Narrative on Hydrogen Therapy and its Clinical Applications: Safety and Efficacy

Page: [2519 - 2537] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Molecular hydrogen proved itself as a novel therapeutic candidate and has been thriving from the beginning with its potential clinical significance, higher affinity, and cellular integrity and permeability. Hydrogen Therapy (HT) has gained scientists' attention with the proven clinical ability to attenuate chronic inflammation, diminish oxidative stress, restrict apoptosis, minimize cellular injury, and refine tissue functioning. Therapeutic Implementation of H2 for disease prevention and treatment is a newly emerging field with limited knowledge available on formulations, tissue-specific effects, efficacy, and safety. This article will discuss HT's therapeutic potential for its efficacy and safety in cardiovascular, respiratory, hematological, metabolic, infectious, and neurodegenerative disorders. In addition to this, the molecular mechanisms and nanotechnological implications of hydrogen therapy will be discussed in detail. Finally, the article will provide insight into advancements and automation, future perspectives, and recommendations. There is a need to study and conduct higher-scale trials targeting personalized treatments under molecular and genetic vitals.

Keywords: Hydrogen therapy, molecular hydrogen, the efficacy of hydrogen therapy, hydrogen therapy, hydrogen therapy in disease, reducing agent.

[1]
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007; 13(6): 688-94.
[http://dx.doi.org/10.1038/nm1577] [PMID: 17486089]
[2]
Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: A possible treatment for cancer. Science 1975; 190(4210): 152-4.
[http://dx.doi.org/10.1126/science.1166304] [PMID: 1166304]
[3]
Gharib B, Hanna S, Abdallahi OMS, Lepidi H, Gardette B, De Reggi M. Anti-inflammatory properties of molecular hydrogen: Investigation on parasite-induced liver inflammation. C R Acad Sci III 2001; 324(8): 719-24.
[http://dx.doi.org/10.1016/S0764-4469(01)01350-6] [PMID: 11510417]
[4]
Finkel T, Holbrook N. Oxidative stress and aging: Catalase is a longevity determinant enzyme. Nature 2000; 408: 239.
[http://dx.doi.org/10.1038/35041687] [PMID: 11089981]
[5]
Zamperlini G, Silva M, Vilegas W. Identification of polycyclic aromatic hydrocarbons in sugar cane soot by gas chromatography-mass spectrometry. Chromatographia 1997; 46(11-12): 655-63.
[http://dx.doi.org/10.1007/BF02490527]
[6]
Vaziri ND, Rodríguez-Iturbe B. Mechanisms of disease: Oxidative stress and inflammation in the pathogenesis of hypertension. Nat Clin Pract Nephrol 2006; 2(10): 582-93.
[http://dx.doi.org/10.1038/ncpneph0283] [PMID: 17003837]
[7]
Bagul PK, Banerjee SK. Insulin resistance, oxidative stress and cardiovascular complications: Role of sirtuins. Curr Pharm Des 2013; 19(32): 5663-77.
[http://dx.doi.org/10.2174/13816128113199990372] [PMID: 23448490]
[8]
El Assar M, Angulo J, Rodríguez-Mañas L. Oxidative stress and vascular inflammation in aging. Free Radic Biol Med 2013; 65: 380-401.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.003] [PMID: 23851032]
[9]
Kim Y-W, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood 2014; 123(5): 625-31.
[http://dx.doi.org/10.1182/blood-2013-09-512749] [PMID: 24300855]
[10]
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med 2010; 49(11): 1603-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[11]
Cameron E, Pauling L, Leibovitz B. Ascorbic acid and cancer: A review. Cancer Res 1979; 39(3): 663-81.
[PMID: 371790]
[12]
Cole AR, Raza A, Ahmed H, et al. Safety of inhaled hydrogen gas in healthy mice. Med Gas Res 2019; 9(3): 133-8.
[http://dx.doi.org/10.4103/2045-9912.266988] [PMID: 31552876]
[13]
Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study. J Clin Biochem Nutr 2010; 46(2): 140-9.
[http://dx.doi.org/10.3164/jcbn.09-100] [PMID: 20216947]
[14]
Kucharska-Pietura K, Mortimer A. Can antipsychotics improve social cognition in patients with schizophrenia? CNS Drugs 2013; 27(5): 335-43.
[http://dx.doi.org/10.1007/s40263-013-0047-0] [PMID: 23533009]
[15]
Muramatsu Y, Ito M, Oshima T, Kojima S, Ohno K. Hydrogen-rich water ameliorates bronchopulmonary dysplasia (BPD) in newborn rats. Pediatr Pulmonol 2016; 51(9): 928-35.
[http://dx.doi.org/10.1002/ppul.23386] [PMID: 26845501]
[16]
Qi L-S, Yao L, Liu W, et al. Sirtuin type 1 mediates the retinal protective effect of hydrogen-rich saline against light-induced damage in rats. Invest Ophthalmol Vis Sci 2015; 56(13): 8268-79.
[http://dx.doi.org/10.1167/iovs.15-17034] [PMID: 26720481]
[17]
Okamoto A, Kohama K, Aoyama-Ishikawa M, et al. Intraperitoneally administered, hydrogen-rich physiologic solution protects against postoperative ileus and is associated with reduced nitric oxide production. Surgery 2016; 160(3): 623-31.
[http://dx.doi.org/10.1016/j.surg.2016.05.026] [PMID: 27425040]
[18]
Wang C, Li J, Liu Q, et al. Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-κB activation in a rat model of amyloid-beta-induced Alzheimer’s disease. Neurosci Lett 2011; 491(2): 127-32.
[http://dx.doi.org/10.1016/j.neulet.2011.01.022] [PMID: 21238541]
[19]
Xiao M, Zhu T, Wang T, Wen FQ. Hydrogen-rich saline reduces airway remodeling via inactivation of NF-κB in a murine model of asthma. Eur Rev Med Pharmacol Sci 2013; 17(8): 1033-43.
[PMID: 23661516]
[20]
Liu Q, Shen WF, Sun HY, et al. Hydrogen-rich saline protects against liver injury in rats with obstructive jaundice. Liver Int 2010; 30(7): 958-68.
[http://dx.doi.org/10.1111/j.1478-3231.2010.02254.x] [PMID: 20492513]
[21]
Liu G-D, Zhang H, Wang L, Han Q, Zhou S-F, Liu P. Molecular hydrogen regulates the expression of miR-9, miR-21 and miR-199 in LPS-activated retinal microglia cells. Int J Ophthalmol 2013; 6(3): 280-5.
[PMID: 23826519]
[22]
Chen Y, Jiang J, Miao H, Chen X, Sun X, Li Y. Hydrogen-rich saline attenuates vascular smooth muscle cell proliferation and neointimal hyperplasia by inhibiting reactive oxygen species production and inactivating the Ras-ERK1/2-MEK1/2 and Akt pathways. Int J Mol Med 2013; 31(3): 597-606.
