Topoisomerase Enzyme Inhibitors as Potential Drugs Against Cancer: What Makes Them Selective or Dual? – A Review

Page: [2800 - 2824] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Topoisomerase inhibitors are extensively used in cancer chemotherapy. In the process of identifying novel anticancer compounds, biological evaluations are crucial and include, among others, the use of in silico and in vitro approaches. This work aimed to present recent research involving the obtainment and in silico and in vitro evaluation of topoisomerase I, II, and double inhibitors, of synthetic and natural origin, as potential compounds against tumor cells, in addition to proposing the construction of a desirable enzyme catalytic site. Therefore, it was observed that most Topoisomerase I inhibitors presented medium to large structures, with a rigid portion and a flexible region. In contrast, Topoisomerase IIα inhibitors showed medium and large structural characteristics, in addition to the planarity of the aromatic rings, which are mitigated due to flexible rings but may also present elements that restrict conformation. Most compounds that exhibit dual inhibitory activity had relatively long chains, in addition to a flat and rigid portion suggestive of affinity for Topo I and a flexible region characteristic of selective drugs for Topo II. Besides, it is noticed that most compounds that exhibit dual inhibitory showed similarities in the types of interactions and amino acids when compared to the selective compounds of Topo I and II. For instance, selective Topoisomerase I inhibitors interact with Arginine364 residues, and selective Topoisomerase II inhibitors interact with Arginine487 residues, as both residues are targets for dual compounds.

Keywords: Topoisomerase I, Topoisomerase II, Dual Compounds, Studies in silico, Antitumor Activity, Catalytic Site, Enzymatic Similarity.

[1]
Almansour AI, Kumar RS, Arumugam N, et al. D-Ring-modified analogues of luotonin A with reduced planarity: Design, synthesis, and evaluation of their topoisomerase inhibition-associated cytotoxicity. BioMed Res Int 2019; 2019: 2514524.
[http://dx.doi.org/10.1155/2019/2514524] [PMID: 31815127]
[2]
Park S, Kadayat TM, Jun KY, et al. Novel 2-aryl-4-(4′-hydroxyphenyl)-5H-indeno[1,2-b]pyridines as potent DNA non-intercalative topoisomerase catalytic inhibitors. Eur J Med Chem 2017; 125: 14-28.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.019] [PMID: 27643560]
[3]
Azizi M, Kokabi H, Dianat-Moghadam H, Mehrmohammadi M. Introduction to cancer biology. Targeted Cancer Imaging 2022; pp. 1-17.
[4]
Hira I, Kumari R, Saini AK, et al. Apoptotic cell death induction through pectin, guar gum and zinc oxide nanocomposite in A549 lung adenocarcinomas. Biointerface Res Appl Chem 2022; 12: 1856-69.
[5]
Wang S, Sun Z, Lei Z, Zhang HT. RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; S1044-579X(22)00073-6.
[PMID: 35339667]
[6]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[7]
IARC Publications Website - GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012; v1.0
[8]
Lee GK, Sheckter CC. Breast reconstruction following breast cancer treatment-2018. JAMA 2018; 320(12): 1277-8.
[http://dx.doi.org/10.1001/jama.2018.12190] [PMID: 30178060]
[9]
Almeida SM, Lafayette EA, Silva WL, et al. New spiro-acridines: DNA interaction, antiproliferative activity and inhibition of human DNA topoisomerases. Int J Biol Macromol 2016; 92: 467-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.057] [PMID: 27435006]
[10]
Arepalli SK, Lee C, Sim S, et al. Development of 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridines and their salts as potent cytotoxic agents and topoisomerase I/IIα inhibitors. Bioorg Med Chem 2018; 26(18): 5181-93.
