala Shukti Bhasma and Mukta Shukti Bhasma. Ayu 2012; 33(1): 136-42.
[http://dx.doi.org/10.4103/0974-8520.100331] [PMID: 23049199]
[16]
Adhikari R. Ayurvedic Bhasmas: Overview on nanomaterialistic aspects, applications, and perspectives. Adv Exp Med Biol 2014; 807: 23-32.
[http://dx.doi.org/10.1007/978-81-322-1777-0_3] [PMID: 24619616]
[17]
Dorozhkin SV. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci 2009; 44(9): 2343-87.
[http://dx.doi.org/10.1007/s10853-008-3124-x]
[18]
Mohaptra S, Jha CB. Physicochemical characterization of Ayurvedic bhasma (Swarna makshika bhasma): An approach to standardization. Int J Ayurveda Res 2010; 1(2): 82-6.
[http://dx.doi.org/10.4103/0974-7788.64409] [PMID: 20814520]
[19]
Rojas-Oviedo I, Salazar-López RA, Reyes-Gasga J, Quirino-Barreda CT. Elaboration and structural analysis of aquasomes loaded with indomethacin. Eur J Pharm Sci 2007; 32(3): 223-30.
[http://dx.doi.org/10.1016/j.ejps.2007.07.008] [PMID: 17905573]
[20]
Rawat M, Singh D, Saraf S, Saraf S. Development and in vitro evaluation of alginate gel-encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme. Drug Dev Ind Pharm 2008; 34(2): 181-8.
[http://dx.doi.org/10.1080/03639040701539479] [PMID: 18302037]
[21]
Pascaud P, Gras P, Coppel Y, Rey C, Sarda S. Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites. Langmuir 2013; 29(7): 2224-32.
[http://dx.doi.org/10.1021/la3046548] [PMID: 23317459]
[22]
Russo L, Landi E, Tampieri A, et al. Sugar-decorated hydroxyapatite: An inorganic material bioactivated with carbohydrates. Carbohydr Res 2011; 346(12): 1564-8.
[http://dx.doi.org/10.1016/j.carres.2011.04.044] [PMID: 21600566]
[23]
Vengala P, Aslam S, Subrahmanyam CV. Development and in vitro evaluation of ceramic nanoparticles of piroxicam. Lat Am J Pharm 2013; 32(8): 1124-30.
[24]
Chaudhary JS. Aquasomes; A new approach for delivering therapeutics: An overview. Asian J Pharm 2018; 12(02): S419.
[25]
Nanjwade BK, Hiremath GM, Manvi FV, Srichana T. Formulation and evaluation of etoposide loaded aquasomes. J Nanopharm Drug Deliv 2013; 1(1): 92-101.
[http://dx.doi.org/10.1166/jnd.2013.1016]
[26]
Tiwari T, Khan S, Rao N, Josh A, Dubey BK. Preparation and characterization of aquasome based formulation of dianthrol for the treatment of psoriasis. World J Pharm Pharm Sci 2012; 1(1): 250-72.
[27]
Pondman KM, Sobik M, Nayak A, et al. Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages. Nanomedicine 2014; 10(6): 1287-99.
[http://dx.doi.org/10.1016/j.nano.2014.02.010] [PMID: 24607938]
[28]
Vyas SP, Subhedar R, Jain S. Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. J Pharm Pharmacol 2006; 58(3): 321-6.
[http://dx.doi.org/10.1211/jpp.58.3.0005] [PMID: 16536898]
[29]
Chaudhari MJ, Pandya DP, Thakkar PP, Soni AM, Modi DA. Aquasomes: A novel drug delivery system. 2013; 44(38)
[30]
Kumar V, Damini V, Eswar K, Reddy KR, Sucharitha P. Somes: A review on composition, formulation methods and evaluations of different types of “somes” drug delivery system. Int J Appl Pharm 2020.
[http://dx.doi.org/10.22159/ijap.2020v12i6.38996]
[31]
Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release 2011; 155(3): 344-57.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.004] [PMID: 21723891]
[32]
Narang N. Aquasomes: Self-assembled systems for the delivery of bioactive molecules. Asian J Pharm 2014; 6(2): 95.
[33]
Patil S, Pancholi SS, Agrawal S, Agrawal GP. Surface-modified mesoporous ceramics as delivery vehicle for haemoglobin. Drug Deliv 2004; 11(3): 193-9.
[http://dx.doi.org/10.1080/10717540490433976] [PMID: 15204638]
[34]
Goyal AK, Khatri K, Mishra N, et al. Aquasomes-a nanoparticulate approach for the delivery of antigen. Drug Dev Ind Pharm 2008; 34(12): 1297-305.
[http://dx.doi.org/10.1080/03639040802071661] [PMID: 18850363]
[35]
Kommineni S, Ahmad S, Vengala P, Subramanyam CV. Sugar coated ceramic nanocarriers for the oral delivery of hydrophobic drugs: Formulation, optimization and evaluation. Drug Dev Ind Pharm 2012; 38(5): 577-86.
