International Journal of Sensors, Wireless Communications and Control

Author(s): Safia Gul, Bilal Ahmad Malik* and Mohamad Tariq Banday

DOI: 10.2174/2210327912666220726150049

Intelligent Load Balancing Algorithms for Internet of Things - A Review

Page: [415 - 439] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

The Internet of Things has witnessed an upsurge in the number of sensors communicating with each other over the Internet, and this number, currently in billions, is increasing at an expeditious pace. However, this augmentation in the number of interlaced devices can lead to profusion and jamming of the network, thereby degrading energy, latency, and throughput. Load balancing of the network is one of the techniques which could alleviate this issue. This paper reviews the methods that have been employed for load balancing of the Internet of Things, thereby serving the research community two-fold. Firstly, it gives a comprehensive introduction to the classification of load balancing algorithms. Secondly, it offers researchers the prospect of developing intelligent novel algorithms catering to the load balancing predicament.

Keywords: Load balancing, congestion, intelligent algorithms, traditional algorithms, internet of things, machine learning

Graphical Abstract

[1]
Kim HY, Kim JM. A load balancing scheme based on deep-learning in IoT. Cluster Comput 2017; 20(1): 873-8.
[http://dx.doi.org/10.1007/s10586-016-0667-5]
[2]
Kotagi VJ, Singh F, Murthy CSR. Adaptive load balanced routing in heterogeneous iot networks. 2017 IEEE International Conference on Communications Workshops, ICC Workshops. 2017, 21-25 May:; Paris, France; IEEE. pp. 589-594.
[http://dx.doi.org/10.1109/ICCW.2017.7962722]
[3]
Akbar Neghabi A, Jafari Navimipour N, Hosseinzadeh M, Rezaee A. Nature-inspired meta-heuristic algorithms for solving the load balancing problem in the software-defined network. Int J Commun Syst 2019; 32(4): 1-26.
[http://dx.doi.org/10.1002/dac.3875]
[4]
Tuncer D, Charalambides M, Clayman S, Pavlou G. Adaptive resource management and control in software defined networks. IEEE eTrans Netw Serv Manag 2015; 12(1): 18-33.
[http://dx.doi.org/10.1109/TNSM.2015.2402752]
[5]
Bin Zikria Y, Afzal MK, Kim SW, Marin A, Guizani M. Deep learning for intelligent IoT: Opportunities, challenges and solutions. Comput Commun 2020; 164: 50-3.
[http://dx.doi.org/10.1016/j.comcom.2020.08.017]
[6]
Yousafzai A, Abdullah G, Rafidah MN, et al. Cloud resource allocation schemes: Review, taxonomy, and opportunities. London: Springer 2017; 50: pp. 2347-81.
[7]
Salman MA, Bertelle C, Sanlaville E. The behavior of load balancing strategies with regard to the network structure in distributed computing systems 10th Int Conf Signal-Image Technol Internet-Based Syst SITIS Proc -. 2014; 432-9.
[http://dx.doi.org/10.1109/SITIS.2014.42]
[8]
Kim HS, Kim H, Paek J, Bahk S. Load balancing under heavy traffic in rpl routing protocol for low power and lossy networks. IEEE Trans Mobile Comput 2017; 16(4): 964-79.
[http://dx.doi.org/10.1109/TMC.2016.2585107]
[9]
Panchal B, Parida S. An efficient dynamic load balancing algorithm using machine learning technique in cloud environment. Int J Sci Res Sci Eng Technol 2018; 4(4): 1184-6. Available from: http://ijsrset.com/paper/4504.pdf
[10]
Sharma S, Saini H. A novel four-tier architecture for delay aware scheduling and load balancing in fog environment. Sustain Comput Informatics Syst 2019; 24: 100355.
[http://dx.doi.org/10.1016/j.suscom.2019.100355]
[11]
Dasgupta K, Mandal B, Dutta P, Mandal JK, Dam S. A genetic algorithm (ga) based load balancing strategy for cloud computing. Procedia Technol 2013; 10: 340-7.