[http://dx.doi.org/10.3892/ijmm.2013.1256] [PMID: 23340693]
[23]
Itoh T, Fujita Y, Ito M, et al. Molecular hydrogen suppresses Fcepsilon RI-mediated signal transduction and prevents degranulation of mast cells. Biochem Biophys Res Commun 2009; 389(4): 651-6.
[http://dx.doi.org/10.1016/j.bbrc.2009.09.047] [PMID: 19766097]
[24]
Xin H-G, Zhang BB, Wu ZQ, et al. Consumption of hydrogen-rich water alleviates renal injury in spontaneous hypertensive rats. Mol Cell Biochem 2014; 392(1-2): 117-24.
[http://dx.doi.org/10.1007/s11010-014-2024-4] [PMID: 24652103]
[25]
Nakai Y, Sato B, Ushiama S, Okada S, Abe K, Arai S. Hepatic oxidoreduction-related genes are upregulated by administration of hydrogen-saturated drinking water. Biosci Biotechnol Biochem 2011; 75(4): 774-6.
[http://dx.doi.org/10.1271/bbb.100819] [PMID: 21512236]
[26]
Gu H, Yang M, Zhao X, Zhao B, Sun X, Gao X. Pretreatment with hydrogen-rich saline reduces the damage caused by glycerol-induced rhabdomyolysis and acute kidney injury in rats. J Surg Res 2014; 188(1): 243-9.
[http://dx.doi.org/10.1016/j.jss.2013.12.007] [PMID: 24495844]
[27]
Lee P-C, Yang YY, Huang CS, et al. Concomitant inhibition of oxidative stress and angiogenesis by chronic hydrogen-rich saline and N-acetylcysteine treatments improves systemic, splanchnic and hepatic hemodynamics of cirrhotic rats. Hepatol Res 2015; 45(5): 578-88.
[http://dx.doi.org/10.1111/hepr.12379] [PMID: 24961937]
[28]
Yu J, Zhang W, Zhang R, Ruan X, Ren P, Lu B. Lactulose accelerates liver regeneration in rats by inducing hydrogen. J Surg Res 2015; 195(1): 128-35.
[http://dx.doi.org/10.1016/j.jss.2015.01.034] [PMID: 25700936]
[29]
Zhang G, Gao S, Li X, et al. Pharmacological postconditioning with lactic acid and hydrogen rich saline alleviates myocardial reperfusion injury in rats. Sci Rep 2015; 5(1): 9858.
[http://dx.doi.org/10.1038/srep09858] [PMID: 25928542]
[30]
Tao B, Liu L, Wang N, Wang W, Jiang J, Zhang J. Effects of hydrogen-rich saline on aquaporin 1, 5 in septic rat lungs. J Surg Res 2016; 202(2): 291-8.
[http://dx.doi.org/10.1016/j.jss.2016.01.009] [PMID: 27229103]
[31]
Steinhubl SR. Why have antioxidants failed in clinical trials? Am J Cardiol 2008; 101(10A)(Suppl.): 14D-9D.
[http://dx.doi.org/10.1016/j.amjcard.2008.02.003] [PMID: 18474268]
[32]
Li S. Hydrogen gas in cancer treatment. Front Oncol 2019; 9(696)
[http://dx.doi.org/10.3389/fonc.2019.00696]
[33]
Kumari S, Badana AK. G MM, G S, Malla R. Reactive oxygen species: A key constituent in cancer survival. Biomark Insights 2018; 13: 1177271918755391.
[http://dx.doi.org/10.1177/1177271918755391] [PMID: 29449774]
[34]
Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016; 2016: 3164734.
[http://dx.doi.org/10.1155/2016/3164734] [PMID: 26881021]
[35]
Cui Q, Wang JQ, Assaraf YG, et al. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41: 1-25.
[http://dx.doi.org/10.1016/j.drup.2018.11.001] [PMID: 30471641]
[36]
Dong A, Yu Y, Wang Y, et al. Protective effects of hydrogen gas against sepsis-induced acute lung injury via regulation of mitochondrial function and dynamics. Int Immunopharmacol 2018; 65: 366-72.
[http://dx.doi.org/10.1016/j.intimp.2018.10.012] [PMID: 30380511]
[37]
Pfeffer CM, Singh ATK. Apoptosis: A target for anticancer therapy. Int J Mol Sci 2018; 19(2): 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[38]
Qiao L, Wong BCY. Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat 2009; 12(3): 55-64.
[http://dx.doi.org/10.1016/j.drup.2009.02.002] [PMID: 19278896]
[39]
Kumar S. Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more? Nat Rev Cancer 2009; 9(12): 897-903.
[http://dx.doi.org/10.1038/nrc2745] [PMID: 19890334]
[40]
Bottazzi B, Riboli E, Mantovani A. Aging, inflammation and cancer. Semin Immunol 2018; 40: 74-82.
[http://dx.doi.org/10.1016/j.smim.2018.10.011] [PMID: 30409538]
[41]
Liu KYP, Lu XJD, Zhu YS, Le N, Kim H, Poh CF. Plasma-derived inflammatory proteins predict oral squamous cell carcinoma. Front Oncol 2018; 8(585)
[http://dx.doi.org/10.3389/fonc.2018.00585]
[42]
Zhang N, Deng C, Zhang X, Zhang J, Bai C. Inhalation of hydrogen gas attenuates airway inflammation and oxidative stress in allergic asthmatic mice. Asthma Res Pract 2018; 4(1): 3.
[http://dx.doi.org/10.1186/s40733-018-0040-y] [PMID: 29568538]
[43]
Kawai D, Takaki A, Nakatsuka A, et al. Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology 2012; 56(3): 912-21.
[http://dx.doi.org/10.1002/hep.25782] [PMID: 22505328]
[44]
Matei N, Camara R, Zhang JH. Emerging mechanisms and novel applications of hydrogen gas therapy. Med Gas Res 2018; 8(3): 98-102.
[http://dx.doi.org/10.4103/2045-9912.239959] [PMID: 30319764]
[45]
Yang F, Yue R, Luo X, Liu R, Huang X. Hydrogen: A potential new adjuvant therapy for COVID-19 patients. Front Pharmacol 2020; 111420.
[http://dx.doi.org/10.3389/fphar.2020.543718]
[46]
Kellum JA. Disorders of acid-base balance. Crit Care Med 2007; 35(11): 2630-6.
[http://dx.doi.org/10.1097/01.CCM.0000286399.21008.64] [PMID: 17893626]
[47]
Ostojic SM. Serum alkalinization and hydrogen-rich water in healthy men. Mayo Clin Proc 2012; 87(5): 501-2.
[http://dx.doi.org/10.1016/j.mayocp.2012.02.008] [PMID: 22560529]
[48]
Ostojic SM, Stojanovic MD. Hydrogen-rich water affected blood alkalinity in physically active men. Res Sports Med 2014; 22(1): 49-60.
[http://dx.doi.org/10.1080/15438627.2013.852092] [PMID: 24392771]
[49]
Zhang J-Y, Liu C, Zhou L, et al. A review of hydrogen as a new medical therapy. Hepatogastroenterology 2012; 59(116): 1026-32.
