An Overview of Synthetic Routes of Pharmaceutically Important Pyranopyrazoles

Page: [6288 - 6333] Pages: 46

  • * (Excluding Mailing and Handling)

Abstract

Pyranopyrazoles are bicyclic nitrogen-containing heterocycles having broadspectrum bioactivities, which may act as anti-cancer, anti-inflammatory, antibacterial, antifungal, insecticidal and molluscicidal agents. Pyranopyrazoles have become an attractive scaffold for the discovery of new drugs due to the diverse range of bioactivities associated with this nucleus. In this review, we have focused on the medicinal importance of pyranopyrazole derivatives and highlighted different routes for the synthesis of pyranopyrazole derivatives using inexpensive and commonly available starting materials.

Keywords: Analgesic activity, anticancer activity, antimicrobial activity, insecticidal activity, molluscicidal activity, pyranopyrazole, synthesis.

[1]
Kiyani, H.; Albooyeh, F.; Fallahnezhad, S. Synthesis of new pyrazolyl-1,3-diazabicyclo[3.1.0]hexe-3-ene derivatives. J. Mol. Struct., 2015, 1091, 163-169.
[http://dx.doi.org/10.1016/j.molstruc.2015.02.069]
[2]
Ram, V.G.; Sethi, A.; Nath, M.; Partab, R. Five membered hetetrocycles. In: The Chemistry of heterocycles;; Elsevier, Chapter-5, 2019.
[3]
Kumar, K.A.; Jayaroopa, P. Pyrazoles: Synthetic strategies and their pharmaceutical applications-An Overview. Int. J. Pharm. Tech. Res., 2013, 5, 1473-1486.
[4]
Mert, S.; Kasımoğulları, R.; İça, T.; Çolak, F.; Altun, A.; Ok, S. Synthesis, structure-activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. Eur. J. Med. Chem., 2014, 78, 86-96.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.033] [PMID: 24681068]
[5]
Wang, M.; Zhang, J.; Liu, J.; Xu, C.; Ju, H. Intramolecular energy and charge transfer in 5-(9-anthryl)-3-(4-nitrophenyl)-1-phenyl-2-pyrazoline. J. Lumin., 2002, 99(1), 79-83.
[http://dx.doi.org/10.1016/S0022-2313(01)00204-6]
[6]
Gao, X-C.; Cao, H.; Zhang, L-Q.; Zhang, B-W.; Cao, Y.; Huang, C-H. Properties of a new pyrazoline derivative and its application in electroluminescence. J. Mater. Chem., 1999, 9(5), 1077-1080.
[http://dx.doi.org/10.1039/a900276f]
[7]
Karcı, F.; Karcı, F.; Demirçalı, A.; Yamaç, M. Synthesis, solvatochromic properties and antimicrobial activities of some novel pyridone-based disperse disazo dyes. J. Mol. Liq., 2013, 187, 302-308.
[http://dx.doi.org/10.1016/j.molliq.2013.08.005]
[8]
Fu, H-B.; Yao, J-N. Size effects on the optical properties of organic nanoparticles. J. Am. Chem. Soc., 2001, 123(7), 1434-1439.
[http://dx.doi.org/10.1021/ja0026298]
[9]
Chou, P-T.; Chi, Y. Phosphorescent dyes for organic light-emitting diodes. Chemistry, 2007, 13(2), 380-395.
[http://dx.doi.org/10.1002/chem.200601272] [PMID: 17146830]
[10]
Burschka, J.; Kessler, F.; Nazeeruddin, M.K.; Grätzel, M. Co(III) Complexes as p-Dopants in solid-state Dye-Sensitized solar cells. Chem. Mater., 2013, 25(15), 2986-2990.
[http://dx.doi.org/10.1021/cm400796u]
[11]
Kauhanka, U.M.; Kauhanka, M.M. Synthesis of new liquid crystalline isoxazole‐, pyrazole‐ and 2‐isoxazoline‐contain-ing compounds. Liq. Cryst., 2006, 33(1), 121-127.
[http://dx.doi.org/10.1080/02678290500429976]
[12]
(a) Ngo, T.N.; Ejaz, S.A.; Hung, T.Q.; Dang, T.T.; Iqbal, J.; Lecka, J.; Sévigny, J.; Langer, P. Efficient one-pot synthesis of 5-perfluoroalkylpyrazoles by cyclization of hydrazone dianions. Org. Biomol. Chem., 2015, 13(30), 8277-8290.
[http://dx.doi.org/10.1039/C5OB01151E] [PMID: 26140545]
(b) El-Sayed, M.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A.; El-Azab, A.S.; ElTahir, K.E. Synthesis, biological evaluation and molecular modeling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Part 2. Bioorg. Med. Chem., 2012, 20(10), 3306-3316.
