Comparative Study of Binding Pockets in Human CYP1A2, CYP3A4, CYP3A5, and CYP3A7 with Aflatoxin B1, a Hepato-Carcinogen, by Molecular Dynamics Simulation & Principal Component Analysis

Page: [521 - 537] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Aflatoxin B1 is a harmful hepatocarcinogen which is metabolized in our body by Cytochrome P450 enzymes, namely CYP1A2, CYP3A4, CYP3A5, and CYP3A7, into toxic (exo-8, 9-epoxide) and nontoxic (AFQ1, endo-epoxide) products. We have found from the literature that due to cooperativity, the rate of metabolic reactions increases in CYP1A2 and CYP3A4 involving more than one site of proteins to form two products at a given time, whereas the interaction of CYP3A5 and CYP3A7 is still unknown. Our work aims to study these four enzymes with AFB1 based on binding site pocket characterization and to find the probable resultant products at each binding site.

Methods: We used computational approaches like homology modeling, molecular docking to form mono and double ligated systems, molecular dynamic simulations to analyze the potential energies (vdW & electrostatic), PCA, RMSF, and residue-wise interactions at the active as well as allosteric sites of these four enzymes.

Results: We found that CYP1A2, CYP3A4, and CYP3A5 were more hydrophobic at the first site and may induce epoxidation reaction to form toxic products, whereas the second site would be expected to be more polar and comprising charged interactions, thus enhancing non-toxic hydroxylated products. However, in CYP3A7, the first site favors hydroxylation, whereas the second site is involved in higher hydrophobic interactions.

Conclusion: Thus, in the fetus where AFB1 is metabolized only by CYP3A7, a lower concentration of toxic metabolites will be expected, while in adults exhibiting CYP1A2, CYP3A4 and CYP3A5 may increase the concentration of the toxic metabolites due to the combined effect of these enzymes, consequently increasing liver toxicity. We believe that AFB1 binding characteristics will be helpful for medicinal chemists in the process of designing a new drug.

Keywords: Cytochrome P450 1A2, 3A4, 3A5 and 3A7, aflatoxin B1, metabolism, liver cancer, AFB1-8, 9-epoxide, hydroxylation, docking, molecular dynamic simulation, principal component analysis.

Graphical Abstract

[1]
Jackson, P.E.; Kuang, S.Y.; Wang, J.B. Prospective detection of codon 249 mutations in plasma of hepatocellular carcinoma patients. Carcinogenesis, 2003, 24(10), 1657-1663.
[http://dx.doi.org/10.1093/carcin/bgg101] [PMID: 12869416]
[2]
Farombi, O.E. Aflatoxin contamination of foods in developing countries: Implications for hepatocellular carcinoma and chemopreventive strategies. Afr. J. Biotechnol., 2006, 5, 1-14.
[3]
Kew, M.C. Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver Int., 2003, 23(6), 405-409.
[http://dx.doi.org/10.1111/j.1478-3231.2003.00869.x] [PMID: 14986813]
[4]
Wild, C.P.; Hall, A.J. Primary prevention of hepatocellular carcinoma in developing countries. Mutat. Res., 2000, 462(2-3), 381-393.
[http://dx.doi.org/10.1016/S1383-5742(00)00027-2] [PMID: 10767647]
[5]
Baan, R.; Grosse, Y.; Straif, K.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; Cogli-ano, V. A review of human carcinogens--Part F: Chemical agents and related occupations. Lancet Oncol., 2009, 10(12), 1143-1144.
[http://dx.doi.org/10.1016/S1470-2045(09)70358-4] [PMID: 19998521]
[6]
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some traditional herbal medicines, some mycotoxins, naphtha-lene and styrene. IARC Monogr. Eval. Carcinog. Risks Hum., 2002, 82, 1-556.
[PMID: 12687954]
[7]
Bondy, G.S.; Pestka, J.J. Immunomodulation by fungal toxins. J. Toxicol. Environ. Health B Crit. Rev., 2000, 3(2), 109-143.
[http://dx.doi.org/10.1080/109374000281113] [PMID: 10834078]
[8]
Borgomano, S. Degradation of selected microbial aflatoxins from Aspergillus parasiticus by partial purified laccase. Doctoral dissertation, INRS-Institut Armand-Frappier, 2015.