[http://dx.doi.org/10.3109/03639045.2011.617884] [PMID: 21961937]
[36]
Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm 2000; 26(4): 459-63.
[http://dx.doi.org/10.1081/DDC-100101255] [PMID: 10769790]
[37]
Khopade AJ, Khopade S, Jain NK. Development of hemoglobin aquasomes from spherical hydroxyapatite cores precipitated in the presence of half-generation poly(amidoamine) dendrimer. Int J Pharm 2002; 241(1): 145-54.
[http://dx.doi.org/10.1016/S0378-5173(02)00235-1] [PMID: 12086730]
[38]
Vengala P, Dintakurthi S, Subrahmanyam CV. Lactose coated ceramic nanoparticles for oral drug delivery. J Pharm Res 2013; 7(6): 540-5.
[http://dx.doi.org/10.1016/j.jopr.2013.06.015]
[39]
Gulati M, Singh SK, Kishore U, Sachdeva RK, Umashankar MS. Potential applications of aquasomes for therapeutic delivery of proteins and peptides. Nanostructured Drug Deliv 2013; pp. 439-53.
[40]
Kamboj S, Saini V, Maggon N, Bala S, Jhawat VC. Novel vesicular drug carriers for bioavailability enhancement. Int J Pharm Sci Rev Res 2013; 22: 92-7.
[41]
Kaur K, Kush P, Pandey RS, Madan J, Jain UK, Katare OP. Stealth lipid coated aquasomes bearing recombinant human interferon-α-2b offered prolonged release and enhanced cytotoxicity in ovarian cancer cells. Biomed Pharmacother 2015; 69: 267-76.
[http://dx.doi.org/10.1016/j.biopha.2014.12.007] [PMID: 25661369]
[42]
Amoabediny G, Haghiralsadat F, Naderinezhad S, et al. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int J Polymeric Mater Polymeric Biomater 2018; 67(6): 383-400.
[http://dx.doi.org/10.1080/00914037.2017.1332623]
[43]
Kilian D, Shahzad Y, Fox L, Gerber M, Du Plessis J. Vesicular carriers for skin drug delivery: The Pheroid™ technology. Curr Pharm Des 2015; 21(20): 2758-70.
[http://dx.doi.org/10.2174/1381612821666150428125812] [PMID: 25925120]
[44]
Zishan M, Kushwaha P, Singh K, Amir M, Ansari VA, Sirbaiya AK. An overview of: Vesicular drug delivery system. World J Pharm Pharm Sci 2017; 6: 546-60.
[http://dx.doi.org/10.20959/wjpps20175-9192]
[45]
Ahmad J, Singhal M, Amin S, et al. Bile salt stabilized vesicles (bilosomes): A novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr Pharm Des 2017; 23(11): 1575-88.
[http://dx.doi.org/10.2174/1381612823666170124111142] [PMID: 28120725]
[46]
Möschwitzer J, Müller RH. Drug nanocrystals—the universal formulation approach for poorly soluble drugs. In: Nanoparticulate Drug Delivery Systems. CRC Press: Florida 2007; pp. 71-88.
[47]
Morishita M, Park K, Eds. Biodrug delivery systems: Fundamentals, applications and clinical development. CRC Press: Florida 2016.
[48]
Kumar R, Seth N. Emulsomes: An emerging vesicular drug delivery system. J Drug Deliv Ther 2013; 3(6): 133-42.
[http://dx.doi.org/10.22270/jddt.v3i6.665]
[49]
Sutariya V, Patel P. Aquasomes: A novel carrier for drug delivery. Int J Pharm Sci Res 2012; 3(3): 688.
[50]
Gupta S, Kumar P. Drug delivery using nanocarriers: Indian perspective. Proc Natl Acad Sci, India, Sect B Biol Sci 2012; 82(1): 167-206.
[http://dx.doi.org/10.1007/s40011-012-0080-7]
[51]
Abdulbaqi IM, Darwis Y, Khan NA, Assi RA, Khan AA. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomedicine 2016; 11: 2279-304.
[http://dx.doi.org/10.2147/IJN.S105016] [PMID: 27307730]
[52]
Fathima KM, Nitheesh A, Paul A, Nair SC. Sphingosome vescicular system. Int J Pharm Sci Rev Res 2016; 41(1): 208-13.
[53]
Rajan R, Jose S, Mukund VP, Vasudevan DT. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J Adv Pharm Technol Res 2011; 2(3): 138-43.
[http://dx.doi.org/10.4103/2231-4040.85524] [PMID: 22171309]
[54]
Chilkawar R, Nanjwade B, Nwaji M, Idris S, Mohamied A. Bilosomes based drug delivery system. J Chem Appl 2015; 2: 1-5.
[55]
Nkanga CI, Bapolisi AM, Okafor NI, Krause RW. General perception of liposomes: Formation, manufacturing and applications. Liposomes-Advances and Perspectives 2019.
[56]
Rai S, Pandey V, Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Rev Exp 2017; 8(1): 1325708.