[http://dx.doi.org/10.1016/j.protcy.2013.12.369]
[12]
M N, Al A, A S. Load balancing with neural network. Int J Adv Comput Sci Appl 2013; 4(10): 138-45.
[http://dx.doi.org/10.14569/IJACSA.2013.041021]
[13]
Singhal H, Badal N, Gupta AK, Sisodia DS. A novel approach for load balancing in distributed system using fifo-support vector machine (fifosvm). Int J Sci Res (Raipur) 2015; 4(12): 345-51.
[http://dx.doi.org/10.21275/v4i12.NOV151883]
[14]
Gomez CA, Shami A, Wang X. Machine learning aided scheme for load balancing in dense IoT networks. Sensors (Basel) 2018; 18(11): E3779.
[http://dx.doi.org/10.3390/s18113779] [PMID: 30400631]
[15]
Hasan M, Hossain E, Niyato D. Random access for machine-to-machine communication in LTE-advanced networks: Issues and approaches. IEEE Commun Mag 2013; 51(6): 86-93.
[http://dx.doi.org/10.1109/MCOM.2013.6525600]
[16]
Xiao H, Zhang Z, Zhou Z. GWS-A collaborative load-balancing algorithm for internet-of-things. Sensors (Basel) 2018; 18(8): 1-17.
[http://dx.doi.org/10.3390/s18082479] [PMID: 30065224]
[17]
Kashyap PK, Kumar S, Dohare U, Kumar V, Kharel R. Green computing in sensors-enabled internet of things: Neuro fuzzy logic-based load balancing. Electronics (Basel) 2019; 8(4): 384.
[http://dx.doi.org/10.3390/electronics8040384]
[18]
Li J, Lei H, Alavi AH. A survey of learning-based intelligent optimization algorithms Math 2021; 8(1415): 3781-99.
[http://dx.doi.org/10.3390/math8091415]
[19]
Banaie F, Yaghmaee MH, Hosseini SA, Tashtarian F. Load-balancing algorithm for multiple gateways in fog-based internet of things. IEEE Internet Things J 2020; 7(8): 7043-53.
[http://dx.doi.org/10.1109/JIOT.2020.2982305]
[20]
Wang GG, Gandomi AH, Alavi AH, Gong D. A comprehensive review of krill herd algorithm: Variants, hybrids and applications. Artif Intell Rev 2019; 51(1): 119-48.
[http://dx.doi.org/10.1007/s10462-017-9559-1]
[21]
Pandit MK, Mir RN, Chishti MA. Adaptive task scheduling in IoT using reinforcement learning. Int J Intell Comput Cybern 2020; 13(3): 261-82.
[http://dx.doi.org/10.1108/IJICC-03-2020-0021]
[22]
Hussain F, Hassan SA, Hussain R, Hossain E. Machine learning for resource management in cellular and iot networks: Potentials, current solutions, and open challenges. IEEE Comm Surv and Tutor 2020; 22(2): 1251-75.
[http://dx.doi.org/10.1109/COMST.2020.2964534]
[23]
Singh SP, Kumar R, Sharma A, Nayyar A. Leveraging energy-efficient load balancing algorithms in fog computing. Concurr Comput 2022; 34(13): e5913.
[http://dx.doi.org/10.1002/cpe.5913]
[24]
Pourghebleh B, Hayyolalam V. A comprehensive and systematic review of the load balancing mechanisms in the internet of things. Cluster Comput 2020; 23(2): 641-61.
[http://dx.doi.org/10.1007/s10586-019-02950-0]
[25]
Bin Zikria Y, et al. A survey on routing protocols supported by the contiki internet of things operating system. Future Gener Comput Syst 2018; 82: 200-19.
[http://dx.doi.org/10.1016/j.future.2017.12.045]
[26]
Srinidhi NN, Dilip Kumar SM, Venugopal KR. Network optimizations in the internet of things: A review Eng Sci Technol an Int J 2019; 22(1): 1-21.
[http://dx.doi.org/10.1016/j.jestch.2018.09.003]
[27]
Musaddiq A, Bin Zikria Y, Hahm O, Yu H, Bashir AK, Kim SW. A survey on resource management in iot operating systems. IEEE Access 2018; 6: 8459-82.