[http://dx.doi.org/10.1016/j.bmc.2018.09.019] [PMID: 30253887]
[11]
Karki R, Park C, Jun KY, et al. Synthesis, antitumor activity, and structure-activity relationship study of trihydroxylated 2,4,6-triphenyl pyridines as potent and selective topoisomerase II inhibitors. Eur J Med Chem 2014; 84: 555-65.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.058] [PMID: 25062006]
[12]
Baglini E, Salerno S, Barresi E, et al. Multiple topoisomerase I (TopoI), topoisomerase II (TopoII) and tyrosyl-DNA phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. Eur J Pharm Sci 2021; 156: 105594.
[13]
Chaudhary KK, Mishra N. A review on molecular docking: Novel tool for drug discovery. JSM Chem 2016; 4(3): 1029.
[14]
Ekundayo B, Bleichert F. Origins of DNA replication. PLoS Genet 2019; 15(9): e1008320.
[http://dx.doi.org/10.1371/journal.pgen.1008320] [PMID: 31513569]
[15]
Cuya SM, Bjornsti MA, van Waardenburg RCAM. DNA topoisomerase-targeting chemotherapeutics: What’s new? Cancer Chemother Pharmacol 2017; 80(1): 1-14.
[http://dx.doi.org/10.1007/s00280-017-3334-5] [PMID: 28528358]
[16]
Terekhova K, Gunn KH, Marko JF, Mondragón A. Bacterial topoisomerase I and topoisomerase III relax supercoiled DNA via distinct pathways. Nucleic Acids Res 2012; 40(20): 10432-40.
[http://dx.doi.org/10.1093/nar/gks780] [PMID: 22923519]
[17]
Halawa AH, Elgammal WE, Hassan SM, et al. Synthesis, anticancer evaluation and molecular docking studies of new heterocycles linked to sulfonamide moiety as novel human topoisomerase types I and II poisons. Bioorg Chem 2020; 98: 103725.
[http://dx.doi.org/10.1016/j.bioorg.2020.103725] [PMID: 32199303]
[18]
Heestand GM, Schwaederle M, Gatalica Z, Arguello D, Kurzrock R. Topoisomerase expression and amplification in solid tumours: Analysis of 24,262 patients. Eur J Cancer 2017; 83: 80-7.
[http://dx.doi.org/10.1016/j.ejca.2017.06.019] [PMID: 28728050]
[19]
Hevener K, Verstak TA, Lutat KE, Riggsbee DL, Mooney JW. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm Sin B 2018; 8(6): 844-61.
[http://dx.doi.org/10.1016/j.apsb.2018.07.008] [PMID: 30505655]
[20]
Nicholls TJ, Nadalutti CA, Motori E, et al. Topoisomerase 3α is required for decatenation and segregation of human mtDNA. Mol Cell 2018; 69(1): 9-23.e6.
[http://dx.doi.org/10.1016/j.molcel.2017.11.033] [PMID: 29290614]
[21]
Soren BC, Dasari JB, Ottaviani A, Iacovelli F, Fiorani P, Topoisomerase IB. A relaxing enzyme for stressed DNA. Cancer Drug Resist 2020; 3(1): 18-25.
[PMID: 35582040]
[22]
Bizard AH, Hickson ID. The many lives of type IA topoisomerases. J Biol Chem 2020; 295(20): 7138-53.
[http://dx.doi.org/10.1074/jbc.REV120.008286] [PMID: 32277049]
[23]
Delgado JL, Hsieh CM, Chan NL, Hiasa H. Topoisomerases as anticancer targets. Biochem J 2018; 475(2): 373-98.
[http://dx.doi.org/10.1042/BCJ20160583] [PMID: 29363591]
[24]
Seol Y, Neuman KC. The dynamic interplay between DNA topoisomerases and DNA topology. Biophys Rev 2016; 8(3): 221-31.
[http://dx.doi.org/10.1007/s12551-016-0206-x] [PMID: 27942270]
[25]
Bjornsti MA, Kaufmann SH. Topoisomerases and cancer chemotherapy: Recent advances and unanswered questions. F1000 Res 2019; 8: 1-18.
[http://dx.doi.org/10.12688/f1000research.20201.1] [PMID: 31602296]
[26]
Chen SH, Chan NL, Hsieh TS. New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem 2013; 82: 139-70.
[http://dx.doi.org/10.1146/annurev-biochem-061809-100002] [PMID: 23495937]
[27]
Hanke A, Ziraldo R, Levene SD. DNA-topology simplification by topoisomerases. Molecules 2021; 26(11): 3375.
[http://dx.doi.org/10.3390/molecules26113375] [PMID: 34204901]
[28]
Bollimpelli VS, Dholaniya PS, Kondapi AK. Topoisomerase IIβ and its role in different biological contexts. Arch Biochem Biophys 2017; 633: 78-84.
[http://dx.doi.org/10.1016/j.abb.2017.06.021] [PMID: 28669856]
[29]
Deweese JE, Osheroff N. The DNA cleavage reaction of topoisomerase II: Wolf in sheep’s clothing. Nucleic Acids Res 2009; 37(3): 738-48.
[http://dx.doi.org/10.1093/nar/gkn937] [PMID: 19042970]
[30]
Park S, Thapa Magar TB, Kadayat TM, et al. Rational design, synthesis, and evaluation of novel 2,4-Chloro- and Hydroxy-Substituted diphenyl Benzofuro[3,2-b]Pyridines: Non-intercalative catalytic topoisomerase I and II dual inhibitor. Eur J Med Chem 2017; 127: 318-33.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.003] [PMID: 28068603]
[31]
Kadayat TM, Park C, Jun KY, et al. Hydroxylated 2,4-diphenyl indenopyridine derivatives as a selective non-intercalative topoisomerase IIα catalytic inhibitor. Eur J Med Chem 2015; 90: 302-14.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.046] [PMID: 25437617]
[32]
Whitacre CM, Zborowska E, Gordon NH, Mackay W, Berger NA. Topotecan increases topoisomerase IIalpha levels and sensitivity to treatment with etoposide in schedule-dependent process. Cancer Res 1997; 57(8): 1425-8.
[PMID: 9108439]
[33]
Kim R, Hirabayashi N, Nishiyama M, Jinushi K, Toge T, Okada K. Experimental studies on biochemical modulation targeting topoisomerase I and II in human tumor xenografts in nude mice. Int J Cancer 1992; 50(5): 760-6.
[http://dx.doi.org/10.1002/ijc.2910500516] [PMID: 1312063]
[34]
Pal S, Kumar V, Kundu B, et al. Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors. Comput Struct Biotechnol J 2019; 17: 291-310.
[http://dx.doi.org/10.1016/j.csbj.2019.02.006] [PMID: 30867893]
[35]
Zi CT, Yang L, Xu FQ, et al. Synthesis and antitumor activity of biotinylated camptothecin derivatives as potent cytotoxic agents. Bioorg Med Chem Lett 2019; 29(2): 234-7.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.049] [PMID: 30509782]
[36]
Mei C, Lei L, Tan LM, et al. The role of single strand break repair pathways in cellular responses to camptothecin induced DNA damage. Biomed Pharmacother 2020; 125: 109875.
[http://dx.doi.org/10.1016/j.biopha.2020.109875] [PMID: 32036211]
[37]
Khaiwa N, Maarouf NR, Darwish MH, et al. Camptothecin’s journey from discovery to WHO Essential Medicine: Fifty years of promise. Eur J Med Chem 2021; 223: 113639.
[http://dx.doi.org/10.1016/j.ejmech.2021.113639] [PMID: 34175539]
[38]
Xu Y, Wu L, Rashid HU, et al. Novel indolo-sophoridinic scaffold as Topo I inhibitors: Design, synthesis and biological evaluation as anticancer agents. Eur J Med Chem 2018; 156: 479-92.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.028] [PMID: 30025344]
[39]
Pommier Y, Cushman M, Doroshow JH. Novel clinical indenoisoquinoline topoisomerase I inhibitors: A twist around the camptothecins. Oncotarget 2018; 9(99): 37286-8.