[http://dx.doi.org/10.1080/20022727.2017.1325708] [PMID: 30410704]
[57]
Jain SS, Jagtap PS, Dand NM, Jadhav KR, Kadam VJ. Aquasomes: A novel drug carrier. J Appl Pharm Sci 2012; 2(01): 184-92.
[58]
Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 381-91.
[http://dx.doi.org/10.3109/21691401.2014.953633] [PMID: 25222036]
[59]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[60]
Goyal AK, Rawat A, Mahor S, Gupta PN, Khatri K, Vyas SP. Nanodecoy system: A novel approach to design Hepatitis B vaccine for immunopotentiation. Int J Pharm 2006; 309(1-2): 227-33.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.037] [PMID: 16406404]
[61]
Mishra D, Dubey V, Asthana A, Saraf DK, Jain NK. Elastic liposomes mediated transcutaneous immunization against Hepatitis B. Vaccine 2006; 24(22): 4847-55.
[http://dx.doi.org/10.1016/j.vaccine.2006.03.011] [PMID: 16600441]
[62]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017; 9(2): 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[63]
Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. Appl Nanotechnol Drug Deliv 2014; 1: 1-50.
[64]
Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev 2015; 115(19): 10938-66.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[65]
Ucisik MH, Sleytr UB, Schuster B. Emulsomes meet S-layer proteins: An emerging targeted drug delivery system. Curr Pharm Biotechnol 2015; 16(4): 392-405.
[http://dx.doi.org/10.2174/138920101604150218112656] [PMID: 25697368]
[66]
Kretschmar M, Amselem S, Zawoznik E, et al. Efficient treatment of murine systemic infection with Candida albicans using amphotericin B incorporated in nanosize range particles (emulsomes). Mycoses 2001; 44(7-8): 281-6.
[http://dx.doi.org/10.1111/j.1439-0507.2001.00654.x] [PMID: 11714063]
[67]
Raza K, Katare OP, Setia A, Bhatia A, Singh B. Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. J Microencapsul 2013; 30(3): 225-36.
[http://dx.doi.org/10.3109/02652048.2012.717115] [PMID: 23088318]
[68]
Paliwal R, Paliwal SR, Mishra N, Mehta A, Vyas SP. Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate. Int J Pharm 2009; 380(1-2): 181-8.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.026] [PMID: 19576973]
[69]
Ucisik MH, Küpcü S, Schuster B, Sleytr UB. Characterization of CurcuEmulsomes: Nanoformulation for enhanced solubility and delivery of curcumin. J Nanobiotechnology 2013; 11(1): 37.
[http://dx.doi.org/10.1186/1477-3155-11-37] [PMID: 24314310]
[70]
Wu HY, Maron R, Tukpah AM, Weiner HL. Mucosal anti-CD3 monoclonal antibody attenuates collagen-induced arthritis that is associated with induction of LAP+ regulatory T cells and is enhanced by administration of an emulsome-based Th2-skewing adjuvant. J Immunol 2010; 185(6): 3401-7.
[http://dx.doi.org/10.4049/jimmunol.1000836] [PMID: 20720210]
[71]
Rode A. Nanocarriers: A novel approach for enhanced drug delivery through skin. Asian J Pharm 2018; 12(01): S13-20.
[72]
Rewar S, Mirdha D, Rewar P. A vital role of pharmacosome’s on controlled and novel drug delivery. Asian J Res Biol Pharm Sci 2014; 2(4): 163-70.
[73]
Kumar D, Vats N, Saroha K, Rana AC. Phytosomes as emerging nanotechnology for herbal drug delivery. Sustain Agric Res 2020; 43: 217-37.
[74]
Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019; 11(2): 55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[75]
Pardakhty A, Shakibaie M, Daneshvar H, Khamesipour A, Mohammadi-Khorsand T, Forootanfar H. Preparation and evaluation of niosomes containing autoclaved Leishmania major: A preliminary study. J Microencapsul 2012; 29(3): 219-24.
[http://dx.doi.org/10.3109/02652048.2011.642016] [PMID: 22150018]
[76]
Sharma PH, Powar PV, Sharma SS. Pharmacosomes: A novel drug delivery system. Pharma Innov 2014; 3(10, Part B): 94.
[77]
Kumar A, Kumar B, Singh SK, Kaur B, Singh S. A review on phytosomes: Novel approach for herbal phytochemicals. Asian J Pharm Clin Res 2017; 10(10): 41-7.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i10.20424]
[78]
Dhir S, Khar RK, Chakraborthy GS, Saurabh M. Phytosomes: A brief overview. J Pharm Res 2016; 15(2): 56-62.
[79]
Niloufar M, Eftekhari RB, Sohi AN, Ali Z, Abedin DF. Application of nano-based systems for drug delivery and targeting: A review. J Nanopart Res 2020; 22: 245.
[80]
Pandey S, Badola A, Bhatt GK, Kothiyal P. An overview on aquasomes. Int J Pharm Chem Scie 2013; 2(3): 1282-7.