[http://dx.doi.org/10.1109/ACCESS.2018.2808324]
[28]
Mohamed Shameem P, Shaji RS. A methodological survey on load balancing techniques in cloud computing. Int J Eng Technol 2013; 5(5): 3801-12.
[29]
Borgia E. The internet of things vision: Key features, applications and open issues. Comput Commun 2014; 54: 1-31.
[http://dx.doi.org/10.1016/j.comcom.2014.09.008]
[30]
Al-Janabi TA, Al-Raweshidy HS. Optimised clustering algorithm-based centralised architecture for load balancing in IoT network. In 2017 International Symposium on Wireless Communication Systems (ISWCS). 28-31 Aug. 2017:; Bologna, Italy; IEEE 2017.
[http://dx.doi.org/10.1109/ISWCS.2017.8108123]
[31]
Zhong H, Fang Y, Cui J. Reprint of ‘LBBSRT: An efficient SDN load balancing scheme based on server response time,’. Future Gener Comput Syst 2018; 80: 409-16.
[http://dx.doi.org/10.1016/j.future.2017.11.012]
[32]
Xu M, Tian W, Buyya R. A survey on load balancing algorithms for virtual machines placement in cloud computing. Concurr Comput 2017; 29(12): 1-16.
[http://dx.doi.org/10.1002/cpe.4123]
[33]
Deepa T, Cheelu D. A comparative study of static and dynamic load balancing algorithms in cloud computing. In International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS). 1-2 Aug 2017:; Chennai, India; IEEE. pp 3375-3378.
[34]
Zahra Mohammed Elngomi KK. A comparative study of load balancing algorithms: A review paper. Int J Comput Sci Mob Comput 2016; 5(6): 448-58.
[35]
Tseng CH. Multipath load balancing routing for internet of things. J Sens 2016; 2016: 1-8.
[http://dx.doi.org/10.1155/2016/4250746]
[36]
Huynh T, Hwang WJ. Network lifetime maximization in wireless sensor networks with a path-constrained mobile sink. Int J Distrib Sens Netw 2015; 2015(11): 679093.
[http://dx.doi.org/10.1155/2015/679093]
[37]
Neghabi AA, Navimipour NJ, Hosseinzadeh M, Rezaee A. Load balancing mechanisms in the software defined networks: A systematic and comprehensive review of the literature. IEEE Access 2018; 6: 14159-78.
[http://dx.doi.org/10.1109/ACCESS.2018.2805842]
[38]
Iova O, Fabrice T, Thomas N. Improving the network lifetime with energy-balancing routing: Application to rpl. In 7th IFIP Wireless and Mobile Networking Conference (WMNC);. 20-22 May 2014:; Vilamoura, Portugal; IEEE 2014.
[40]
Chen W, Shang Z, Tian X, Li H. Dynamic server cluster load balancing in virtualization environment with openflow. Int J Distrib Sens Netw 2015; 2015(7): 531538.
[http://dx.doi.org/10.1155/2015/531538]
[41]
Li G, Yao Y, Wu J, Liu X, Sheng X, Lin Q. A new load balancing strategy by task allocation in edge computing based on intermediary nodes. EURASIP J Wirel Commun Netw 2020; 2020(1): 3.
[http://dx.doi.org/10.1186/s13638-019-1624-9]
[42]
Patni JC, Aswal MS. Distributed load balancing model for grid computing environment Proc 2015 1st Int Conf Next Gener Comput Technol NGCT 2015; 123-6.
[http://dx.doi.org/10.1109/NGCT.2015.7375096]
[43]
Kumar P, Kaur EM. A study on load balancing in cloud computing. Int J Comput Organ Trends 2015; 21(1): 1-5.
[http://dx.doi.org/10.14445/22492593/IJCOT-V21P301]
[44]
Mishra SK, Sahoo B, Parida PP. Load balancing in cloud computing: A big picture. J King Saud Univ Comput Inf Sci 2020; 32(2): 149-58.
