Current Outlooks on Machine Learning Methods for the Development of Industrial Homogeneous Catalytic Systems

Page: [276 - 280] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

This brief perspective outlines the pivotal role of Machine Learning methods in the green, digital transition of industrial chemistry. The focus on homogenous catalysis highlights the recent methodologies in the development of industrial processes, including the design of new catalysts and the enhancement of sustainable reaction conditions to lower production costs. We report several examples of Machine Learning assisted methodologies through recent Data Science trends in the innovation of industrial homogeneous organocatalytic systems. We also stress the current benefits, drawbacks, and limitations of the mass implementation of these Data Science methodologies.

Keywords: Machine Learning, Homogeneous Catalysis, Catalyst Design, Data Science.

Graphical Abstract

[1]
Ratti, R. Industrial applications of green chemistry: Status, challenges and prospects. SN Appl. Sci., 2020, 2(263), 1-7.
[http://dx.doi.org/10.1007/s42452-020-2019-6]
[2]
Szekely, G.; Livingston, A. Sustainable nanoscale engineering;; Elsevier, 2020. Available from: https://www.elsevier.com/books/sustainable-nanoscale-engineering/szekely/978-0-12-814681-1
[3]
Schlögl, R. Heterogeneous catalysis. Angew. Chem. Int. Ed. Engl., 2015, 54(11), 3465-3520.
[http://dx.doi.org/10.1002/anie.201410738] [PMID: 25693734]
[4]
Matera, S.S.; Schneider, W.F.; Heyden, A.; Savara, A. Progress in accurate chemical kinetic modeling, simulations, and parameter estima-tion for heterogeneous catalysis. ACS Catal., 2019, 9(8), 6624-6647.
[http://dx.doi.org/10.1021/acscatal.9b01234]
[5]
Bruix, A.M.; Margraf, J.T.; Andersen, M.; Reuter, K. First-principles-based multiscale modelling of heterogeneous catalysis. Nat. Catal., 2019, 2(8), 659-670.
[http://dx.doi.org/10.1038/s41929-019-0298-3]
[6]
Andersen, M.; Levchenko, S.V.; Scheffler, M.; Reuter, K. Beyond scaling relations for the description of catalytic materials. ACS Catal., 2019, 9(4), 2752-2759.
[http://dx.doi.org/10.1021/acscatal.8b04478]
[7]
Reuter, K. Ab initio thermodynamics and first-principles microkinetics for surface catalysis. Catal. Lett., 2016, 146(3), 541-563.
[http://dx.doi.org/10.1007/s10562-015-1684-3]
[8]
Foscato, M.; Jensen, V.R. Automated in silico design of homogeneous catalysts. ACS Catal., 2020, 10(3), 2354-2377.
[http://dx.doi.org/10.1021/acscatal.9b04952]
[9]
Ahn, S.; Hong, M.; Sundararajan, M.; Ess, D.H.; Baik, M-H. Design and optimization of catalysts based on mechanistic insights derived from quantum chemical reaction modeling. Chem. Rev., 2019, 119(11), 6509-6560.
[http://dx.doi.org/10.1021/acs.chemrev.9b00073] [PMID: 31066549]
[10]
Tsang, A.S.K.; Sanhueza, I.A.; Schoenebeck, F. Combining experimental and computational studies to understand and predict reactivities of relevance to homogeneous catalysis. Chemistry, 2014, 20(50), 16432-16441.
[http://dx.doi.org/10.1002/chem.201404725] [PMID: 25345971]
[11]
Li, J.; Albrecht, J.; Borovika, A.; Eastgate, M.D. Evolving green chemistry metrics into predictive tools for decision makingand bench-marking analytics. ACS Sustain. Chem.& Eng., 2018, 6(1), 1121-1132.
[http://dx.doi.org/10.1021/acssuschemeng.7b03407]
[12]
Yang, W.; Fidelis, T.T.; Sun, W.H. Machine learning in catalysis, from proposal to practicing. ACS Omega, 2019, 5(1), 83-88.
[http://dx.doi.org/10.1021/acsomega.9b03673] [PMID: 31956754]
[13]
Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature, 2018, 559(7715), 547-555.
[http://dx.doi.org/10.1038/s41586-018-0337-2] [PMID: 30046072]
[14]
Lamoureux, P.; Winther, K.; Torres, J.A.; Streibel, V.; Zhao, M.; Bajdich, M.; Abild-Pedersen, F.; Bligaard, T. Machine learning for com-putational heterogeneous catalysis. ChemCatChem, 2019, 11(16), 3581-3601.
[http://dx.doi.org/10.1002/cctc.201900595]
[15]
Lo, Y.C.; Rensi, S.E.; Torng, W.; Altman, R.B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today, 2018, 23(8), 1538-1546.
[http://dx.doi.org/10.1016/j.drudis.2018.05.010] [PMID: 29750902]
[16]
Miyao, T.; Kaneko, H.; Funatsu, K. Inverse QSPR/QSAR analysis for chemical structure generation (from y to x). J. Chem. Inf. Model., 2016, 56(2), 286-299.
[http://dx.doi.org/10.1021/acs.jcim.5b00628] [PMID: 26818135]
[17]
Takahashi, K.; Takahashi, L.; Miyazato, I.; Fujima, J.; Tanaka, Y.; Uno, T.; Satoh, H.; Ohno, K.; Nishida, M.; Hirai, K.; Ohyama, J.; Ngu-yen, T.; Nishimura, S.; Taniike, T. The rise of catalyst informatics: Towards catalyst genomics. ChemCatChem, 2019, 11(4), 1146-1152.
[http://dx.doi.org/10.1002/cctc.201801956]
[18]
Medford, A.; Kunz, M.; Ewing, S.; Borders, T.; Fushimi, R. Extracting knowledge from data through catalysis informatics. ACS Catal., 2018, 8(8), 7403-7429.
[http://dx.doi.org/10.1021/acscatal.8b01708]
[19]
Freeze, J.G.K.; Kelly, H.R.; Batista, V.S. Search for catalysts by inverse design: Artificial intelligence, mountain climbers, and alchemists. Chem. Rev., 2019, 119(11), 6595-6612.
[http://dx.doi.org/10.1021/acs.chemrev.8b00759] [PMID: 31059236]
[20]
van Santen, R.A.; Neurock, M.; Shetty, S.G. Reactivity theory of transition-metal surfaces: A Brønsted-Evans-Polanyi linear activation energy-free-energy analysis. Chem. Rev., 2010, 110(4), 2005-2048.
[http://dx.doi.org/10.1021/cr9001808] [PMID: 20041655]
[21]
Isbrandt, E.S.; Sullivan, R.J.; Newman, S.G. High throughput strategies for the discovery and optimization of catalytic reactions. Angew. Chem. Int. Ed. Engl., 2019, 58(22), 7180-7191.
[http://dx.doi.org/10.1002/anie.201812534] [PMID: 30576045]
[22]
Yang, W.; Ma, Z.; Yi, J.; Ahmed, S.; Sun, W.H. Catalytic performance of bis(imino)pyridine Fe/Co complexes toward ethylene polymeri-zation by 2D-/3D-QSPR modeling. J. Comput. Chem., 2019, 40(13), 1374-1386.
[http://dx.doi.org/10.1002/jcc.25792] [PMID: 30697785]
[23]
Ahmed, S.; Yang, W.; Ma, Z.; Sun, W.H. Catalytic activities of bis(pentamethylene)pyridyl Fe/Co complex analogues in ethylene polymer-ization by modeling method. J. Phys. Chem. A, 2018, 122(50), 9637-9644.
[http://dx.doi.org/10.1021/acs.jpca.8b09121] [PMID: 30489079]
[24]
Fey, N.; Orpen, A.; Harvey, J. Building ligand knowledge bases for organometallic chemistry: computational description of phospho-rus(III)-donor ligands and the metal-phosphorus bond. Coord. Chem. Rev., 2009, 253(5-6), 704-722.
[http://dx.doi.org/10.1016/j.ccr.2008.04.017]
[25]
Jover, J.; Fey, N. The computational road to better catalysts. Chem. Asian J., 2014, 9(7), 1714-1723.
[http://dx.doi.org/10.1002/asia.201301696] [PMID: 24668590]
[26]
Fey, N. The contribution of computational studies to organometallic catalysis: Descriptors, mechanisms and models. Dalton Trans., 2010, 39(2), 296-310.
[http://dx.doi.org/10.1039/B913356A] [PMID: 20023961]
[27]
Santiago, C.B.; Guo, J.Y.; Sigman, M.S. Predictive and mechanistic multivariate linear regression models for reaction development. Chem. Sci. (Camb.), 2018, 9(9), 2398-2412.