[http://dx.doi.org/10.18632/oncotarget.26466] [PMID: 30647868]
[40]
Salmanpour M, Yousefi G, Samani SM, Mohammadi S, Anbardar MH, Tamaddon A. Nanoparticulate delivery of irinotecan active metabolite (SN38) in murine colorectal carcinoma through conjugation to poly (2-ethyl 2-oxazoline)-b-poly (L-glutamic acid) double hydrophilic copolymer. Eur J Pharm Sci 2019; 136: 104941.
[http://dx.doi.org/10.1016/j.ejps.2019.05.019] [PMID: 31136788]
[41]
Mirzaei HH, Jassbi AR, Pirhadi S, Firuzi O. Study of the mechanism of action, molecular docking, and dynamics of anticancer terpenoids from Salvia lachnocalyx. J Recept Signal Transduct 2020; 40(1): 24-33.
[http://dx.doi.org/10.1080/10799893.2019.1710847] [PMID: 31913736]
[42]
Jadaun A, Subbarao N, Dixit A. Allosteric inhibition of topoisomerase I by pinostrobin: Molecular docking, spectroscopic and topoisomerase I activity studies. J Photochem Photobiol B 2017; 167: 299-308.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.01.010] [PMID: 28122297]
[43]
Cincinelli R, Musso L, Artali R, et al. Camptothecin-psammaplin A hybrids as topoisomerase I and HDAC dual-action inhibitors. Eur J Med Chem 2018; 143: 2005-14.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.021] [PMID: 29150335]
[44]
Fukuda T, Nanjo Y, Fujimoto M, et al. Lamellarin-inspired potent topoisomerase I inhibitors with the unprecedented benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-one scaffold. Bioorg Med Chem 2019; 27(2): 265-77.
[http://dx.doi.org/10.1016/j.bmc.2018.11.037] [PMID: 30553626]
[45]
Florean C, Dicato M, Diederich M. Immune-modulating and anti-inflammatory marine compounds against cancer. Semin Cancer Biol 2022; 80: 58-72.
[http://dx.doi.org/10.1016/j.semcancer.2020.02.008] [PMID: 32070764]
[46]
Haider MR, Ahmad K, Siddiqui N, et al. Novel 9-(2-(1-arylethylidene)hydrazinyl)acridine derivatives: Target Topoisomerase 1 and growth inhibition of HeLa cancer cells. Bioorg Chem 2019; 88: 102962.
[http://dx.doi.org/10.1016/j.bioorg.2019.102962] [PMID: 31085373]
[47]
Jang JY, Kang YJ, Sung B, et al. MHY440, a novel topoisomerase I inhibitor, induces cell cycle arrest and apoptosis via a ROS-dependent DNA damage signaling pathway in AGS human gastric cancer cells. Molecules 2018; 24(1): 96.
[http://dx.doi.org/10.3390/molecules24010096] [PMID: 30597845]
[48]
Abdellatif KRA, Fadaly WAA, Mostafa YA, Zaher DM, Omar HA. Thiohydantoin derivatives incorporating a pyrazole core: Design, synthesis and biological evaluation as dual inhibitors of topoisomerase-I and cycloxygenase-2 with anti-cancer and anti-inflammatory activities. Bioorg Chem 2019; 91: 103132.
[http://dx.doi.org/10.1016/j.bioorg.2019.103132] [PMID: 31374529]
[49]
Shu B, Yu Q, Hu DX, Che T, Zhang SS, Li D. Synthesis and biological evaluation of novel indole-pyrazoline hybrid derivatives as potential topoisomerase 1 inhibitors. Bioorg Med Chem Lett 2020; 30(4): 126925.
[http://dx.doi.org/10.1016/j.bmcl.2019.126925] [PMID: 31901379]
[50]
Nagaraju B, Kovvuri J, Kumar CG, et al. Synthesis and biological evaluation of pyrazole linked benzothiazole-β-naphthol derivatives as topoisomerase I inhibitors with DNA binding ability. Bioorg Med Chem 2019; 27(5): 708-20.