[http://dx.doi.org/10.1016/j.jksuci.2018.01.003]
[45]
AlKhatib AA, Sawalha T, AlZu’bi S. Load balancing techniques in software-defined cloud computing: An overview. In Seventh International Conference on Software Defined Systems (SDS). 20-23 April 2020; Paris, France: IEEE 2020.
[http://dx.doi.org/10.1109/SDS49854.2020.9143874]
[46]
Kumari M, Kumar R. A comparative study of various load balancing algorithm in parallel and distributed multiprocessor system. Int J Comput Appl 2017; 169(10): 31-5.
[http://dx.doi.org/10.5120/ijca2017914901]
[47]
Tang F, Yang LT, Tang C, Li J, Guo M. A dynamical and load-balanced flow scheduling approach for big data centers in clouds. IEEE Trans Cloud Comput 2018; 6(4): 915-28.
[http://dx.doi.org/10.1109/TCC.2016.2543722]
[48]
Alakeel AM. A guide to dynamic load balancing in distributed computer systems. IJCSNS Int J Comput Sci Netw Secur 2010; 10(6): 153-60. Available from: http://paper.ijcsns.org/07_book/201006/20100619.pdf
[49]
Wani V. A comparative study of various load balancing strategies for performance analysis in distributed system. Int J Res Eng Appl Manag 2018; 102-7.
[50]
Zomaya AY, Teh YH. Observations on using genetic algorithms for dynamic load-balancing. IEEE Trans Parallel Distrib Syst 2001; 12(9): 899-911.
[http://dx.doi.org/10.1109/71.954620]
[51]
Alam F, Thayananthan V, Katib I. Analysis of round-robin loadbalancing algorithm with adaptive and predictive approaches 2016 UKACC Int Conf Control UKACC Control 2016.
[http://dx.doi.org/10.1109/CONTROL.2016.7737592]
[52]
Dubey S, Dahiya M, Jain S. Implementation of load balancing algorithm with cloud collaboration for logistics. J Eng Appl Sci (Asian Res Publ Netw) 2019; 14(2): 507-15.
[http://dx.doi.org/10.36478/jeasci.2019.507.515]
[53]
Chen H, Wang F, Helian N, Akanmu G. User-priority guided min-min scheduling algorithm for load balancing in cloud computing. 2013 Natl Conference Parallel Computer Technology PARCOMPTECH 2013;. 21-23 Feb. 2013:; Bangalore, India: IEEE 2013.
[http://dx.doi.org/10.1109/ParCompTech.2013.6621389]
[54]
Li G, Wu Z. Ant colony optimization task scheduling algorithm for SWIM based on load balancing. Futur Internet 2019; 11(4): 90.
[http://dx.doi.org/10.3390/fi11040090]
[55]
Patel D. Efficient throttled load balancing algorithm in cloud environment. Int J Mod Trends Eng Res 2015; 02(03): 463-81.
[56]
Abdul Karim A, Muhammed I, Mohammed L, Babayaro A. Performance analysis of an improved load balancing algorithm in cloud computing. Am J Netw Commun 2019; 8(2): 47-58.
[http://dx.doi.org/10.11648/j.ajnc.20190802.11]
[57]
Suwandika IPA, Nugroho MA, Abdurahman M. Increasing SDN network performance using load balancing scheme on web server. 2018 6th International Conference on Information and Communication Technology (ICoICT). 3-5 May 2018; Bandung, Indonesia: IEEE
[http://dx.doi.org/10.1109/ICoICT.2018.8528803]
[58]
Singh G, Kaur K. An improved weighted least connection scheduling algorithm for load balancing in web cluster systems. Int Res J Eng Technol 2018; 1950-5.
[59]
Tsai C, Moh M. Load balancing in 5G cloud radio access networks supporting IoT communications for smart communities 2017 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT. 2017; 259-64.
[http://dx.doi.org/10.1109/ISSPIT.2017.8388652]
[60]
Wilson Prakash S, Deepalakshmi P. DServ-LB: Dynamic server load balancing algorithm. Int J Commun Syst 2019; 32(1): 1-11.
[http://dx.doi.org/10.1002/dac.3840]
[61]
Abed MM, Younis MF. Developing load balancing for IoT - Cloud computing based on advanced firefly and weighted round robin algorithms. Baghdad Sci J 2019; 16(1): 130-9.
[http://dx.doi.org/10.21123/bsj.2019.16.1.0130]
[62]
Justy Mirobi G, Arockiam L. Dynamic load balancing approach for minimizing the response time using an enhanced throttled load balancer in cloud computing Proc 2nd Int Conf Smart Syst Inven Technol ICSSIT. 2019; 570-5.
[http://dx.doi.org/10.1109/ICSSIT46314.2019.8987845]
[63]
Mustafa ME. Load balancing algorithms round-robin (Rr), least- connection, and least loaded efficiency. Comput Sci Telecommun 2017; 51(1): 25-9. Available from: http://gesj.internet-academy.org.ge/download.php?id=2886.pdf&t=1
[64]
Webb B. Swarm intelligence: From natural to artificial systems. Connect Sci 2002; 14(2): 163-4.
[http://dx.doi.org/10.1080/09540090210144948]
[65]
Petrovski A, Brownlee A, McCall J. Statistical optimisation and tuning of GA factors 2005 IEEE Congr Evol Comput IEEE CEC 2005 Proc. vol. 1: 758-64.
[http://dx.doi.org/10.1109/CEC.2005.1554759]
[66]
Cantu-Paz E. Designing efficient and accurate parallel genetic algorithms IlliGAL 1999.
[67]
Talaat FM, Saraya MS, Saleh AI, Ali HA, Ali SH. A load balancing and optimization strategy (LBOS) using reinforcement learning in fog computing environment. J Ambient Intell Humaniz Comput 2015 2020.
[http://dx.doi.org/10.1007/s12652-020-01768-8]
[68]
Hussain A, Manikanthan SV, Padmapriya T, Nagalingam M. Genetic algorithm based adaptive offloading for improving IoT device communication efficiency. Wirel Netw 2020; 26(4): 2329-38.
[http://dx.doi.org/10.1007/s11276-019-02121-4]
[69]
Rani S, Ahmed SH, Rastogi R. Dynamic clustering approach based on wireless sensor networks genetic algorithm for IoT applications. Wirel Netw 2020; 26(4): 2307-16.
[http://dx.doi.org/10.1007/s11276-019-02083-7]
[70]
Beni G, Wang J. Swarm Intelligence in Cellular Robotic Systems Robots and Biological Systems: Towards a New Bionics?. Berlin, Heidelberg: Springer 1993; pp. 703-12.
[http://dx.doi.org/10.1007/978-3-642-58069-7_38]
[71]
Zedadra O, Guerrieri A, Jouandeau N, Spezzano G, Seridi H, Fortino G. Swarm intelligence-based algorithms within IoT-based systems: A review. J Parallel Distrib Comput 2018; 122: 173-87.
[http://dx.doi.org/10.1016/j.jpdc.2018.08.007]
[72]
Dorigo M, Stützle T. The ant colony optimization metaheuristic: Algorithms, applications, and advances 2003; 250-85.
[73]
Dorigo M, Stützle T. The ant colony optimization metaheuristic Ant Colony Optim 2018.
[http://dx.doi.org/10.7551/mitpress/1290.003.0004]
[74]
Mizan T, Murtaza S, Al R, Latip R. Modified bees life algorithm for job scheduling in hybrid cloud. Int J Eng Technol 2012; 2(6): 974-9.
[75]
Yuce B, Packianather MS, Mastrocinque E, Pham DT, Lambiase A. Honey bees inspired optimization method: The bees algorithm. Insects 2013; 4(4): 646-62.
[http://dx.doi.org/10.3390/insects4040646] [PMID: 26462528]
[76]
Ahmad M, Ikram AA, Wahid I, Ullah F, Ahmad A, Alam Khan F. Optimized clustering in vehicular ad hoc networks based on honey bee and genetic algorithm for internet of things. Peer-to-Peer Netw Appl 2020; 13(2): 532-47.