[http://dx.doi.org/10.1016/j.bmc.2012.03.044] [PMID: 22516672]
(c) Bandgar, B.P.; Adsul, L.K.; Chavan, H.V.; Jalde, S.S.; Shringare, S.N.; Shaikh, R.; Meshram, R.J.; Gacche, R.N.; Masand, V. Synthesis, biological evaluation, and docking studies of 3-(substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines as potent anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett., 2012, 22(18), 5839-5844.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.080] [PMID: 22901385]
(d) Kaushik, D.; Kumar, R.; Khan, S.A.; Chawla, G. Pharmacological screening for anti-inflammatory, analgesic activity of pyrazolyl derivatives along with molecular docking studies. Med. Chem. Res., 2012, 21(11), 3646-3655.
[http://dx.doi.org/10.1007/s00044-011-9901-0]
(e) Yewale, S.B.; Ganorkar, S.B.; Baheti, K.G.; Shelke, R.U. Novel 3-substituted-1-aryl-5-phenyl-6-anilinopyrazolo [3,4-d]pyrimidin-4-ones: Docking, synthesis and pharmacological evaluation as a potential anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2012, 22(21), 6616-6620.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.119] [PMID: 23036953]
[13]
(a) Alam, M.J.; Alam, O.; Khan, S.A.; Naim, M.J.; Islamuddin, M.; Deora, G.S. Synthesis, anti-inflammatory, analgesic, COX1/2-inhibitory activity, and molecular docking studies of hybrid pyrazole analogues. Drug Des. Devel. Ther., 2016, 10, 3529-3543.
[http://dx.doi.org/10.2147/DDDT.S118297] [PMID: 27826185]
(b) Aggarwal, R.; Singh, G.; Kaushik, P.; Kaushik, D.; Paliwal, D.; Kumar, A. Molecular docking design and one-pot expeditious synthesis of novel 2,5-diarylpyrazolo[1,5-a]pyrimidin-7-amines as anti-inflammatory agents. Eur. J. Med. Chem., 2015, 101, 326-333.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.011] [PMID: 26160113]
(c) Nayak, P.S.; Narayana, B.; Sarojini, B.K.; Fernades, J.; Bharath, B.R.; Madhu, L.N. Synthesis, molecular docking and biological evaluation of novel bis-pyrazole derivatives for analgesic, anti-inflammatory and antimicrobial activity. Med. Chem. Res., 2015, 24(12), 4191-4206.
[http://dx.doi.org/10.1007/s00044-015-1467-9]
(d) Abdel-Sayed, M.A.; Bayomi, S.M.; El-Sherbeny, M.A.; Abdel-Aziz, N.I.; ElTahir, K.E.H.; Shehatou, G.S.; Abdel-Aziz, A.A. Synthesis, anti-inflammatory, analgesic, COX-1/2 inhibition activities and molecular docking study of pyrazoline derivatives. Bioorg. Med. Chem., 2016, 24(9), 2032-2042.
[http://dx.doi.org/10.1016/j.bmc.2016.03.032] [PMID: 27025563]
(e) Abdelgawad, M.A.; Labib, M.B.; Ali, W.A.M.; Kamel, G.; Azouz, A.A.; El-Nahass, E.S. Design, synthesis, analgesic, anti-inflammatory activity of novel pyrazolones possessing aminosulfonyl pharmacophore as inhibitors of COX-2/5-LOX enzymes: Histopathological and docking studies. Bioorg. Chem., 2018, 78, 103-114.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.011] [PMID: 29550530]
[14]
Spitz, I.M.; Novis, B.H.; Ebert, R.; Trestian, S.; LeRoith, D.; Creutzfeldt, W. Betazole-induced GIP secretion is not mediated by gastric HCl. Metabolism, 1982, 31(4), 380-382.
[http://dx.doi.org/10.1016/0026-0495(82)90114-7] [PMID: 7078422]
[15]
Karinen, R.; Høiseth, G.; Svendsen, K.O.; Rogde, S.; Vindenes, V. A fatal intoxication with phenazone (antipyrine). Forensic Sci. Int., 2015, 248, e13-e15.
[http://dx.doi.org/10.1016/j.forsciint.2015.01.001] [PMID: 25631541]
[16]
Abdellatif, K.R.A.; Fadaly, W.A.A.; Elshaier, Y.A.M.M.; Ali, W.A.M.; Kamel, G.M. Non-acidic 1,3,4-trisubstituted-pyrazole derivatives as lonazolac analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorg. Chem., 2018, 77, 568-578.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.018] [PMID: 29475165]
[17]
Giorgi, M.; Mengozzi, G.; Raffaelli, A.; