A Mechanistic Study of the Antibacterial Activity of Phytoconstituents of Pyracantha crenulata by Using Molecular Docking Studies

Article ID: e220722206994 Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Background: Bacteria cause various infections and are a threat to the health system. This threat is increased due to the resistance of bacteria towards antibacterial drugs. Plants are an important source of drugs including antibacterial agents. Pyracantha crenulata is one important plant known for its different medicinal uses. It contains different phytoconstituents responsible for its medicinal properties.

In cholera, ToxT (PDB ID: 3GBG) regulates the expression of virulence factors in Vibrio cholerae. FtsZ (PDB ID: 6RVN) is a protein involved in cell division and septal wall synthesis in bacteria. MurA (PDB ID: 3SWQ) is critical for the biosynthesis of the bacterial cell wall. Flavin mononucleotide (FMN) (PDB ID: 3F2Q) is involved in the biosynthesis and transport of several protein cofactors. In most of the studies on phytoconstituents, the mechanism of action is not described. Therefore, in this study, the above target proteins were selected and specific target inhibitors were used as standard drugs. In light of the above-mentioned facts, we have proposed a mechanism of antibacterial action of phytoconstituents of Pyracantha crenulata based on molecular docking studies.

Objective: To propose a mechanism of antibacterial action of phytoconstituents of Pyracantha crenulata based on molecular docking studies.

Methods: Molecular docking studies of phytoconstituents of Pyracantha crenulata were performed using the Maestro 12.8 module of Schrodinger software.

Results: Molecular docking results indicated that many constituents including rutin and phloridzin had better dock scores than standard drugs against different antibacterial targets.

Conclusion: From the molecular docking, different constituents may act as good inhibitors of different proteins like phloridzin may act as potent inhibitors of 3GBG, 6RVN, and 3SWQ, which can be used further for the development of new antibacterial agents.

Keywords: Pyracantha crenulata, antibacterial, molecular docking, 3GBG, 6RVN, 3F2Q.