[http://dx.doi.org/10.1007/s12083-019-00724-4]
[77]
Kang B, Choo H. An SDN-enhanced load-balancing technique in the cloud system. J Supercomput 2018; 74(11): 5706-29.
[http://dx.doi.org/10.1007/s11227-016-1936-z]
[78]
Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw 2016; 95: 51-67.
[http://dx.doi.org/10.1016/j.advengsoft.2016.01.008]
[79]
Rana N, Latiff MSA, Abdulhamid SM, Chiroma H. Whale optimization algorithm: A systematic review of contemporary applications, modifications and developments. London: Springer 2020; Vol. 0123456789.
[80]
Reddy MPK, Babu MR. Implementing self adaptiveness in whale optimization for cluster head section in Internet of Things. Cluster Comput 2019; 22(S1): 1361-72.
[http://dx.doi.org/10.1007/s10586-017-1628-3]
[81]
Vimal S, Khari M, Crespo RG, Kalaivani L, Dey N, Kaliappan M. Energy enhancement using multiobjective ant colony optimization with double q learning algorithm for iot based cognitive radio networks. Comput Commun 2020; 154(March): 481-90.
[http://dx.doi.org/10.1016/j.comcom.2020.03.004]
[82]
Ahmed MM, Houssein EH, Hassanien AE, Taha A, Hassanien E. Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm. Telecomm Syst 2019; 72(2): 243-59.
[http://dx.doi.org/10.1007/s11235-019-00559-7]
[83]
Feng Y, Deb S, Wang GG, Alavi AH. Monarch butterfly optimization: A comprehensive review. Expert Syst Appl 2021; 168: 114418.
[http://dx.doi.org/10.1016/j.eswa.2020.114418]
[84]
Janakiraman S, Priya MD. Improved artificial bee colony using monarchy butterfly optimization algorithm for load balancing (IABC-MBOA-LB) cloud environments. US: Springer 2021; 29.(no. 4)
[85]
Sarhan S, Sarhan S. Elephant herding optimization ad hoc on-demand multipath distance vector routing protocol for manet. IEEE Access 2021; 9: 39489-99.
[http://dx.doi.org/10.1109/ACCESS.2021.3065288]
[86]
Strumberger I, Bacanin N, Tuba M. Hybridized elephant herding optimization algorithm for constrained optimization. Springer International Publishing 2018; Vol. 734.
[http://dx.doi.org/10.1007/978-3-319-76351-4_16]
[87]
Sadrishojaei M, Jafari Navimipour N, Reshadi M, Hosseinzadeh M. Clustered routing method in the internet of things using a moth-flame optimization algorithm. Int J Commun Syst 2021; 34(16): 1-18.
[http://dx.doi.org/10.1002/dac.4964]
[88]
Negnevitsky M. Artificial intelligence 3e e-book a guide to intelligent systems 2011; 73: 1-2. Available from: https://www.pearson.com/store/p/artificial-intelligence-a-guide-to-intelligentsystems/P100002171344/9781408225745
[89]
Zadeh LZ. Fuzzy set. Inf Control 1965; 8: 338-53.
[http://dx.doi.org/10.1016/S0019-9958(65)90241-X]
[90]
Salleh S. Fuzzy logic model for dynamic multiprocessor scheduling. Matematika 1999; 01: 95-109.
[91]
Ramanna S. C++ neural networks and fuzzy logic MTBooks. IDG Books Worldwild 1995.
[92]
Rui X, Wu J. Load balancing in the internet of things using fuzzy logic and shark smell optimization algorithm. Circuit World 2021; 47(4): 335-44.
[http://dx.doi.org/10.1108/CW-09-2019-0117]
[93]
Ragmani A, Elomri A, Abghour N, Moussaid K, Rida M. An improved improved hybrid hybrid fuzzy-ant fuzzy-ant colony colony algorithm algorithm applied applied to to load load balancing in cloud computing environment balancing in cloud computing environment. In: Procedia Comput Sci 2019; 151: 519-26.