[9]
Abrar, M.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Randhawa, M.A.; Saeed, F.; Waqas, K. Aflatoxins: Biosynthesis, occurrence, toxicity, and remedies. Crit. Rev. Food Sci. Nutr., 2013, 53(8), 862-874.
[http://dx.doi.org/10.1080/10408398.2011.563154] [PMID: 23768148]
[10]
Wong, J.J.; Hsieh, D.P. Mutagenicity of aflatoxins related to their metabolism and carcinogenic potential. Proc. Natl. Acad. Sci. USA, 1976, 73(7), 2241-2244.
[http://dx.doi.org/10.1073/pnas.73.7.2241] [PMID: 781672]
[11]
Wu, Q.; Jezkova, A.; Yuan, Z.; Pavlikova, L.; Dohnal, V.; Kuca, K. Biological degradation of aflatoxins. Drug Metab. Rev., 2009, 41(1), 1-7.
[http://dx.doi.org/10.1080/03602530802563850] [PMID: 19514968]
[12]
Hussain, S.P.; Aguilar, F.; Amstad, P.; Cerutti, P. Oxy-radical induced mutagenesis of hotspot codons 248 and 249 of the human p53 gene. Oncogene, 1994, 9(8), 2277-2281.
[PMID: 8036011]
[13]
Hainaut, P.; Vähäkangas, K. p53 as a sensor of carcinogenic exposures: Mechanisms of p53 protein induction and lessons from p53 gene mutations. Pathol. Biol. (Paris), 1997, 45(10), 833-844.
[PMID: 9769947]
[14]
Soini, Y.; Chia, S.C.; Bennett, W.P.; Groopman, J.D.; Wang, J.S.; DeBenedetti, V.M.; Cawley, H.; Welsh, J.A.; Hansen, C.; Bergasa, N.V.; Jones, E.A.; DiBisceglie, A.M.; Trivers, G.E.; Sandoval, C.A.; Calderon, I.E.; Munoz Espinosa, L.E.; Harris, C.C. An aflatoxin-associated mutational hotspot at codon 249 in the p53 tumor suppressor gene occurs in hepatocellular carcinomas from Mexico. Carcinogenesis, 1996, 17(5), 1007-1012.
[http://dx.doi.org/10.1093/carcin/17.5.1007] [PMID: 8640905]
[15]
Mace, K.; Aguilar, F.; Wang, J.S. Aflatoxin B1-induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis, 1997, 18(7), 1291-1297.
[http://dx.doi.org/10.1093/carcin/18.7.1291] [PMID: 9230270]
[16]
Baertschi, S.W.; Raney, K.D.; Shimada, T.; Harris, T.M.; Guengerich, F.P. Comparison of rates of enzymatic oxidation of aflatoxin B1, afla-toxin G1, and sterigmatocystin and activities of the epoxides in forming guanyl-N7 adducts and inducing different genetic responses. Chem. Res. Toxicol., 1989, 2(2), 114-2.
[http://dx.doi.org/10.1021/tx00008a008] [PMID: 2519710]
[17]
Gallagher, E.P.; Kunze, K.L.; Stapleton, P.L.; Eaton, D.L. The kinetics of aflatoxin B1 oxidation by human cDNA-expressed and human liver microsomal cytochromes P450 1A2 and 3A4. Toxicol. Appl. Pharmacol., 1996, 141(2), 595-606.
[http://dx.doi.org/10.1006/taap.1996.0326] [PMID: 8975785]
[18]
Gallagher, E.P.; Wienkers, L.C.; Stapleton, P.L.; Kunze, K.L.; Eaton, D.L. Role of human microsomal and human complementary DNA-expressed cytochromes P4501A2 and P4503A4 in the bioactivation of aflatoxin B1. Cancer Res., 1994, 54(1), 101-108.
[PMID: 8261428]
[19]
Kamdem, L.K.; Meineke, I.; Gödtel-Armbrust, U.; Brockmöller, J.; Wojnowski, L. Dominant contribution of P450 3A4 to the hepatic car-cinogenic activation of aflatoxin B1. Chem. Res. Toxicol., 2006, 19(4), 577-586.
[http://dx.doi.org/10.1021/tx050358e] [PMID: 16608170]
[20]
Renbarger, J.L.; McCammack, K.C.; Rouse, C.E.; Hall, S.D. Effect of race on vincristine-associated neurotoxicity in pediatric acute lympho-blastic leukemia patients. Pediatr. Blood Cancer, 2008, 50(4), 769-771.
[http://dx.doi.org/10.1002/pbc.21435] [PMID: 18085684]
[21]
Gillam, E.M.; Guo, Z.; Ueng, Y.F.; Yamazaki, H.; Cock, I.; Reilly, P.E.; Hooper, W.D.; Guengerich, F.P. Expression of cytochrome P450 3A5 in Escherichia coli: Effects of 5′ modification, purification, spectral characterization, reconstitution conditions, and catalytic activities. Arch. Biochem. Biophys., 1995, 317(2), 374-384.
[http://dx.doi.org/10.1006/abbi.1995.1177] [PMID: 7893152]
[22]
Wang, H.; Dick, R.; Yin, H.; Licad-Coles, E.; Kroetz, D.L.; Szklarz, G.; Harlow, G.; Halpert, J.R.; Correia, M.A. Structure-function relation-ships of human liver cytochromes P450 3A: Aflatoxin B1 metabolism as a probe. Biochemistry, 1998, 37(36), 12536-12545.
[http://dx.doi.org/10.1021/bi980895g] [PMID: 9730826]
[23]
Schuetz, J.D.; Beach, D.L.; Guzelian, P.S. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics, 1994, 4(1), 11-20.
[http://dx.doi.org/10.1097/00008571-199402000-00002] [PMID: 8004129]
[24]
Yamada, A.; Fujita, K.; Yokoi, T.; Muto, S.; Suzuki, A.; Gondo, Y.; Katsuki, M.; Kamataki, T. In vivo detection of mutations induced by aflatoxin B1 using human CYP3A7/HITEC hybrid mice. Biochem. Biophys. Res. Commun., 1998, 250(1), 150-153.
[http://dx.doi.org/10.1006/bbrc.1998.9202] [PMID: 9735348]
[25]
Wild, C.P.; Rasheed, F.N.; Jawla, M.F.B.; Hall, A.J.; Jansen, L.A.; Montesano, R. In-utero exposure to aflatoxin in west Africa. Lancet, 1991, 337(8757), 1602.
[http://dx.doi.org/10.1016/0140-6736(91)93295-K] [PMID: 1675725]
[26]
Kamataki, T.; Hashimoto, H.; Shimoji, M.; Itoh, S.; Nakayama, K.; Hattori, K.; Yokoi, T.; Katsuki, M.; Aizawa, S. Expression of CYP3A7, a human fetus-specific cytochrome P450, in cultured cells and in the hepatocytes of p53-knockout mice. Toxicol. Lett., 1995, 82-83, 879-882.
[http://dx.doi.org/10.1016/0378-4274(95)03526-5] [PMID: 8597156]
[27]
Sim, S.C.; Edwards, R.J.; Boobis, A.R.; Ingelman-Sundberg, M. CYP3A7 protein expression is high in a fraction of adult human livers and partially associated with the CYP3A7*1C allele. Pharmacogenet. Genomics, 2005, 15(9), 625-631.
[http://dx.doi.org/10.1097/01.fpc.0000171516.84139.89] [PMID: 16041241]
[28]
Denisov, I.G.; Frank, D.J.; Sligar, S.G. Cooperative properties of cytochromes P450. Pharmacol. Ther., 2009, 124(2), 151-167.
[http://dx.doi.org/10.1016/j.pharmthera.2009.05.011] [PMID: 19555717]
[29]
Tang, W.; Stearns, R.A. Heterotropic cooperativity of cytochrome P450 3A4 and potential drug-drug interactions. Curr. Drug Metab., 2001, 2(2), 185-198.
[http://dx.doi.org/10.2174/1389200013338658] [PMID: 11469725]
[30]
Oda, Y.; Kharasch, E.D. Metabolism of levo-alpha-Acetylmethadol (LAAM) by human liver cytochrome P450: Involvement of CYP3A4 characterized by atypical kinetics with two binding sites. J. Pharmacol. Exp. Ther., 2001, 297(1), 410-422.
[PMID: 11259570]
[31]
Di Marco, A.; Marcucci, I.; Verdirame, M.; Pérez, J.; Sanchez, M.; Peláez, F.; Chaudhary, A.; Laufer, R. Development and validation of a high-throughput radiometric CYP3A4/5 inhibition assay using tritiated testosterone. Drug Metab. Dispos., 2005, 33(3), 349-358.
