Ethosome Containing Ceramide as a Skin Carrier of Active Ingredients

Page: [927 - 942] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Numerous formulations have been utilized in the cosmetic and pharmaceutical industries to effectively deliver bioactive ingredients.

Methods: We selected a well-known liposomal formulation of bilayer lipid vesicles composed of ceramide NP. Ethosomes contain hydrophilic vanillic acid or lipophilic α-bisabolol, and their physicochemical properties were evaluated. Vanillic acid is encapsulated in the aqueous core while α-bisabolol is engaged with the lipid phase. The formulation was prepared by the high-pressure homogenization method at 800 bar for 5 min. The particle size, polydispersity index and zeta potential of the ethosome dispersion were analyzed by dynamic light scattering. In order to measure the skin absorption efficiency from artificial skin, an in vitro assay was performed using the Franz diffusion cell method for 24 hours. In addition, ultracentrifuges for encapsulation efficiency, dialysis membranes for active ingredient release, and low-temperature transmission electron microscopy (TEM) to evaluate the morphology of vesicles were utilized.

Results: The particle size of the ethosome containing ceramide NP and vanillic acid was in the range of 80 ~ 130 nm, whereas the particle size of the ethosome containing ceramide NP and α-bisabolol was 150 ~ 170 nm. In the vanillic acid-containing ethosome, increasing the amount of ceramide NP decreased the particle size, whereas the size of the α-bisabolol ethosome did not change. The stability of the prepared ethosome did not change significantly for 4 weeks at 25°C, 4°C, and 45°C. The skin absorption efficiency of ceramide NP and vanillic acid-containing ethosome was increased by about 15% compared to the control group, whereas the ethosome containing α-bisabolol and ceramide NP showed slightly higher skin absorption efficiency than the control group. In addition, encapsulation efficiency evaluation, active ingredient release measurement and cryo-TEM were taken.

Conclusion and Perspective: Based on the results of these studies, we suggest that ethosome formulations containing ceramide NP can be widely used in the cosmetic industry together with other cosmetic formulations.

Keywords: Ethosome, ceramide NP, skin carrier, Franz diffusion cell method, skin absorption, encapsulation efficiency.