[http://dx.doi.org/10.1016/j.procs.2019.04.070]
[94]
Schölkopf B, Luo Z, Vovk V. Empirical inference: festschrift in honor of vladimir n vapnik empir inference festschrift honor vladimir N Vapnik. Springer Berlin, Heidelberg 2013; pp. 1-287.
[http://dx.doi.org/10.1007/978-3-642-41136-6]
[95]
Qiaoshuo SLC. Study on timely scheduling algorithm for load balance based on support vector machine. In IEEE Conference Anthology. 1-8 Jan, 2013; China: IEEE pp 3-6. [Online]
[http://dx.doi.org/10.1109/ANTHOLOGY.2013.6784996]
[96]
Huang YM, Chen RM. Scheduling multiprocessor job with resource and timing constraints using neural networks. IEEE Trans Syst Man Cybern B Cybern 1999; 29(4): 490-502.
[http://dx.doi.org/10.1109/3477.775265] [PMID: 18252324]
[97]
Hanada A, Ohnishi K. Near optimal jobshop scheduling using neural network parallel computing. In Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics. 15-19 Nov. 1993; Maui, HI, USA: IEEE 1993.
[http://dx.doi.org/10.1109/IECON.1993.339060]
[98]
Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NAE, Arshad H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018; 4(11): e00938.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00938] [PMID: 30519653]
[99]
Cui CX, Bin Xu Y. Research on load balance method in SDN. Int J Grid Distrib Comput 2016; 9(1): 25-36.
[http://dx.doi.org/10.14257/ijgdc.2016.9.1.03]
[100]
Li Y, Pan D. Openflow based load balancing for fat-tree networks with multipath support. 12th IEEE Int Conf Commun. 1-5. [Online] Available from: http://users.cis.fiu.edu/~pand/publications/13icc-yu.pdf
[101]
Bhatia M, Sood SK, Kaur S. Quantum-based predictive fog scheduler for IoT applications. Comput Ind 2019; 111: 51-67.
[http://dx.doi.org/10.1016/j.compind.2019.06.002]
[102]
Kumar A, Hariharan N. DCRL-RPL: Dual context-based routing and load balancing in RPL for IoT networks. IET Commun 2020; 14(12): 1869-82.
[http://dx.doi.org/10.1049/iet-com.2020.0091]
[103]
Gazori P, Rahbari D, Nickray M. Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach Gener. Comput Syst 2019; 10(10)
[http://dx.doi.org/10.1016/j.future.2019.09.060]
[104]
Tang F, Mao B, Fadlullah ZM, et al. On removing routing protocol from future wireless networks: A real-time deep learning approach for intelligent traffic control. IEEE Wirel Commun 2018; 25(1): 154-60.
[http://dx.doi.org/10.1109/MWC.2017.1700244]
[105]
Baek JY, Kaddoum G, Garg S, Kaur K, Gravel V. Managing fog networks using reinforcement learning based load balancing algorithm. 2019 IEEE Wireless Communications and Networking Conference (WCNC). 15-18 April 2019; Marrakesh, Morocco. 2019;
[http://dx.doi.org/10.1109/WCNC.2019.8885745]
[106]
Musleh S, Ismail M, Nordin R. Load balancing models based on reinforcement learning for self-optimized macro-femto LTE-advanced heterogeneous network. J Telecommun Electron Comput Eng 2017; 9(1): 47-54.
[107]
Hu Z, Chen H. Network load balancing strategy based on supervised reinforcement learning with shaping rewards. Proc 2013 Int Conf Intell Control Inf Process ICICIP. 2013; 393-7.
[http://dx.doi.org/10.1109/ICICIP.2013.6568104]
[108]
Xu Y, Xu W, Wang Z, Lin J, Cui S. Load balancing for ultradense networks: A deep reinforcement learning-based approach. IEEE Internet Things J 2019; 6(6): 9399-412.
[http://dx.doi.org/10.1109/JIOT.2019.2935010]
[109]
Talaat FM, Ali SH, Saleh AI, Ali HA. Effective Load Balancing Strategy (ELBS) for Real-Time Fog Computing Environment Using Fuzzy and Probabilistic Neural Networks. US: Springer 2019; 27.(no. 4)