[http://dx.doi.org/10.1124/dmd.104.002873] [PMID: 15608130]
[32]
Atkins, W.M. Current views on the fundamental mechanisms of cytochrome P450 allosterism. Expert Opin. Drug Metab. Toxicol., 2006, 2(4), 573-579.
[http://dx.doi.org/10.1517/17425255.2.4.573] [PMID: 16859405]
[33]
Houston, J.B.; Galetin, A. Modelling atypical CYP3A4 kinetics: Principles and pragmatism. Arch. Biochem. Biophys., 2005, 433(2), 351-360.
[http://dx.doi.org/10.1016/j.abb.2004.09.010] [PMID: 15581591]
[34]
Guengerich, F.P. Cytochrome P-450 3A4: Regulation and role in drug metabolism. Annu. Rev. Pharmacol. Toxicol., 1999, 39, 1-17.
[http://dx.doi.org/10.1146/annurev.pharmtox.39.1.1] [PMID: 10331074]
[35]
Guengerich, F.P. Human cytochrome P450 enzymes.Cytochrome P450: Structure, Mechanism, and Biochemistry;; Ortiz de Montellano, P.R., Ed.; Kluwer Academic/Plenum Publishers: New York, 2005, pp. 377-530.
[http://dx.doi.org/10.1007/0-387-27447-2_10]
[36]
Rock, D.; Wahlstrom, J.; Wienkers, L. Cytochrome P450s: Drug-drug interactions. Vaz, R.J.; Klabunde, T. In: Antitargets Prediction and Prevention of Drug Side Effects;; Wiley-VCH Verlag: Darmstadt, 2008; 38, pp. 197-246.
[http://dx.doi.org/10.1002/9783527621460.ch9]
[37]
Obach, R.S.; Walsky, R.L.; Venkatakrishnan, K.; Gaman, E.A.; Houston, J.B.; Tremaine, L.M. The utility of in vitro cytochrome P450 inhibi-tion data in the prediction of drug-drug interactions. J. Pharmacol. Exp. Ther., 2006, 316(1), 336-348.
[http://dx.doi.org/10.1124/jpet.105.093229] [PMID: 16192315]
[38]
Youdim, K.A.; Zayed, A.; Dickins, M.; Phipps, A.; Griffiths, M.; Darekar, A.; Hyland, R.; Fahmi, O.; Hurst, S.; Plowchalk, D.R.; Cook, J.; Guo, F.; Obach, R.S. Application of CYP3A4 in vitro data to predict clinical drug-drug interactions; predictions of compounds as objects of interaction. Br. J. Clin. Pharmacol., 2008, 65(5), 680-692.
[http://dx.doi.org/10.1111/j.1365-2125.2007.03070.x] [PMID: 18279465]
[39]
Atkins, W.M. Non-Michaelis-Menten kinetics in cytochrome P450-catalyzed reactions. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 291-310.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100004] [PMID: 15832445]
[40]
Harlow, G.R.; Halpert, J.R. Analysis of human cytochrome P450 3A4 cooperativity: Construction and characterization of a site-directed mu-tant that displays hyperbolic steroid hydroxylation kinetics. Proc. Natl. Acad. Sci. USA, 1998, 95(12), 6636-6641.
[http://dx.doi.org/10.1073/pnas.95.12.6636] [PMID: 9618464]
[41]
Isin, E.M.; Guengerich, F.P. Kinetics and thermodynamics of ligand binding by cytochrome P450 3A4. J. Biol. Chem., 2006, 281(14), 9127-9136.
[http://dx.doi.org/10.1074/jbc.M511375200] [PMID: 16467307]
[42]
Davydov, D.R.; Baas, B.J.; Sligar, S.G.; Halpert, J.R. Allosteric mechanisms in cytochrome P450 3A4 studied by high-pressure spectroscopy: Pivotal role of substrate-induced changes in the accessibility and degree of hydration of the heme pocket. Biochemistry, 2007, 46(26), 7852-7864.
[http://dx.doi.org/10.1021/bi602400y] [PMID: 17555301]
[43]
Davydov, D.R.; Halpert, J.R. Allosteric P450 mechanisms: Multiple binding sites, multiple conformers or both? Expert Opin. Drug Metab. Toxicol., 2008, 4(12), 1523-1535.
[http://dx.doi.org/10.1517/17425250802500028] [PMID: 19040328]
[44]
Kapelyukh, Y.; Paine, M.J.I.; Maréchal, J.D.; Sutcliffe, M.J.; Wolf, C.R.; Roberts, G.C.K. Multiple substrate binding by cytochrome P450 3A4: Estimation of the number of bound substrate molecules. Drug Metab. Dispos., 2008, 36(10), 2136-2144.
[http://dx.doi.org/10.1124/dmd.108.021733] [PMID: 18645035]
[45]
Sohl, C.D.; Isin, E.M.; Eoff, R.L.; Marsch, G.A.; Stec, D.F.; Guengerich, F.P. Cooperativity in oxidation reactions catalyzed by cytochrome P450 1A2: Highly cooperative pyrene hydroxylation and multiphasic kinetics of ligand binding. J. Biol. Chem., 2008, 283(11), 7293-7308.
[http://dx.doi.org/10.1074/jbc.M709783200] [PMID: 18187423]
[46]
Miller, G.P.; Guengerich, F.P. Binding and oxidation of alkyl 4-nitrophenyl ethers by rabbit cytochrome P450 1A2: Evidence for two binding sites. Biochemistry, 2001, 40(24), 7262-7272.
[http://dx.doi.org/10.1021/bi010402z] [PMID: 11401574]
[47]
Langouët, S.; Coles, B.; Morel, F.; Becquemont, L.; Beaune, P.; Guengerich, F.P.; Ketterer, B.; Guillouzo, A. Inhibition of CYP1A2 and CYP3A4 by oltipraz results in reduction of aflatoxin B1 metabolism in human hepatocytes in primary culture. Cancer Res., 1995, 55(23), 5574-5579.
[PMID: 7585637]
[48]
Williams, P.A.; Cosme, J.; Vinković, D.M.; Ward, A.; Angove, H.C.; Day, P.J.; Vonrhein, C.; Tickle, I.J.; Jhoti, H. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science, 2004, 305(5684), 683-686.
[http://dx.doi.org/10.1126/science.1099736] [PMID: 15256616]
[49]
Uno, S.; Dalton, T.P.; Dragin, N.; Curran, C.P.; Derkenne, S.; Miller, M.L.; Shertzer, H.G.; Gonzalez, F.J.; Nebert, D.W. Oral benzo[a]pyrene in Cyp1 knockout mouse lines: CYP1A1 important in detoxication, CYP1B1 metabolism required for immune damage independent of total-body burden and clearance rate. Mol. Pharmacol., 2006, 69(4), 1103-1114.
[http://dx.doi.org/10.1124/mol.105.021501] [PMID: 16377763]
[50]
Parikh, A.; Gillam, E.M.; Guengerich, F.P. Drug metabolism by Escherichia coli expressing human cytochromes P450. Nat. Biotechnol., 1997, 15(8), 784-788.
[http://dx.doi.org/10.1038/nbt0897-784] [PMID: 9255795]
[51]
Bolton, M.G.; Muñoz, A.; Jacobson, L.P.; Groopman, J.D.; Maxuitenko, Y.Y.; Roebuck, B.D.; Kensler, T.W. Transient intervention with oltipraz protects against aflatoxin-induced hepatic tumorigenesis. Cancer Res., 1993, 53(15), 3499-3504.
[PMID: 8339253]
[52]
Langouët, S.; Furge, L.L.; Kerriguy, N.; Nakamura, K.; Guillouzo, A.; Guengerich, F.P. Inhibition of human cytochrome P450 enzymes by 1,2-dithiole-3-thione, oltipraz and its derivatives, and sulforaphane. Chem. Res. Toxicol., 2000, 13(4), 245-252.
[http://dx.doi.org/10.1021/tx990189w] [PMID: 10775323]
[53]
Zhang, Y.; Gordon, G.B. A strategy for cancer prevention: Stimulation of the Nrf2-ARE signaling pathway. Mol. Cancer Ther., 2004, 3(7), 885-893.