Graphical Abstract

[1]
Kavidayal, H.; Uniyal, N. A survey on traditional knowledge and the status of medicinal plants in Garhwal and Kumaon regions of Uttarakhand. Biosci. Trends, 2020, 13, 96-101.
[2]
Sharma, I.P.; Kanta, C.; Semwal, S.; Goswami, N. Wild fruits of Uttarakhand (India): Ethnobotanical and medicinal uses. Int. J. Complement. Altern. Med., 2017, 8(3), 1-8.
[http://dx.doi.org/10.15406/ijcam.2017.08.00260]
[3]
Amit, S.; Sweta, N.; Dheeraj, J.; Aman, K. Evaluation of antibacterial activity of combined plant extract of Pyracantha crenulata and Zanthoxylum armatum. UJPAH, 2020, 2(29), 32-36.
[http://dx.doi.org/10.51129/ujpah-2020-29-2(5)]
[4]
Rawat, N.; Upadhaya, M.L. Diversity of the medicinal plants of Almora district, Uttarakhand and their Ethno-medicinal use. J. Med. Plants, 2020, 8, 89-101.
[5]
Saklani, S.; Chandra, S.; Mishra, A. Evaluation of antioxidant activity, quantitative estimation of phenols, anthocyanins and flavonoids of wild edible fruits of Garhwal Himalaya. J. Pharm. Res., 2011, 4, 4083-4086.
[6]
Otsuka, H.; Fujioka, S.; Komiya, T.; Goto, M.; Hiramatsu, Y.; Fujimura, H. Studies on anti-inflammatory agents. V. A new anti-inflammatory constituent of Pyracantha crenulata roem. Chem. Pharm. Bull., 1981, 29(11), 3099-3104.
[http://dx.doi.org/10.1248/cpb.29.3099] [PMID: 7337925]
[7]
Dwivedi, T.; Kanta, C.; Singh, L.R.; Prakash, I. A list of some important medicinal plants with their medicinal uses from Himalayan State Uttarakhand, India. J. Med. Plants, 2019, 7, 106-116.
[8]
Kumar, S.; Lekshmi, M.; Parvathi, A.; Ojha, M.; Wenzel, N.; Varela, M.F. Functional and structural roles of the major facilitator superfamily bacterial multidrug efflux pumps. Microorganisms, 2020, 8(2), 266.
[http://dx.doi.org/10.3390/microorganisms8020266] [PMID: 32079127]
[9]
Monserrat,-Martinez, M.A.; Gambin, Y.; Sierecki, E. Thinking outside the bug: Molecular targets and strategies to overcome antibiotic resistance. Int. J. Mol. Sci., 2019, 20(6), 1255.
[http://dx.doi.org/10.3390/ijms20061255] [PMID: 30871132]
[10]
Boakye, Y.D.; Osafo, N.; Danquah, C.A.; Adu, F.; Agyare, C. Antimicrobial agents: Antibacterial agents, anti-biofilm agents, antibacterial natural compounds, and antibacterial chemicals. Antimicrob. Antibiot. Resist. Antibiofilm. Strategies. Act. Methods., 2019, 13, 75.
[11]
Acharya, R.; Chacko, S.; Bose, P.; Lapenna, A.; Pattanayak, S.P. Structure-based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci. Rep., 2019, 9(1), 15743.
[http://dx.doi.org/10.1038/s41598-019-52162-0] [PMID: 31673107]
[12]
Azam, S.S.; Abbasi, S.W. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor. Biol. Med. Model., 2013, 10(1), 63.
[http://dx.doi.org/10.1186/1742-4682-10-63] [PMID: 24156411]
[13]
Lowden, M.J.; Skorupski, K.; Pellegrini, M.; Chiorazzo, M.G.; Taylor, R.K.; Kull, F.J. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes. Proc. Natl. Acad. Sci., 2010, 107(7), 2860-2865.
[http://dx.doi.org/10.1073/pnas.0915021107] [PMID: 20133655]
[14]
Huecas, S.; Canosa-Valls, A.J.; Araújo-Bazán, L.; Ruiz, F.M.; Laurents, D.V.; Fernández-Tornero, C.; Andreu, J.M. Nucleotide-induced folding of cell division protein FtsZ from Staphylococcus aureus. FEBS J., 2020, 287(18), 4048-4067.
[http://dx.doi.org/10.1111/febs.15235] [PMID: 31997533]
[15]
Zhu, J.Y.; Yang, Y.; Han, H.; Betzi, S.; Olesen, S.H.; Marsilio, F.; Schönbrunn, E. Functional consequence of covalent reaction of phosphoenolpyruvate with UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). J. Biol. Chem., 2012, 287(16), 12657-12667.
[http://dx.doi.org/10.1074/jbc.M112.342725] [PMID: 22378791]
[16]
Serganov, A.; Huang, L.; Patel, D.J. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature, 2009, 458, 233-23.
[17]
Kumar, S.; Singh, J.; Narasimhan, B.; Shah, S.A.A.; Lim, S.M.; Ramasamy, K.; Mani, V. Reverse pharmacophore mapping and molecular docking studies for discovery of GTPase HRas as promising drug target for bis-pyrimidine derivatives. Chem. Cent. J., 2018, 12(1), 106.
[http://dx.doi.org/10.1186/s13065-018-0475-5] [PMID: 30345469]
[18]
Driessche, G.V.D.; Fourches, D. Adverse drug reactions triggered by the common HLA-B57:01 variant: A molecular docking study. ChemInform, 2017, 9, 1-17.
[19]
Diehr, M.C.; Cherner, M.; Wolfson, T.J.; Miller, S.W.; Grant, I.; Heaton, R.K. HIV Neurobehavioral Research Center, The 50 and 100-item short forms of the Paced Auditory Serial Addition Task (PASAT). Demographically corrected norms and comparisons with the full PASAT in normal and clinical samples. J. Clin. Exp. Neuropsychol., 2003, 25(4), 571-585.
[http://dx.doi.org/10.1076/jcen.25.4.571.13876] [PMID: 12911108]
[20]
Sharma, V.; Sharma, P.C.; Kumar, V. In silico molecular docking analysis of natural pyridoacridines as anticancer agents. Adv. Chem., 2016, 2016, 1-9.
[21]
Singh, J.; Kumar, M.; Mansuri, R.; Sahoo, G.C.; Deep, A. Inhibitor designing, virtual screening, and docking studies for methyltransferase: A potential target against dengue virus. J. Pharm. Bioallied Sci., 2016, 8(3), 188-194.
[http://dx.doi.org/10.4103/0975-7406.171682] [PMID: 27413346]
[22]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[23]
Lenselink, E.B.; Louvel, J.; Forti, A.F.; van Veldhoven, J.P.D.; de Vries, H.; Mulder-Krieger, T.; McRobb, F.M.; Negri, A.; Goose, J.; Abel, R.; van Vlijmen, H.W.T.; Wang, L.; Harder, E.; Sherman, W.; IJzerman, A.P.; Beuming, T. Predicting binding affinities for GPCR ligands using free-energy perturbation. ACS Omega, 2016, 1(2), 293-304.
[http://dx.doi.org/10.1021/acsomega.6b00086] [PMID: 30023478]
[24]
Kalra, S.; Joshi, G.; Munshi, A.; Kumar, R. Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors. Eur. J. Med. Chem., 2017, 142, 424-458.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.071] [PMID: 28911822]
[25]
Panda, P.; Taviti, A.C.; Satpati, S.; Kar, M.M.; Dixit, A.; Beuria, T.K. Doxorubicin inhibits E. coli division by interacting at a novel site in FtsZ. Biochem. J., 2015, 471(3), 335-346.
[http://dx.doi.org/10.1042/BJ20150467] [PMID: 26285656]
[26]
Schlünzen, F.; Zarivach, R.; Harms, J.; Bashan, A.; Tocilj, A.; Albrecht, R.; Yonath, A.; Franceschi, F. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature, 2001, 413(6858), 814-821.
[http://dx.doi.org/10.1038/35101544] [PMID: 11677599]
[27]
Cruz, J.V.; Neto, M.F.A.; Silva, L.B. da S Ramos, R.; da S Costa, J.; Brasil, D.S.B.; Lobato, C.C.; da Costa, G.V.; Bittencourt, J.A.H.M.; da Silva, C.H.T.P.; Leite, F.H.A.; Santos, C.B.R. Identification of novel protein kinase receptor type 2 inhibitors using pharmacophore and structure-based virtual screening. Molecules, 2018, 23(2), 453.
[http://dx.doi.org/10.3390/molecules23020453] [PMID: 29463017]
[28]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[29]
Shahbazi, S.; Sahrawat, T.R.; Ray, M.; Dash, S.; Kar, D.; Singh, S. Drug targets for cardiovascular-safe anti-inflammatory: In silico rational drug studies. PLoS One, 2016, 11(6), e0156156.
[http://dx.doi.org/10.1371/journal.pone.0156156] [PMID: 27258084]
[30]
Clark, D.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J. Pharm. Sci., 1999, 88(8), 815-821.
[http://dx.doi.org/10.1021/js980402t] [PMID: 10430548]
[31]
Kataria, R.; Khatkar, A. Molecular docking, synthesis, kinetics study, structure-activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors. BMC Chem., 2019, 13(1), 45.
[http://dx.doi.org/10.1186/s13065-019-0562-2] [PMID: 31384793]