[http://dx.doi.org/10.5754/hge11883] [PMID: 22328284]
[50]
Ning K, Liu W-W, Huang J-L, Lu H-T, Sun X-J. Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Med Gas Res 2019; 8(4): 154-9.
[PMID: 30713668]
[51]
Zhao M, Liu MD, Pu YY, et al. Hydrogen-rich water improves neurological functional recovery in experimental autoimmune encephalomyelitis mice. J Neuroimmunol 2016; 294: 6-13.
[http://dx.doi.org/10.1016/j.jneuroim.2016.03.006] [PMID: 27138092]
[52]
Andreadis AA, Hazen SL, Comhair SAA, Erzurum SC. Oxidative and nitrosative events in asthma. Free Radic Biol Med 2003; 35(3): 213-25.
[http://dx.doi.org/10.1016/S0891-5849(03)00278-8] [PMID: 12885584]
[53]
Li H, Chen O, Ye Z, et al. Inhalation of high concentrations of hydrogen ameliorates liver ischemia/reperfusion injury through A2A receptor mediated PI3K-Akt pathway. Biochem Pharmacol 2017; 130: 83-92.
[http://dx.doi.org/10.1016/j.bcp.2017.02.003] [PMID: 28188779]
[54]
Li S, Fujino M, Ichimaru N, et al. Molecular hydrogen protects against ischemia-reperfusion injury in a mouse fatty liver model via regulating HO-1 and Sirt1 expression. Sci Rep 2018; 8(1): 14019.
[http://dx.doi.org/10.1038/s41598-018-32411-4] [PMID: 30232347]
[55]
Shi J, Duncan B, Kuang X. Hydrogen treatment: A novel option in liver diseases. Clin Med (Lond) 2021; 21(2): e223-7.
[http://dx.doi.org/10.7861/clinmed.2020-0370] [PMID: 33762390]
[56]
Ono H, Nishijima Y, Adachi N, et al. Hydrogen(H2) treatment for acute erythymatous skin diseases. A report of 4 patients with safety data and a non-controlled feasibility study with H2 concentration measurement on two volunteers. Med Gas Res 2012; 2(1): 14.
[http://dx.doi.org/10.1186/2045-9912-2-14] [PMID: 22607973]
[57]
Sester U, Presser D, Dirks J, Gärtner BC, Köhler H, Sester M. PD-1 expression and IL-2 loss of cytomegalovirus- specific T cells correlates with viremia and reversible functional anergy. Am J Transplant 2008; 8(7): 1486-97.
[http://dx.doi.org/10.1111/j.1600-6143.2008.02279.x] [PMID: 18510628]
[58]
Hayashida K, Sano M, Ohsawa I, et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 2008; 373(1): 30-5.
[http://dx.doi.org/10.1016/j.bbrc.2008.05.165] [PMID: 18541148]
[59]
Zheng X, Mao Y, Cai J, et al. Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats. Free Radic Res 2009; 43(5): 478-84.
[http://dx.doi.org/10.1080/10715760902870603] [PMID: 19353364]
[60]
Mao Y-F, Zheng XF, Cai JM, et al. Hydrogen-rich saline reduces lung injury induced by intestinal ischemia/reperfusion in rats. Biochem Biophys Res Commun 2009; 381(4): 602-5.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.105] [PMID: 19249288]
[61]
Wan W-L, Lin YJ, Chen HL, et al. In situ nanoreactor for photosynthesizing H2 gas to mitigate oxidative stress in tissue inflammation. J Am Chem Soc 2017; 139(37): 12923-6.
[http://dx.doi.org/10.1021/jacs.7b07492] [PMID: 28870078]
[62]
Yang T, Jin Z, Wang Z, et al. Intratumoral high-payload delivery and acid-responsive release of H2 for efficient cancer therapy using the ammonia borane-loaded mesoporous silica nanomedicine. Appl Mater Today 2018; 11: 136-43.
[http://dx.doi.org/10.1016/j.apmt.2018.01.008]
[63]
Zhang B, Wang F, Zhou H, et al. Polymer dots compartmentalized in liposomes as a photocatalyst for in situ hydrogen therapy. Angew Chem Int Ed Engl 2019; 58(9): 2744-8.
[http://dx.doi.org/10.1002/anie.201813066] [PMID: 30657623]
[64]
Xu C, Wang S, Wang H, et al. Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy. Nano Lett 2021; 21(5): 1982-91.
[http://dx.doi.org/10.1021/acs.nanolett.0c04438] [PMID: 33624495]
[65]
Dumas A, Couvreur P. Palladium: A future key player in the nanomedical field? Chem Sci (Camb) 2015; 6(4): 2153-7.
[http://dx.doi.org/10.1039/C5SC00070J] [PMID: 28694948]
[66]
Tang S, Chen M, Zheng N. Multifunctional ultrasmall Pd nanosheets for enhanced near-infrared photothermal therapy and chemotherapy of cancer. Nano Res 2015; 8(1): 165-74.
[http://dx.doi.org/10.1007/s12274-014-0605-x]
[67]
Zhao P, Jin Z, Chen Q, et al. Local generation of hydrogen for enhanced photothermal therapy. Nat Commun 2018; 9(1): 4241.
[http://dx.doi.org/10.1038/s41467-018-06630-2] [PMID: 30315173]
[68]
Zhang L, Zhao P, Yue C, et al. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer’s disease. Biomaterials 2019; 197: 393-404.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.037] [PMID: 30703744]
[69]
Zhou G, Wang YS, Jin Z, et al. Porphyrin–palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy. Nanoscale Horiz 2019; 4(5): 1185-93.
[http://dx.doi.org/10.1039/C9NH00021F]
[70]
Wang Y, Liu Y, Zhou J, et al. Controllable hydrogen release for gas-assisted chemotherapy and ultrasonic imaging of drug-resistant tumors. Chem Eng J 2021; 421: 129917.
[http://dx.doi.org/10.1016/j.cej.2021.129917]
[71]
Zhang C, Zheng DW, Li CX, et al. Hydrogen gas improves photothermal therapy of tumor and restrains the relapse of distant dormant tumor. Biomaterials 2019; 223: 119472.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119472] [PMID: 31499254]
[72]
Wan WL, Lin YJ, Shih PC, et al. An in situ depot for continuous evolution of gaseous H2 mediated by a magnesium passivation/activation cycle for treating osteoarthritis. Angew Chem Int Ed Engl 2018; 57(31): 9875-9.
[http://dx.doi.org/10.1002/anie.201806159] [PMID: 29923670]
[73]
Kunath S, Panagiotopoulou M, Maximilien J, Marchyk N, Sänger J, Haupt K. Cell and tissue imaging with molecularly imprinted polymers as plastic antibody mimics. Adv Healthc Mater 2015; 4(9): 1322-6.
[http://dx.doi.org/10.1002/adhm.201500145] [PMID: 25880918]
[74]
Kong L, Chen C, Mou F, et al. Magnesium particles coated with mesoporous nanoshells as sustainable therapeutic-hydrogen suppliers to scavenge continuously generated hydroxyl radicals in long term. Part Part Syst Charact 2019; 36(2): 1800424.