[http://dx.doi.org/10.1158/1535-7163.885.3.7] [PMID: 15252150]
[54]
Jacobson, L.P.; Zhang, B.C.; Zhu, Y.R.; Wang, J.B.; Wu, Y.; Zhang, Q.N.; Yu, L.Y.; Qian, G.S.; Kuang, S.Y.; Li, Y.F.; Fang, X.; Zarba, A.; Chen, B.; Enger, C.; Davidson, N.E.; Gorman, M.B.; Gordon, G.B.; Prochaska, H.J.; Egner, P.A.; Groopman, J.D.; Muñoz, A.; Helzlsouer, K.J.; Kensler, T.W. Oltipraz chemoprevention trial in Qidong, People’s Republic of China: Study design and clinical outcomes. Cancer Epidemiol. Biomarkers Prev., 1997, 6(4), 257-265.
[PMID: 9107431]
[55]
Kensler, T.W.; He, X.; Otieno, M.; Egner, P.A.; Jacobson, L.P.; Chen, B.; Wang, J.S.; Zhu, Y.R.; Zhang, B.C.; Wang, J.B.; Wu, Y.; Zhang, Q.N.; Qian, G.S.; Kuang, S.Y.; Fang, X.; Li, Y.F.; Yu, L.Y.; Prochaska, H.J.; Davidson, N.E.; Gordon, G.B.; Gorman, M.B.; Zarba, A.; Enger, C.; Muñoz, A.; Helzlsouer, K.J. Oltipraz chemoprevention trial in Qidong, People’s Republic of China: Modulation of serum aflatoxin albu-min adduct biomarkers. Cancer Epidemiol. Biomarkers Prev., 1998, 7(2), 127-134.
[PMID: 9488587]
[56]
Dashwood, R.; Negishi, T.; Hayatsu, H.; Breinholt, V.; Hendricks, J.; Bailey, G. Chemopreventive properties of chlorophylls towards aflatox-in B1: A review of the antimutagenicity and anticarcinogenicity data in rainbow trout. Mutat. Res., 1998, 399(2), 245-253.
[http://dx.doi.org/10.1016/S0027-5107(97)00259-5] [PMID: 9672663]
[57]
Bonomo, S.; Jørgensen, F.S.; Olsen, L. Dissecting the cytochrome P450 1A2- and 3A4-mediated metabolism of aflatoxin B1 in ligand and protein contributions. Chemistry, 2017, 23(12), 2884-2893.
[http://dx.doi.org/10.1002/chem.201605094] [PMID: 28078726]
[58]
Wild, C.P.; Gong, Y.Y. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis, 2010, 31(1), 71-82.
[http://dx.doi.org/10.1093/carcin/bgp264] [PMID: 19875698]
[59]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new genera-tion of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[60]
Sansen, S.; Yano, J.K.; Reynald, R.L.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J. Biol. Chem., 2007, 282(19), 14348-14355.
[http://dx.doi.org/10.1074/jbc.M611692200] [PMID: 17311915]
[61]
Sevrioukova, I.F.; Poulos, T.L. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18422-18427.
[http://dx.doi.org/10.1073/pnas.1010693107] [PMID: 20937904]
[62]
Saba, N.; Bhuyan, R.; Nandy, S.K.; Seal, A. Differential interactions of cytochrome P450 3A5 and 3A4 with chemotherapeutic agent-vincristine: A comparative molecular dynamics study. Anticancer. Agents Med. Chem., 2015, 15(4), 475-483.
[http://dx.doi.org/10.2174/1871520615666150129213510] [PMID: 25634447]
[63]
Sali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol., 1993, 234(3), 779-815.
[http://dx.doi.org/10.1006/jmbi.1993.1626] [PMID: 8254673]
[64]
Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry, 7th ed; WH Freeman: New York, 2012, pp. 27-33.
[65]
Dundas, J.; Ouyang, Z.; Tseng, J.; Binkowski, A.; Turpaz, Y.; Liang, J. CASTp: Computed atlas of surface topography of proteins with struc-tural and topographical mapping of functionally annotated residues. Nucleic Acids Res., 2006, 34, W116-8.
[http://dx.doi.org/10.1093/nar/gkl282] [PMID: 16844972]
[66]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[67]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[68]
van Aalten, D.M.F.; Bywater, R.; Findlay, J.B.; Hendlich, M.; Hooft, R.W.; Vriend, G. PRODRG, a program for generating molecular topolo-gies and unique molecular descriptors from coordinates of small molecules. J. Comput. Aided Mol. Des., 1996, 10(3), 255-262.
[http://dx.doi.org/10.1007/BF00355047] [PMID: 8808741]
[69]
Guengerich, F.P. Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol., 2008, 21(1), 70-83.
[http://dx.doi.org/10.1021/tx700079z] [PMID: 18052394]
[70]
Torimoto, N.; Ishii, I.; Toyama, K.; Hata, M.; Tanaka, K.; Shimomura, H.; Nakamura, H.; Ariyoshi, N.; Ohmori, S.; Kitada, M. Helices F-G are important for the substrate specificities of CYP3A7. Drug Metab. Dispos., 2007, 35(3), 484-492.
[http://dx.doi.org/10.1124/dmd.106.011304] [PMID: 17178770]
[71]
Bren, U.; Fuchs, J.E.; Oostenbrink, C. Cooperative binding of aflatoxin B1 by cytochrome P450 3A4: A computational study. Chem. Res. Toxicol., 2014, 27(12), 2136-2147.
[http://dx.doi.org/10.1021/tx5004062] [PMID: 25398138]
[72]
Oostenbrink, C.; de Ruiter, A.; Hritz, J.; Vermeulen, N. Malleability and versatility of cytochrome P450 active sites studied by molecular simulations. Curr. Drug Metab., 2012, 13(2), 190-196.
[http://dx.doi.org/10.2174/138920012798918453] [PMID: 22208533]
[73]
Yang, L.P.; Zhou, Z.W.; Chen, X.W.; Li, C.G.; Sneed, K.B.; Liang, J.; Zhou, S.F. Computational and in vitro studies on the inhibitory effects of herbal compounds on human cytochrome P450 1A2. Xenobiotica, 2012, 42(3), 238-255.
[http://dx.doi.org/10.3109/00498254.2011.610833] [PMID: 21970686]
[74]
Bren, U.; Oostenbrink, C. Cytochrome P450 3A4 inhibition by ketoconazole: Tackling the problem of ligand cooperativity using molecular dynamics simulations and free-energy calculations. J. Chem. Inf. Model., 2012, 52(6), 1573-1582.
[http://dx.doi.org/10.1021/ci300118x] [PMID: 22587011]
[75]
Isin, E.M.; Guengerich, F.P. Multiple sequential steps involved in the binding of inhibitors to cytochrome P450 3A4. J. Biol. Chem., 2007, 282(9), 6863-6874.
[http://dx.doi.org/10.1074/jbc.M610346200] [PMID: 17200113]
[76]
Ekroos, M.; Sjögren, T. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc. Natl. Acad. Sci. USA, 2006, 103(37), 13682-13687.
[http://dx.doi.org/10.1073/pnas.0603236103] [PMID: 16954191]
[77]
Niwa, T.; Murayama, N.; Yamazaki, H. Heterotropic cooperativity in oxidation mediated by cytochrome p450. Curr. Drug Metab., 2008, 9(5), 453-462.
[http://dx.doi.org/10.2174/138920008784746364] [PMID: 18537580]
[78]
Okada, Y.; Murayama, N.; Yanagida, C.; Shimizu, M.; Guengerich, F.P.; Yamazaki, H. Drug interactions of thalidomide with midazolam and cyclosporine A: Heterotropic cooperativity of human cytochrome P450 3A5. Drug Metab. Dispos., 2009, 37(1), 18-23.
[http://dx.doi.org/10.1124/dmd.108.024679] [PMID: 18948377]
[79]
Roberts, A.G.; Atkins, W.M. Energetics of heterotropic cooperativity between alpha-naphthoflavone and testosterone binding to CYP3A4. Arch. Biochem. Biophys., 2007, 463(1), 89-101.
[http://dx.doi.org/10.1016/j.abb.2007.03.006] [PMID: 17459328]
[80]
Skopalík, J.; Anzenbacher, P.; Otyepka, M. Flexibility of human cytochromes P450: Molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, which correlate with their substrate preferences. J. Phys. Chem. B, 2008, 112(27), 8165-8173.
[http://dx.doi.org/10.1021/jp800311c] [PMID: 18598011]
[81]
Fan, J.R.; Zheng, Q.C.; Cui, Y.L.; Li, W.K.; Zhang, H.X. Investigation of ligand selectivity in CYP3A7 by molecular dynamics simulations. J. Biomol. Struct. Dyn., 2015, 33(11), 2360-2367.
[http://dx.doi.org/10.1080/07391102.2015.1054884] [PMID: 26065334]