[http://dx.doi.org/10.1016/j.bmc.2019.01.011] [PMID: 30679134]
[51]
Afzal M, Al-Lohedan HA, Usman M, Tabassum S. Carbohydrate-based heteronuclear complexes as topoisomerase Iα inhibitor: Approach toward anticancer chemotherapeutics. J Biomol Struct Dyn 2019; 37(6): 1494-510.
[http://dx.doi.org/10.1080/07391102.2018.1459321] [PMID: 29606083]
[52]
Diederich M. Natural compound inducers of immunogenic cell death. Arch Pharm Res 2019; 42(7): 629-45.
[http://dx.doi.org/10.1007/s12272-019-01150-z] [PMID: 30955159]
[53]
Marinello J, Delcuratolo M, Capranico G. Anthracyclines as Topoisomerase II poisons: From early studies to new perspectives. Int J Mol Sci 2018; 19(11): 3480.
[http://dx.doi.org/10.3390/ijms19113480] [PMID: 30404148]
[54]
Zi CT, Gao YS, Yang L, et al. Design, synthesis, and biological evaluation of novel biotinylated podophyllotoxin derivatives as potential antitumor agents. Front Chem 2019; 7: 434.
[http://dx.doi.org/10.3389/fchem.2019.00434] [PMID: 31281809]
[55]
Sathish M, Kavitha B, Nayak VL, et al. Synthesis of podophyllotoxin linked β-carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. Eur J Med Chem 2018; 144: 557-71.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.055] [PMID: 29289881]
[56]
Oviatt AA, Kuriappan JA, Minniti E, et al. Polyamine-containing etoposide derivatives as poisons of human type II topoisomerases: Differential effects on topoisomerase IIα and IIβ. Bioorg Med Chem Lett 2018; 28(17): 2961-8.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.010] [PMID: 30006062]
[57]
Reddy VG, Bonam SR, Reddy TS, et al. 4β-amidotriazole linked podophyllotoxin congeners: DNA topoisomerase-IIα inhibition and potential anticancer agents for prostate cancer. Eur J Med Chem 2018; 144: 595-611.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.050] [PMID: 29289884]
[58]
Han X, Zhong Y, Zhou G, et al. Synthesis and biological evaluation of N-(carbobenzyloxy)-l-phenylalanine and N-(carbobenzyloxy)-l-aspartic acid-β-benzyl ester derivatives as potent topoisomerase IIα inhibitors. Bioorg Med Chem 2017; 25(12): 3116-26.
[http://dx.doi.org/10.1016/j.bmc.2017.03.065] [PMID: 28462840]
[59]
Jaroch K, Goryńska PZ, Goryński K, Stefański T, Bojko B. Untargeted screening of phase I metabolism of combretastatin A4 by multi-tool analysis. Talanta 2018; 182: 22-31.
[http://dx.doi.org/10.1016/j.talanta.2018.01.051] [PMID: 29501144]
[60]
Jadala C, Sathish M, Reddy TS, et al. Synthesis and in vitro cytotoxicity evaluation of β-carboline-combretastatin carboxamides as apoptosis inducing agents: DNA intercalation and topoisomerase-II inhibition. Bioorg Med Chem 2019; 27(15): 3285-98.
[http://dx.doi.org/10.1016/j.bmc.2019.06.007] [PMID: 31227365]
[61]
Iacopetta D, Rosano C, Puoci F, et al. Multifaceted properties of 1,4-dimethylcarbazoles: Focus on trimethoxybenzamide and trimethoxyphenylurea derivatives as novel human topoisomerase II inhibitors. Eur J Pharm Sci 2017; 96: 263-72.
[http://dx.doi.org/10.1016/j.ejps.2016.09.039] [PMID: 27702608]
[62]
Sinicropi MS, Iacopetta D, Rosano C, et al. N-thioalkylcarbazoles derivatives as new anti-proliferative agents: Synthesis, characterisation and molecular mechanism evaluation. J Enzyme Inhib Med Chem 2018; 33(1): 434-44.