Graphical Abstract

[1]
El Maghraby, G.M.; Barry, B.W.; Williams, A.C. Liposomes and skin: From drug delivery to model membranes. Eur. J. Pharm. Sci., 2008, 34(4-5), 203-222.
[http://dx.doi.org/10.1016/j.ejps.2008.05.002] [PMID: 18572392]
[2]
Hadgraft, J. Skin, the final frontier. Int. J. Pharm., 2001, 224(1-2), 1-18.
[http://dx.doi.org/10.1016/S0378-5173(01)00731-1] [PMID: 11512545]
[3]
Trommer, H.; Neubert, R.H.H. Overcoming the stratum corneum: The modulation of skin penetration. A review. Skin Pharmacol. Physiol., 2006, 19(2), 106-121.
[http://dx.doi.org/10.1159/000091978] [PMID: 16685150]
[4]
Betz, G.; Aeppli, A.; Menshutina, N.; Leuenberger, H. In vivo comparison of various liposome formulations for cosmetic application. Int. J. Pharm., 2005, 296(1-2), 44-54.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.032] [PMID: 15885454]
[5]
Dua, J.S.; Rana, A.C.; Bhandari, A.K. Liposome: Methods of preparation and applications. Int. J. Pharm. Sci. Res., 2012, 3(2), 14-20.
[6]
Kaddah, S.; Khreich, N.; Kaddah, F.; Charcosset, C.; Greige-Gerges, H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem. Toxicol., 2018, 113, 40-48.
[http://dx.doi.org/10.1016/j.fct.2018.01.017] [PMID: 29337230]
[7]
López-Pinto, J.M.; González-Rodríguez, M.L.; Rabasco, A.M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int. J. Pharm., 2005, 298(1), 1-12.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.021] [PMID: 15896932]
[8]
Bangham, A.D.; Standish, M.M.; Weissmann, G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J. Mol. Biol., 1965, 13(1), 253-259.
[http://dx.doi.org/10.1016/S0022-2836(65)80094-8] [PMID: 5859040]
[9]
Birnbaum, D.T.; Kosmala, J.D.; Henthorn, D.B.; Brannon-Peppas, L. Controlled release of β-estradiol from PLAGA microparticles: The effect of organic phase solvent on encapsulation and release. J. Control. Release, 2000, 65(3), 375-387.
[http://dx.doi.org/10.1016/S0168-3659(99)00219-9] [PMID: 10699296]
[10]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[11]
Touitou, E.; Godim, B.; Weiss, C. Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev. Res., 2000, 50(3-4), 406-415.
[http://dx.doi.org/10.1002/1098-2299(200007/08)50:3/4<406:AID-DDR23>3.0.CO;2-M]
[12]
Verma, P.; Pathak, K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(3), 274-282.
[http://dx.doi.org/10.4103/0110-5558.72415] [PMID: 22247858]
[13]
Kadir, R.; Barry, B.W. α-Bisabolol, a possible safe penetration enhancer for dermal and transdermal therapeutics. Int. J. Pharm., 1991, 70(1-2), 87-94.
[http://dx.doi.org/10.1016/0378-5173(91)90167-M]
[14]
Rocha, N.F.M.; Rios, E.R.V.; Carvalho, A.M.R.; Cerqueira, G.S.; Lopes, A.A.; Leal, L.K.; Dias, M.L.; de Sousa, D.P.; de Sousa, F.C. Anti-nociceptive and anti-inflammatory activities of (-)-α-bisabolol in rodents. Naunyn Schmiedebergs Arch. Pharmacol., 2011, 384(6), 525-533.
[http://dx.doi.org/10.1007/s00210-011-0679-x] [PMID: 21870032]
[15]
Stanely Mainzen Prince, P.; Rajakumar, S.; Dhanasekar, K. Protective effects of vanillic acid on electrocardiogram, lipid peroxidation, antioxidants, proinflammatory markers and histopathology in isoproterenol induced cardiotoxic rats. Eur. J. Pharmacol., 2011, 668(1-2), 233-240.
[http://dx.doi.org/10.1016/j.ejphar.2011.06.053] [PMID: 21763302]
[16]
Kang, J-I.; Moon, J.; Kim, E-J.; Lee, Y-K.; Koh, Y-S.; Yoo, E-S.; Jang, H-K.; Yim, D. The hair growth effects of wheat bran. Korean J. Pharmacogn., 2013, 44(4), 384-390.
[17]
Kim, S-J.; Kim, M.C.; Um, J-Y.; Hong, S-H. The beneficial effect of vanillic acid on ulcerative colitis. Molecules, 2010, 15(10), 7208-7217.
[http://dx.doi.org/10.3390/molecules15107208] [PMID: 20959795]
[18]
Rabionet, M.; Gorgas, K.; Sandhoff, R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta, 2014, 1841(3), 422-434.
[http://dx.doi.org/10.1016/j.bbalip.2013.08.011] [PMID: 23988654]