[http://dx.doi.org/10.1039/C7SC04679K] [PMID: 29719711]
[28]
Reid, J.; Sigman, M. Comparing quantitative prediction methods for the discovery of small-molecule chiral catalysts. Nat. Rev. Chem., 2018, 2(10), 290-305.
[http://dx.doi.org/10.1038/s41570-018-0040-8]
[29]
Maldonado, A.G.; Rothenberg, G. Predictive modeling in homogeneous catalysis: A tutorial. Chem. Soc. Rev., 2010, 39(6), 1891-1902.
[http://dx.doi.org/10.1039/b921393g] [PMID: 20502792]
[30]
Bess, E.N.; Bischoff, A.J.; Sigman, M.S. Designer substrate library for quantitative, predictive modeling of reaction performance. Proc. Natl. Acad. Sci. USA, 2014, 111(41), 14698-14703.
[http://dx.doi.org/10.1073/pnas.1409522111] [PMID: 25267648]
[31]
See, X.Y.; Wen, X.; Wheeler, T.A.; Klein, C.K.; Goodpaster, J.D.; Reiner, B.R.; Tonks, I.A. Iterative supervised principal component anal-ysis driven ligand design for regioselective Ti-Catalyzed pyrrole synthesis. ACS Catal., 2020, 10(22), 13504-13517.
[http://dx.doi.org/10.1021/acscatal.0c03939] [PMID: 34327040]
[32]
Liu, F.; Duan, C.; Kulik, H.J. Rapid detection of strong correlation with machine learning for transition-metal complex high-throughput screening. J. Phys. Chem. Lett., 2020, 11(19), 8067-8076.
[http://dx.doi.org/10.1021/acs.jpclett.0c02288] [PMID: 32864977]
[33]
Burello, E.; Farrusseng, D.; Rothenberg, G. Combinatorial explosion in homogeneous catalysis: Screening 60,000 cross-coupling reac-tions. Adv. Synth. Catal., 2004, 346(13-15), 1844-1853.
[http://dx.doi.org/10.1002/adsc.200404170]
[34]
Yamaguchi, S.; Sodeoka, M. Molecular field analysis using intermediates in enantio-determining steps can extract information for data-driven molecular design in asymmetric catalysis. Bull. Chem. Soc. Jpn., 2019, 92(10), 1701-1706.
[http://dx.doi.org/10.1246/bcsj.20190132]
[35]
Hattori, T.; Kito, S. Neural network as a tool for catalyst development. Catal. Today, 1995, 23(4), 347-355.
[http://dx.doi.org/10.1016/0920-5861(94)00148-U]
[36]
Meyer, B.; Sawatlon, B.; Heinen, S.; von Lilienfeld, O.A.; Corminboeuf, C. Machine learning meets volcano plots: Computational discov-ery of cross-coupling catalysts. Chem. Sci. (Camb.), 2018, 9(35), 7069-7077.
[http://dx.doi.org/10.1039/C8SC01949E] [PMID: 30310627]
[37]
Yada, A.; Nagata, K.; Ando, Y.; Matsumura, T.; Ichinoseki, S.; Sato, K. Machine learning approach for prediction of reaction yield with simulated catalyst parameters. Chem. Lett., 2018, 47(3), 284-287.
[http://dx.doi.org/10.1246/cl.171130]
[38]
Wu, K.; Doyle, A.G. Parameterization of phosphine ligands demonstrates enhancement of nickel catalysis via remote steric effects. Nat. Chem., 2017, 9(8), 779-784.
[http://dx.doi.org/10.1038/nchem.2741] [PMID: 28754948]
[39]
Rosales, A.; Wahlers, J.; Limé, E.; Meadows, R.E.; Leslie, K.W.; Savin, R.; Bell, F.; Hansen, E.; Helquist, P.; Munday, R.H.; Wiest, O.; Norrby, P-O. Rapid virtual screening of enantioselective catalysts using CatVS. Nat. Catal., 2019, 2(1), 41-45.
[http://dx.doi.org/10.1038/s41929-018-0193-3]
[40]
Banerjee, S.; Sreenithya, A.; Sunoj, R.B. Machine learning for predicting product distributions in catalytic regioselective reactions. Phys. Chem. Chem. Phys., 2018, 20(27), 18311-18318.
[http://dx.doi.org/10.1039/C8CP03141J] [PMID: 29967920]
[41]
Amar, Y.; Schweidtmann, A.M.; Deutsch, P.; Cao, L.; Lapkin, A. Machine learning and molecular descriptors enable rational solvent se-lection in asymmetric catalysis. Chem. Sci. (Camb.), 2019, 10(27), 6697-6706.
[http://dx.doi.org/10.1039/C9SC01844A] [PMID: 31367324]