[http://dx.doi.org/10.1002/ppsc.201800424]
[75]
Liu K, Ou J, Wang S, et al. Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. Appl Mater Today 2020; 20: 100694.
[http://dx.doi.org/10.1016/j.apmt.2020.100694]
[76]
Zhou G, Goshi E, He Q. Micro/nanomaterials-augmented hydrogen therapy. Adv Healthc Mater 2019; 8(16): e1900463.
[http://dx.doi.org/10.1002/adhm.201900463] [PMID: 31267691]
[77]
Hirano S-i, Ichikawa Y, Sato B, Satoh F, Takefuji Y. Hydrogen is promising for medical applications. Cleanroom Technol 2020; 2(4): 529-41.
[http://dx.doi.org/10.3390/cleantechnol2040033]
[78]
Zhang L, Yu H, Tu Q, He Q, Huang N. New approaches for hydrogen therapy of various diseases. Curr Pharm Des 2021; 27(5): 636-49.
[http://dx.doi.org/10.2174/1381612826666201211114141] [PMID: 33308113]
[79]
Nishimaki K, Asada T, Ohsawa I, et al. Effects of molecular hydrogen assessed by an animal model and a randomized clinical study on mild cognitive impairment. Curr Alzheimer Res 2018; 15(5): 482-92.
[http://dx.doi.org/10.2174/1567205014666171106145017] [PMID: 29110615]
[80]
Qu J, Gan YN, Xie KL, et al. Inhalation of hydrogen gas attenuates ouabain-induced auditory neuropathy in gerbils. Acta Pharmacol Sin 2012; 33(4): 445-51.
[http://dx.doi.org/10.1038/aps.2011.190] [PMID: 22388074]
[81]
Botek M, Krejčí J, McKune AJ, Sládečková B, Naumovski N. Hydrogen rich water improved ventilatory, perceptual and lactate responses to exercise. Int J Sports Med 2019; 40(14): 879-85.
[http://dx.doi.org/10.1055/a-0991-0268] [PMID: 31574544]
[82]
Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004; 109(3): 433-8.
[http://dx.doi.org/10.1161/01.CIR.0000111245.75752.C6] [PMID: 14744958]
[83]
Zhang Y, Zhang X-J, Li H. Targeting interferon regulatory factor for cardiometabolic diseases: Opportunities and challenges. Curr Drug Targets 2017; 18(15): 1754-78.
[http://dx.doi.org/10.2174/1389450116666150804110412] [PMID: 26240052]
[84]
Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365(9468): 1415-28.
[http://dx.doi.org/10.1016/S0140-6736(05)66378-7] [PMID: 15836891]
[85]
Li P, Liu S, Lu M, et al. Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance. Cell 2016; 167(4): 973-984.e12.
[http://dx.doi.org/10.1016/j.cell.2016.10.025] [PMID: 27814523]
[86]
Fernández-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 2003; 24(3): 278-301.
[http://dx.doi.org/10.1210/er.2002-0010] [PMID: 12788800]
[87]
Kamimura N, Nishimaki K, Ohsawa I, Ohta S. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice. Obesity (Silver Spring) 2011; 19(7): 1396-403.
[http://dx.doi.org/10.1038/oby.2011.6] [PMID: 21293445]
[88]
Song G, Li M, Sang H, et al. Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome. J Lipid Res 2013; 54(7): 1884-93.
[http://dx.doi.org/10.1194/jlr.M036640] [PMID: 23610159]
[89]
Song G, Lin Q, Zhao H, et al. Hydrogen activates ATP-binding cassette transporter a1-dependent efflux ex vivo and improves high-density lipoprotein function in patients with hypercholesterolemia: A double-blinded, randomized, and placebo-controlled trial. J Clin Endocrinol Metab 2015; 100(7): 2724-33.
[http://dx.doi.org/10.1210/jc.2015-1321] [PMID: 25978109]
[90]
Kajiyama S, Hasegawa G, Asano M, et al. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res 2008; 28(3): 137-43.
[http://dx.doi.org/10.1016/j.nutres.2008.01.008] [PMID: 19083400]
[91]
Amitani H, Asakawa A, Cheng K, et al. Hydrogen improves glycemic control in type 1 diabetic animal model by promoting glucose uptake into skeletal muscle. PLoS One 2013; 8(1): e53913.
[http://dx.doi.org/10.1371/journal.pone.0053913] [PMID: 23326534]
[92]
Zhang X, Liu J, Jin K, et al. Subcutaneous injection of hydrogen gas is a novel effective treatment for type 2 diabetes. J Diabetes Investig 2018; 9(1): 83-90.
[http://dx.doi.org/10.1111/jdi.12674] [PMID: 28390099]
[93]
Dexter DT, Wells FR, Agid F, et al. Increased nigral iron content in postmortem parkinsonian brain. Lancet 1987; 2(8569): 1219-20.
[http://dx.doi.org/10.1016/S0140-6736(87)91361-4] [PMID: 2890848]
[94]
Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 1996; 47(6)(Suppl. 3): S161-70.
[http://dx.doi.org/10.1212/WNL.47.6_Suppl_3.161S] [PMID: 8959985]
[95]
Fujita K, Seike T, Yutsudo N, et al. Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS One 2009; 4(9): e7247.
[http://dx.doi.org/10.1371/journal.pone.0007247] [PMID: 19789628]
[96]
Yoritaka A, Takanashi M, Hirayama M, Nakahara T, Ohta S, Hattori N. Pilot study of H2 therapy in Parkinson’s disease: A randomized double-blind placebo-controlled trial. Mov Disord 2013; 28(6): 836-9.
[http://dx.doi.org/10.1002/mds.25375] [PMID: 23400965]
[97]
Hong C-T, Hu C-J, Lin H-Y, Wu D. Effects of concomitant use of hydrogen water and photobiomodulation on Parkinson disease: A pilot study. Medicine (Baltimore) 2021; 100(4): e24191-1.
[http://dx.doi.org/10.1097/MD.0000000000024191] [PMID: 33530211]
[98]
Jucker M, Walker LC. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 2011; 70(4): 532-40.
[http://dx.doi.org/10.1002/ana.22615] [PMID: 22028219]
[99]
Nagata K, Nakashima-Kamimura N, Mikami T, Ohsawa I, Ohta S. Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology 2009; 34(2): 501-8.
[http://dx.doi.org/10.1038/npp.2008.95] [PMID: 18563058]
[100]
Li J, Wang C, Zhang JH, Cai J-M, Cao Y-P, Sun X-J. Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res 2010; 1328: 152-61.
[http://dx.doi.org/10.1016/j.brainres.2010.02.046] [PMID: 20171955]
[101]
Gu Y, Huang CS, Inoue T, et al. Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice. J Clin Biochem Nutr 2010; 46(3): 269-76.
[http://dx.doi.org/10.3164/jcbn.10-19] [PMID: 20490324]
[102]
Qian L, Wu Z, Cen J, Pasca S, Tomuleasa C. Medical application of hydrogen in hematological diseases. Oxid Med Cell Longev 2019; 2019: 3917393.
[http://dx.doi.org/10.1155/2019/3917393] [PMID: 31871547]
[103]
Brodsky RA, Jones RJ. Aplastic anaemia. Lancet 2005; 365(9471): 1647-56.
[http://dx.doi.org/10.1016/S0140-6736(05)66515-4] [PMID: 15885298]
[104]
Gu Y, Hu X, Liu C, Qv X, Xu C. Interleukin (IL)-17 promotes macrophages to produce IL-8, IL-6 and tumour necrosis factor-α in aplastic anaemia. Br J Haematol 2008; 142(1): 109-14.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07161.x] [PMID: 18477039]
[105]
Zhao S, Mei K, Qian L, et al. Therapeutic effects of hydrogen-rich solution on aplastic anemia in vivo. Cell Physiol Biochem 2013; 32(3): 549-60.
[http://dx.doi.org/10.1159/000354459] [PMID: 24008771]
[106]
Stanford SN, Sabra A, Lawrence M, et al. Prospective evaluation of blood coagulability and effect of treatment in patients with stroke using rotational thromboelastometry. J Stroke Cerebrovasc Dis 2015; 24(2): 304-11.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.08.028] [PMID: 25498737]
[107]
Cohen J, Scorer T, Wright Z, et al. A prospective evaluation of thromboelastometry (ROTEM) to identify acute traumatic coagulopathy and predict massive transfusion in military trauma patients in Afghanistan. Transfusion 2019; 59(S2): 1601-7.
[http://dx.doi.org/10.1111/trf.15176] [PMID: 30980751]
[108]
Kohama K, Yamashita H, Aoyama-Ishikawa M, et al. Hydrogen inhalation protects against acute lung injury induced by hemorrhagic shock and resuscitation. Surgery 2015; 158(2): 399-407.
[http://dx.doi.org/10.1016/j.surg.2015.03.038] [PMID: 25983276]
[109]
Du Z, Jia H, Liu J, Zhao X, Xu W. Effects of three hydrogen-rich liquids on hemorrhagic shock in rats. J Surg Res 2015; 193(1): 377-82.
[http://dx.doi.org/10.1016/j.jss.2014.06.051] [PMID: 25130773]
[110]
Matsuoka T, Suzuki M, Sano M, et al. Hydrogen gas inhalation inhibits progression to the “irreversible” stage of shock after severe hemorrhage in rats. J Trauma Acute Care Surg 2017; 83(3): 469-75.
[http://dx.doi.org/10.1097/TA.0000000000001620] [PMID: 28640781]
[111]
Caccese D, Praticò D, Ghiselli A, et al. Superoxide anion and hydroxyl radical release by collagen-induced platelet aggregation - role of arachidonic acid metabolism. Thromb Haemost 2000; 83(3): 485-90.
[http://dx.doi.org/10.1055/s-0037-1613841] [PMID: 10744158]
[112]
Maruyama Y, Hisamatsu T, Matsuoka K, et al. A case of intestinal Behçet’s disease treated with infliximab monotherapy who successfully maintained clinical remission and complete mucosal healing for six years. Intern Med 2012; 51(16): 2125-9.
[http://dx.doi.org/10.2169/internalmedicine.51.8005] [PMID: 22892489]
[113]
Wang Y, Wu YP, Han JJ, et al. Inhibitory effects of hydrogen on in vitro platelet activation and in vivo prevention of thrombosis formation. Life Sci 2019; 233: 116700.
[http://dx.doi.org/10.1016/j.lfs.2019.116700] [PMID: 31356907]
[114]
Günther S, Ruhe C, Derikito MG, Böse G, Sauer H, Wartenberg M. Polyphenols prevent cell shedding from mouse mammary cancer spheroids and inhibit cancer cell invasion in confrontation cultures derived from embryonic stem cells. Cancer Lett 2007; 250(1): 25-35.
[http://dx.doi.org/10.1016/j.canlet.2006.09.014] [PMID: 17070989]
[115]
Maulik N. Redox regulation of vascular angiogenesis. Antioxid Redox Signal 2002; 4(5): 783-4.
[http://dx.doi.org/10.1089/152308602760598927] [PMID: 12470505]
[116]
Nonaka Y, Iwagaki H, Kimura T, Fuchimoto S, Orita K. Effect of reactive oxygen intermediates on the in vitro invasive capacity of tumor cells and liver metastasis in mice. Int J Cancer 1993; 54(6): 983-6.
[http://dx.doi.org/10.1002/ijc.2910540620] [PMID: 8392985]
[117]
Kang KM, Kang YN, Choi IB, et al. Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors. Med Gas Res 2011; 1(1): 11.
[http://dx.doi.org/10.1186/2045-9912-1-11] [PMID: 22146004]
[118]
Khlifi D, Sghaier RM, Amouri S, Laouini D, Hamdi M, Bouajila J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem Toxicol 2013; 55: 202-8.
[http://dx.doi.org/10.1016/j.fct.2013.01.004] [PMID: 23333573]
[119]
Camara R, Matei N, Camara J, Enkhjargal B, Tang J, Zhang JH. Hydrogen gas therapy improves survival rate and neurological deficits in subarachnoid hemorrhage rats: A pilot study. Med Gas Res 2019; 9(2): 74-9.
[http://dx.doi.org/10.4103/2045-9912.260648] [PMID: 31249255]
[120]
Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 2005; 115(3): 500-8.
[http://dx.doi.org/10.1172/JCI200524408] [PMID: 15765131]
[121]
Montezano AC, Tsiropoulou S, Dulak-Lis M, Harvey A, Camargo LL, Touyz RM. Redox signaling, Nox5 and vascular remodeling in hypertension. Curr Opin Nephrol Hypertens 2015; 24(5): 425-33.
[http://dx.doi.org/10.1097/MNH.0000000000000153] [PMID: 26197203]
[122]
Li JM, Gall NP, Grieve DJ, Chen M, Shah AM. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 2002; 40(4): 477-84.
[http://dx.doi.org/10.1161/01.HYP.0000032031.30374.32] [PMID: 12364350]
[123]
Zhang G-X, Ohmori K, Nagai Y, et al. Role of AT1 receptor in isoproterenol-induced cardiac hypertrophy and oxidative stress in mice. J Mol Cell Cardiol 2007; 42(4): 804-11.
[http://dx.doi.org/10.1016/j.yjmcc.2007.01.012] [PMID: 17350036]
[124]
van Zwieten PA. The influence of antihypertensive drug treatment on the prevention and regression of left ventricular hypertrophy. Cardiovasc Res 2000; 45(1): 82-91.
[http://dx.doi.org/10.1016/S0008-6363(99)00291-6] [PMID: 10728317]
[125]
Dolinsky VW, Soltys CL, Rogan KJ, et al. Resveratrol prevents pathological but not physiological cardiac hypertrophy. J Mol Med (Berl) 2015; 93(4): 413-25.
[http://dx.doi.org/10.1007/s00109-014-1220-8] [PMID: 25394677]
[126]
Britto RM, Silva-Neto JAD, Mesquita TRR, et al. Myrtenol protects against myocardial ischemia-reperfusion injury through antioxidant and anti-apoptotic dependent mechanisms. Food Chem Toxicol 2018; 111: 557-66.
[http://dx.doi.org/10.1016/j.fct.2017.12.003] [PMID: 29208507]
[127]
Jin L, Sun S, Ryu Y, et al. Gallic acid improves cardiac dysfunction and fibrosis in pressure overload-induced heart failure. Sci Rep 2018; 8(1): 9302.
[http://dx.doi.org/10.1038/s41598-018-27599-4] [PMID: 29915390]
[128]
Porcu EP, Cossu M, Rassu G, et al. Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects. Int J Pharm 2018; 541(1-2): 224-33.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.036] [PMID: 29474897]
[129]
Zhuang K, Zuo Y-C, Sherchan P, Wang J-K, Yan X-X, Liu F. Hydrogen inhalation attenuates oxidative stress related endothelial cells injury after subarachnoid hemorrhage in rats. Front Neurosci 2020; 13(1441)
[http://dx.doi.org/10.3389/fnins.2019.01441]
[130]
Li L, Li X, Zhang Z, et al. Effects of hydrogen-rich water on the PI3K/AKT signaling pathway in rats with myocardial ischemia-reperfusion injury. Curr Mol Med 2020; 20(5): 396-406.
[http://dx.doi.org/10.2174/1566524019666191105150709] [PMID: 31702499]
[131]
Ohsawa I, Nishimaki K, Yamagata K, Ishikawa M, Ohta S. Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice. Biochem Biophys Res Commun 2008; 377(4): 1195-8.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.156] [PMID: 18996093]
[132]
Qian L, Cao F, Cui J, et al. The potential cardioprotective effects of hydrogen in irradiated mice. J Radiat Res (Tokyo) 2010; 51(6): 741-7.
[http://dx.doi.org/10.1269/jrr.10093] [PMID: 21116102]
[133]
Jing L, Wang Y, Zhao XM, et al. Cardioprotective effect of hydrogen-rich saline on isoproterenol-induced myocardial infarction in rats. Heart Lung Circ 2015; 24(6): 602-10.
[http://dx.doi.org/10.1016/j.hlc.2014.11.018] [PMID: 25533677]
[134]
Ďuračková Z. Some current insights into oxidative stress. Physiol Res 2010; 59(4): 459-69.
[http://dx.doi.org/10.33549/physiolres.931844] [PMID: 19929132]
[135]
Moris D, Spartalis M, Spartalis E, et al. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann Transl Med 2017; 5(16): 326-6.
[http://dx.doi.org/10.21037/atm.2017.06.27] [PMID: 28861423]
[136]
Hakim J. Reactive oxygen species and inflammation. C R Seances Soc Biol Fil 1993; 187(3): 286-95.
[137]
Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 1996; 328(1): 85-92.
[http://dx.doi.org/10.1006/abbi.1996.0146] [PMID: 8638942]
[138]
Thomas DD, Ridnour LA, Isenberg JS, et al. The chemical biology of nitric oxide: Implications in cellular signaling. Free Radic Biol Med 2008; 45(1): 18-31.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.020] [PMID: 18439435]
[139]
Matsushita T, Kusakabe Y, Kitamura A, Okada S, Murase K. Protective effect of hydrogen-rich water against gentamicin-induced nephrotoxicity in rats using blood oxygenation level-dependent MR imaging. Magn Reson Med Sci 2011; 10(3): 169-76.
[http://dx.doi.org/10.2463/mrms.10.169] [PMID: 21959999]
[140]
Ge L, Yang M, Yang N-N, Yin X-X, Song W-G. Molecular hydrogen: A preventive and therapeutic medical gas for various diseases. Oncotarget 2017; 8(60): 102653-73.
[http://dx.doi.org/10.18632/oncotarget.21130] [PMID: 29254278]
[141]
Kitamura A, Kobayashi S, Matsushita T, Fujinawa H, Murase K. Experimental verification of protective effect of hydrogen-rich water against cisplatin-induced nephrotoxicity in rats using dynamic contrast-enhanced CT. Br J Radiol 2010; 83(990): 509-14.
[http://dx.doi.org/10.1259/bjr/25604811] [PMID: 20505032]
[142]
Wang F, Yu G, Liu SY, et al. Hydrogen-rich saline protects against renal ischemia/reperfusion injury in rats. J Surg Res 2011; 167(2): e339-44.
[http://dx.doi.org/10.1016/j.jss.2010.11.005] [PMID: 21392793]
[143]
Li J. Hydrogen-rich saline promotes the recovery of renal function after ischemia/reperfusion injury in rats via anti-apoptosis and anti-inflammation. Front Pharmacol 2016; 7(106)
[http://dx.doi.org/10.3389/fphar.2016.00106]
[144]
Nakayama M, Nakano H, Hamada H, Itami N, Nakazawa R, Ito S. A novel bioactive haemodialysis system using dissolved dihydrogen (H2) produced by water electrolysis: A clinical trial. Nephrol Dial Transplant 2010; 25(9): 3026-33.
[http://dx.doi.org/10.1093/ndt/gfq196] [PMID: 20388631]
[145]
Yao W, Guo A, Han X, et al. Aerosol inhalation of a hydrogen-rich solution restored septic renal function. Aging (Albany NY) 2019; 11(24): 12097-113.
[http://dx.doi.org/10.18632/aging.102542] [PMID: 31841441]
[146]
Chen J. Hydrogen-rich saline alleviates kidney fibrosis following AKI and retains klotho expression. Front Pharmacol 2017; 8(499)
[http://dx.doi.org/10.3389/fphar.2017.00499]
[147]
Nishida T, Hayashi T, Inamoto T, et al. Dual gas treatment with hydrogen and carbon monoxide attenuates oxidative stress and protects from renal ischemia-reperfusion injury. Transplant Proc 2018; 50(1): 250-8.
[http://dx.doi.org/10.1016/j.transproceed.2017.12.014] [PMID: 29407319]
[148]
Cardinal JS, Zhan J, Wang Y, et al. Oral hydrogen water prevents chronic allograft nephropathy in rats. Kidney Int 2010; 77(2): 101-9.
[http://dx.doi.org/10.1038/ki.2009.421] [PMID: 19907413]
[149]
Chen B, Song D, Ma J, Zhu W. Molecular hydrogen suppresses renal injury in chronic kidney disease rats. J Bioprocess Biotech 2018; 8(331): 2.
[http://dx.doi.org/10.4172/2155-9821.1000331]
[150]
Katakura M, Hashimoto M, Tanabe Y, Shido O. Hydrogen-rich water inhibits glucose and α,β -dicarbonyl compound-induced reactive oxygen species production in the SHR.Cg-Leprcp/NDmcr rat kidney. Med Gas Res 2012; 2(1): 18.
[http://dx.doi.org/10.1186/2045-9912-2-18] [PMID: 22776773]
[151]
Xing Z, Pan W, Zhang J, et al. Hydrogen rich water attenuates renal injury and fibrosis by regulation transforming growth factor-β induced sirt 1. Biol Pharm Bull 2017; 40(5): 610-5.
[http://dx.doi.org/10.1248/bpb.b16-00832] [PMID: 28458345]
[152]
Xu B, Zhang YB, Li ZZ, Yang MW, Wang S, Jiang DP. Hydrogen-rich saline ameliorates renal injury induced by unilateral ureteral obstruction in rats. Int Immunopharmacol 2013; 17(2): 447-52.
[http://dx.doi.org/10.1016/j.intimp.2013.06.033] [PMID: 23871246]
[153]
Peng Z, Chen W, Wang L, et al. Inhalation of hydrogen gas ameliorates glyoxylate-induced calcium oxalate deposition and renal oxidative stress in mice. Int J Clin Exp Pathol 2015; 8(3): 2680-9.
[PMID: 26045773]
[154]
Guan P, Sun ZM, Luo LF, et al. Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis. Life Sci 2019; 225: 46-54.
[http://dx.doi.org/10.1016/j.lfs.2019.04.005] [PMID: 30951745]
[155]
Zhou J, Tian H, Du X, et al. Population-based epidemiology of sepsis in a subdistrict of Beijing. Crit Care Med 2017; 45(7): 1168-76.
[http://dx.doi.org/10.1097/CCM.0000000000002414] [PMID: 28422777]
[156]
Jiang Y, Zhang K, Yu Y, et al. Molecular hydrogen alleviates brain injury and cognitive impairment in a chronic sequelae model of murine polymicrobial sepsis. Exp Brain Res 2020; 238(12): 2897-908.
[http://dx.doi.org/10.1007/s00221-020-05950-4] [PMID: 33052428]
[157]
Yu Y, Feng J, Lian N, et al. Hydrogen gas alleviates blood-brain barrier impairment and cognitive dysfunction of septic mice in an Nrf2-dependent pathway. Int Immunopharmacol 2020; 85: 106585.
[http://dx.doi.org/10.1016/j.intimp.2020.106585] [PMID: 32447221]
[158]
Xie K, Zhang Y, Wang Y, et al. Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation. Inflamm Res 2020; 69(7): 697-710.
[http://dx.doi.org/10.1007/s00011-020-01347-9] [PMID: 32350570]
[159]
Zhuang X, Yu Y, Jiang Y, et al. Molecular hydrogen attenuates sepsis-induced neuroinflammation through regulation of microglia polarization through an mTOR-autophagy-dependent pathway. Int Immunopharmacol 2020; 81: 106287.
[http://dx.doi.org/10.1016/j.intimp.2020.106287] [PMID: 32058932]
[160]
Xie K, Fu W, Xing W, et al. Combination therapy with molecular hydrogen and hyperoxia in a murine model of polymicrobial sepsis. Shock 2012; 38(6): 656-63.
[http://dx.doi.org/10.1097/SHK.0b013e3182758646] [PMID: 23160520]
[161]
Guan W-J, Wei CH, Chen AL, et al. Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multicenter, open-label clinical trial. J Thorac Dis 2020; 12(6): 3448-52.
[http://dx.doi.org/10.21037/jtd-2020-057] [PMID: 32642277]
[162]
Saramago EA, Borges GS, Singolani-Jr CG, et al. Molecular hydrogen potentiates hypothermia and prevents hypotension and fever in LPS-induced systemic inflammation. Brain Behav Immun 2019; 75: 119-28.
[http://dx.doi.org/10.1016/j.bbi.2018.09.027] [PMID: 30261305]
[163]
Ikeda M, Shimizu K, Ogura H, et al. Hydrogen-rich saline regulates intestinal barrier dysfunction, dysbiosis, and bacterial translocation in a murine model of sepsis. Shock 2018; 50(6): 640-7.
[http://dx.doi.org/10.1097/SHK.0000000000001098] [PMID: 29293174]
[164]
Li Y, Li Q, Chen H, et al. Hydrogen gas alleviates the intestinal injury caused by severe sepsis in mice by increasing the expression of heme oxygenase-1. Shock 2015; 44(1): 90-8.
[http://dx.doi.org/10.1097/SHK.0000000000000382] [PMID: 25895145]
[165]
Yan M, Yu Y, Mao X, et al. Hydrogen gas inhalation attenuates sepsis-induced liver injury in a FUNDC1-dependent manner. Int Immunopharmacol 2019; 71: 61-7.
[http://dx.doi.org/10.1016/j.intimp.2019.03.021] [PMID: 30877875]
[166]
Iketani M, Ohshiro J, Urushibara T, et al. Preadministration of hydrogen-rich water protects against lipopolysaccharide-induced sepsis and attenuates liver injury. Shock 2017; 48(1): 85-93.
[http://dx.doi.org/10.1097/SHK.0000000000000810] [PMID: 27918369]
[167]
Yu Y, Yang Y, Yang M, Wang C, Xie K, Yu Y. Hydrogen gas reduces HMGB1 release in lung tissues of septic mice in an Nrf2/HO-1-dependent pathway. Int Immunopharmacol 2019; 69: 11-8.
[http://dx.doi.org/10.1016/j.intimp.2019.01.022] [PMID: 30660872]
[168]
Chen H, Mao X, Meng X, et al. Hydrogen alleviates mitochondrial dysfunction and organ damage via autophagy-mediated NLRP3 inflammasome inactivation in sepsis. Int J Mol Med 2019; 44(4): 1309-24.
[http://dx.doi.org/10.3892/ijmm.2019.4311] [PMID: 31432098]
[169]
Liu H, Liang X, Wang D, et al. Combination therapy with nitric oxide and molecular hydrogen in a murine model of acute lung injury. Shock 2015; 43(5): 504-11.
[http://dx.doi.org/10.1097/SHK.0000000000000316] [PMID: 25643010]
[170]
Hu Z, Wu B, Meng F, Zhou Z, Lu H, Zhao H. Impact of molecular hydrogen treatments on the innate immune activity and survival of zebrafish (Danio rerio) challenged with Aeromonas hydrophila. Fish Shellfish Immunol 2017; 67: 554-60.
[http://dx.doi.org/10.1016/j.fsi.2017.05.066] [PMID: 28630014]
[171]
Guo H, Callaway JB, Ting JPY. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat Med 2015; 21(7): 677-87.
[http://dx.doi.org/10.1038/nm.3893] [PMID: 26121197]
[172]
Baldrighi M, Mallat Z, Li X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis 2017; 267: 127-38.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.10.027] [PMID: 29126031]
[173]
Martinon F, Burns K, Tschopp J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 2002; 10(2): 417-26.
[http://dx.doi.org/10.1016/S1097-2765(02)00599-3] [PMID: 12191486]
[174]
Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 2018; 17(8): 588-606.
[http://dx.doi.org/10.1038/nrd.2018.97] [PMID: 30026524]
[175]
Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012; 36(3): 401-14.
[http://dx.doi.org/10.1016/j.immuni.2012.01.009] [PMID: 22342844]
[176]
Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: Current perspectives. J Inflamm Res 2015; 8: 15-27.
[PMID: 25653548]
[177]
Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol 2019; 19(8): 477-89.