[19]
Cui, L.; Jia, Y.; Cheng, Z-W.; Gao, Y.; Zhang, G-L.; Li, J-Y.; He, C-F. Advancements in the maintenance of skin barrier/skin lipid composition and the involvement of metabolic enzymes. J. Cosmet. Dermatol., 2016, 15(4), 549-558.
[http://dx.doi.org/10.1111/jocd.12245] [PMID: 27405934]
[20]
Chamlin, S.L.; Kao, J.; Frieden, I.J.; Sheu, M.Y.; Fowler, A.J.; Fluhr, J.W.; Williams, M.L.; Elias, P.M. Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: Changes in barrier function provide a sensitive indicator of disease activity. J. Am. Acad. Dermatol., 2002, 47(2), 198-208.
[http://dx.doi.org/10.1067/mjd.2002.124617] [PMID: 12140465]
[21]
Ostrowsky, N. Liposome size measurements by photon correlation spectroscopy. Chem. Phys. Lipids, 1993, 64(1-3), 45-56.
[http://dx.doi.org/10.1016/0009-3084(93)90057-A]
[22]
Trainer, M.N.; Feud, P.J.; Leonardo, E.M. High-concentration submicron particle size distribution by dynamic light scattering. Am. Lab., 1992, 24(11), 34-39.
[23]
Zhang, Z.; Wo, Y.; Zhang, Y.; Wang, D.; He, R.; Chen, H.; Cui, D. in vitro study of ethosome penetration in human skin and hypertrophic scar tissue. Nanomedicine , 2012, 8(6), 1026-1033.
[http://dx.doi.org/10.1016/j.nano.2011.10.006] [PMID: 22033085]
[24]
Gwak, H.J.; Jin, B.S. Preparation and characterization of EGCG entrapped ethosome, J. Korean. Ind. Eng. Chem., 2007, 18(2), 130-135.
[25]
Kim, C-K.; Min, M-H.; Min, K-H.; Lah, W-R.; Lee, B-J.; Kim, Y-B. Synthesis of N-stearyl lactobionamide (N-SLBA) and preparation of neo-galactosylated liposome. Yakhak Hoeji, 1992, 36(2), 159-166.
[26]
Roy, D.; Das, S.; Samanta, A. Design and in vitro release kinetics of liposomal formulation of acyclovir. Int. J. Appl. Pharm., 2019, 11(6), 61-65.
[http://dx.doi.org/10.22159/ijap.2019v11i6.34917]
[27]
Roy, D.; Das, S.; Samanta, A. Samanta, design, formulation and evaluation of liposome containing isoniazid. Int. J. Appl. Pharm., 2018, 10(2), 52-56.
[http://dx.doi.org/10.22159/ijap.2018v10i2.24174]
[28]
Hyeon, T-I.; Yoon, K-S. Skin absorption and physical property of ceramide-added ethosome. J. Korean Applied Science and Technology, 2021, 38(3), 801-812.
[29]
Zeb, A.; Arif, S.T.; Malik, M.; Shah, F.A.; Din, F.U.; Qureshi, O.S.; Lee, E-S.; Lee, G-Y.; Kim, J-K. Potential of nanoparticulate carriers for improved drug delivery via skin. J. Pharm. Investig., 2019, 49(5), 485-517.
[http://dx.doi.org/10.1007/s40005-018-00418-8]
[30]
Derjaguin, B.; Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci., 1993, 43(1-4), 30-59.
[http://dx.doi.org/10.1016/0079-6816(93)90013-L]
[31]
Verwey, E.J.W.; Overbeek, J.Th.G. Theory of the stability of lyophobic colloids. J. Colloid Sci., 1955, 10(2), 224-225.
[http://dx.doi.org/10.1016/0095-8522(55)90030-1]
[32]
Laouini, A.; Jaafar-Maalej, C.; Limayem-Blouza, I.; Sfar, S.; Charcosset, C.; Fessi, H. Preparation, characterization and applications of liposomes: State of the art, J. Colloid. Sci. Biotechnol., 2012, 1(2), 147-168.
[http://dx.doi.org/10.1166/jcsb.2012.1020]
[33]
Abd, E.; Gomes, J.; Sales, C.C.; Yousef, S.; Forouz, F.; Telaprolu, K.C.; Roberts, M.S.; Grice, J.E.; Lopes, P.S.; Leite-Silva, V.R.; Andréo-Filho, N. Deformable liposomes as enhancer of caffeine penetration through human skin in a Franz diffusion cell test. Int. J. Cosmet. Sci., 2021, 43(1), 1-10.
[http://dx.doi.org/10.1111/ics.12659] [PMID: 32866296]
[34]
Kuntsche, J.; Horst, J.C.; Bunjes, H. Cryogenic Transmission Electron Microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm., 2011, 417(1-2), 120-137.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.001] [PMID: 21310225]
[35]
Klang, V.; Matsko, N.B.; Valenta, C.; Hofer, F. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron, 2012, 43(2-3), 85-103.
[http://dx.doi.org/10.1016/j.micron.2011.07.014] [PMID: 21839644]