[http://dx.doi.org/10.1080/14756366.2017.1419216] [PMID: 29383954]
[63]
Greco G, Turrini E, Catanzaro E, Fimognari C. Marine anthraquinones: Pharmacological and toxicological issues. Mar Drugs 2021; 19(5): 272.
[http://dx.doi.org/10.3390/md19050272] [PMID: 34068184]
[64]
Liu Y, Liang Y, Jiang J, Qin Q, Wang L, Liu X. Design, synthesis and biological evaluation of 1,4-dihydroxyanthraquinone derivatives as anticancer agents. Bioorg Med Chem Lett 2019; 29(9): 1120-6.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.026] [PMID: 30846253]
[65]
Zhou DC, Lu YT, Mai YW, et al. Design, synthesis and biological evaluation of novel perimidine o-quinone derivatives as non-intercalative topoisomerase II catalytic inhibitors. Bioorg Chem 2019; 91: 103131.
[http://dx.doi.org/10.1016/j.bioorg.2019.103131] [PMID: 31377387]
[66]
Murugavel S, Ravikumar C, Jaabil G, Alagusundaram P. Synthesis, computational quantum chemical study, in silico ADMET and molecular docking analysis, in vitro biological evaluation of a novel sulfur heterocyclic thiophene derivative containing 1,2,3-triazole and pyridine moieties as a potential human topoisomerase IIα inhibiting anticancer agent. Comput Biol Chem 2019; 79: 73-82.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.013] [PMID: 30731361]
[67]
Boda SK, Pishka V, Lakshmi PVA, Chinde S, Grover P. 1,2,3-Triazole Tagged 3H-Pyrano[2,3-d]pyrimidine-6-carboxylate derivatives: Synthesis, in vitro cytotoxicity, molecular docking and DNA interaction studies. Chem Biodivers 2018; 15(6): e18000101.
[http://dx.doi.org/10.1002/cbdv.201800101] [PMID: 29660245]
[68]
El-Metwally SA, Khalil AK, El-Sayed WM. Design, molecular modeling and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as inhibitors of topoisomerase II. Bioorg Chem 2020; 94: 103492.
[http://dx.doi.org/10.1016/j.bioorg.2019.103492] [PMID: 31864673]
[69]
Sekhar T, Thriveni P, Venkateswarlu A, Daveedu T, Peddanna K, Sainath SB. One-pot synthesis of thiazolo[3,2-a]pyrimidine derivatives, their cytotoxic evaluation and molecular docking studies. Spectrochim Acta A Mol Biomol Spectrosc 2020; 231: 118056.
[http://dx.doi.org/10.1016/j.saa.2020.118056] [PMID: 32006911]
[70]
Eissa IH, El-Naggar AM, El-Sattar NEAA, Youssef ASA. Design and discovery of novel quinoxaline derivatives as dual DNA intercalators and topoisomerase II inhibitors. Anticancer Agents Med Chem 2018; 18(2): 195-209.
[http://dx.doi.org/10.2174/1871520617666170710182405] [PMID: 28699490]
[71]
Eissa IH, Metwaly AM, Belal A, et al. Discovery and antiproliferative evaluation of new quinoxalines as potential DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim) 2019; 352(11): e1900123.
[http://dx.doi.org/10.1002/ardp.201900123] [PMID: 31463953]
[72]
Ibrahim MK, Taghour MS, Metwaly AM, et al. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur J Med Chem 2018; 155: 117-34.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.004] [PMID: 29885574]
[73]
Kaur G, Cholia RP, Joshi G, et al. Anticancer activity of dihydropyrazolo[1,5-c]quinazolines against rat C6 glioma cells via inhibition of topoisomerase II. Arch Pharm (Weinheim) 2018; 351(6): e1800023.
[http://dx.doi.org/10.1002/ardp.201800023] [PMID: 29737542]
[74]
Mohamady S, Gibriel AA, Ahmed MS, Hendy MS, Naguib BH. Design and novel synthetic approach supported with molecular docking and biological evidence for naphthoquinone-hydrazinotriazolothiadiazine analogs as potential anticancer inhibiting topoisomerase-IIB. Bioorg Chem 2020; 96: 103641.
[http://dx.doi.org/10.1016/j.bioorg.2020.103641] [PMID: 32032844]
[75]
Gouveia RG, Ribeiro AG, Segundo MÂSP, et al. Synthesis, DNA and protein interactions and human topoisomerase inhibition of novel Spiroacridine derivatives. Bioorg Med Chem 2018; 26(22): 5911-21.
[http://dx.doi.org/10.1016/j.bmc.2018.10.038] [PMID: 30420325]
[76]
da Silva Filho FA, de Freitas Souza T, Ribeiro AG, et al. Topoisomerase inhibition and albumin interaction studies of acridine-thiosemicarbazone derivatives. Int J Biol Macromol 2019; 138: 582-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.097] [PMID: 31323270]
[77]
Ribeiro AG, Almeida SMV, de Oliveira JF, et al. Novel 4-quinoline-thiosemicarbazone derivatives: Synthesis, antiproliferative activity, in vitro and in silico biomacromolecule interaction studies and topoisomerase inhibition. Eur J Med Chem 2019; 182: 111592.
[http://dx.doi.org/10.1016/j.ejmech.2019.111592] [PMID: 31421632]
[78]
Li P, Zhang W, Jiang H, et al. Design, synthesis and biological evaluation of benzimidazole-rhodanine conjugates as potent topoisomerase II inhibitors. MedChemComm 2018; 9(7): 1194-205.
[http://dx.doi.org/10.1039/C8MD00278A] [PMID: 30109008]
[79]
Dong G, Wu Y, Sun Y, et al. Identification of potent catalytic inhibitors of human DNA topoisomerase II by structure-based virtual screening. MedChemComm 2018; 9(7): 1142-6.
[http://dx.doi.org/10.1039/C8MD00219C] [PMID: 30109001]
[80]
Chrobak E, Kadela-Tomanek M, Bębenek E, et al. New phosphate derivatives of betulin as anticancer agents: Synthesis, crystal structure, and molecular docking study. Bioorg Chem 2019; 87: 613-28.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.060] [PMID: 30947097]
[81]
Zhang B, Dou Z, Xiong Z, et al. Design, synthesis and biological research of novel N-phenylbenzamide-4-methylamine acridine derivatives as potential topoisomerase I/II and apoptosis-inducing agents. Bioorg Med Chem Lett 2019; 29(23): 126714.
[http://dx.doi.org/10.1016/j.bmcl.2019.126714] [PMID: 31635931]
[82]
Dai Q, Chen J, Gao C, Sun Q, Yuan Z, Jiang Y. Design, synthesis and biological evaluation of novel phthalazinone acridine derivatives as dual PARP and Topo inhibitors for potential anticancer agents. Chin Chem Lett 2020; 31(2): 404-8.
[http://dx.doi.org/10.1016/j.cclet.2019.06.019]
[83]
Salerno S, La Pietra V, Hyeraci M, et al. Benzothiopyranoindole- and pyridothiopyranoindole-based antiproliferative agents targeting topoisomerases. Eur J Med Chem 2019; 165: 46-58.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.015] [PMID: 30660826]
[84]
Bist G, Park S, Song C, et al. Dihydroxylated 2,6-diphenyl-4-chlorophenylpyridines: Topoisomerase I and IIα dual inhibitors with DNA non-intercalative catalytic activity. Eur J Med Chem 2017; 133: 69-84.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.048] [PMID: 28384547]
[85]
Deng JG, Li T, Su G, Qin QP, Liu Y, Gou Y. Co(III) complexes based on α-N-heterocyclic thiosemicarbazone ligands: DNA binding, DNA cleavage, and topoisomerase I/II inhibitory activity studies. J Mol Struct 2018; 1167: 33-43.
[http://dx.doi.org/10.1016/j.molstruc.2018.04.074]