[http://dx.doi.org/10.1038/s41577-019-0165-0] [PMID: 31036962]
[178]
Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature 2012; 481(7381): 278-86.
[http://dx.doi.org/10.1038/nature10759] [PMID: 22258606]
[179]
Arai Y, Iinuma T, Takayama M, et al. The Tokyo Oldest Old survey on Total Health (TOOTH): A longitudinal cohort study of multidimensional components of health and well-being. BMC Geriatr 2010; 10(1): 35.
[http://dx.doi.org/10.1186/1471-2318-10-35] [PMID: 20529368]
[180]
Buchholz BM, Kaczorowski DJ, Sugimoto R, et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant 2008; 8(10): 2015-24.
[http://dx.doi.org/10.1111/j.1600-6143.2008.02359.x] [PMID: 18727697]
[181]
Tian Y, Guo S, Zhang Y, Xu Y, Zhao P, Zhao X. Effects of hydrogen-rich saline on hepatectomy-induced postoperative cognitive dysfunction in old mice. Mol Neurobiol 2017; 54(4): 2579-84.
[http://dx.doi.org/10.1007/s12035-016-9825-2] [PMID: 26993297]
[182]
Chen H, Sun YP, Li Y, et al. Hydrogen-rich saline ameliorates the severity of l-arginine-induced acute pancreatitis in rats. Biochem Biophys Res Commun 2010; 393(2): 308-13.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.005] [PMID: 20138831]
[183]
Kawasaki H, Guan J, Tamama K. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials. Biochem Biophys Res Commun 2010; 397(3): 608-13.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.009] [PMID: 20570654]
[184]
Hydrogen gas improves survival rate and organ damage in zymosan-induced generalized inflammation model. Shock 2010; 34(5): 495-501.
[185]
Kajiya M, Sato K, Silva MJ, et al. Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochem Biophys Res Commun 2009; 386(2): 316-21.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.024] [PMID: 19523450]
[186]
Kajiya M, Silva MJB, Sato K, Ouhara K, Kawai T. Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate. Biochem Biophys Res Commun 2009; 386(1): 11-5.
[http://dx.doi.org/10.1016/j.bbrc.2009.05.117] [PMID: 19486890]
[187]
Chen H-G, Xie KL, Han HZ, et al. Heme oxygenase-1 mediates the anti-inflammatory effect of molecular hydrogen in LPS-stimulated RAW 264.7 macrophages. Int J Surg 2013; 11(10): 1060-6.
[http://dx.doi.org/10.1016/j.ijsu.2013.10.007] [PMID: 24148794]
[188]
Li G-M, Ji MH, Sun XJ, et al. Effects of hydrogen-rich saline treatment on polymicrobial sepsis. J Surg Res 2013; 181(2): 279-86.
[http://dx.doi.org/10.1016/j.jss.2012.06.058] [PMID: 22795273]
[189]
Ishibashi T, Sato B, Rikitake M, et al. Consumption of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: An open-label pilot study. Med Gas Res 2012; 2(1): 27.
[http://dx.doi.org/10.1186/2045-9912-2-27] [PMID: 23031079]
[190]
Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol Ther 2014; 144(1): 1-11.
[http://dx.doi.org/10.1016/j.pharmthera.2014.04.006] [PMID: 24769081]
[191]
Victor VM, Esplugues JV, Hernández-Mijares A, Rocha M. Oxidative stress and mitochondrial dysfunction in sepsis: A potential therapy with mitochondria-targeted antioxidants. Infect Disord Targets 2009; 9(4): 376-89.
[192]
Xie K. Protective effects of hydrogen gas on murine polymicrobial sepsis via reducing 2010; 34(1): 90-7.
[193]
Huang C-S, Kawamura T, Toyoda Y, Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res 2010; 44(9): 971-82.
[http://dx.doi.org/10.3109/10715762.2010.500328] [PMID: 20815764]
[194]
Kurakawa T, Ogata K, Matsuda K, et al. Diversity of intestinal clostridium coccoides group in the Japanese population, as demonstrated by reverse transcription-quantitative PCR. PLoS One 2015; 10(5): e0126226.
[http://dx.doi.org/10.1371/journal.pone.0126226] [PMID: 26000453]
[195]
Noda K, Shigemura N, Tanaka Y, et al. A novel method of preserving cardiac grafts using a hydrogen-rich water bath. J Heart Lung Transplant 2013; 32(2): 241-50.
[http://dx.doi.org/10.1016/j.healun.2012.11.004] [PMID: 23273745]
[196]
Suzuki Y, Sano M, Hayashida K, Ohsawa I, Ohta S, Fukuda K. Are the effects of α-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract? FEBS Lett 2009; 583(13): 2157-9.
[http://dx.doi.org/10.1016/j.febslet.2009.05.052] [PMID: 19505462]
[197]
Strocchi A, Levitt MD. Maintaining intestinal H2 balance: Credit the colonic bacteria. Gastroenterology 1992; 102(4): 1424-6.
[198]
Ichikawa Y, Satoh B, Hirano S-I, Kurokawa R, Takefuji Y, Satoh F. Proposal of next-generation medical care “Mega-hydrogen Therapy”. Med Gas Res 2020; 10(3): 140-1.
[http://dx.doi.org/10.4103/2045-9912.296045] [PMID: 33004714]
[199]
Pimentel M, Saad RJ, Long MD, Rao SSC. ACG clinical guideline: Small intestinal bacterial overgrowth. Am J Gastroenterol 2020; 115(2): 165-78.
[200]
Shimouchi A, Nose K, Takaoka M, Hayashi H, Kondo T. Effect of dietary turmeric on breath hydrogen. Dig Dis Sci 2009; 54(8): 1725-9.
[http://dx.doi.org/10.1007/s10620-008-0550-1] [PMID: 19034660]
[201]
Ono H, Nishijima Y, Adachi N, et al. A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level. Med Gas Res 2012; 2(1): 21.
[http://dx.doi.org/10.1186/2045-9912-2-21] [PMID: 22916706]
[202]
Cai J, Kang Z, Liu K, et al. Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Res 2009; 1256: 129-37.
[http://dx.doi.org/10.1016/j.brainres.2008.11.048] [PMID: 19063869]
[203]
Kato S, Saitoh Y, Iwai K, Miwa N. Hydrogen-rich electrolyzed warm water represses wrinkle formation against UVA ray together with type-I collagen production and oxidative-stress diminishment in fibroblasts and cell-injury prevention in keratinocytes. J Photochem Photobiol B 2012; 106: 24-33.
[http://dx.doi.org/10.1016/j.jphotobiol.2011.09.006] [PMID: 22070900]
[204]
Oharazawa H, Igarashi T, Yokota T, et al. Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 2010; 51(1): 487-92.
[http://dx.doi.org/10.1167/iovs.09-4089] [PMID: 19834032]
[205]
Kubota M, Shimmura S, Kubota S, et al. Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Invest Ophthalmol Vis Sci 2011; 52(1): 427-33.
[http://dx.doi.org/10.1167/iovs.10-6167] [PMID: 20847117]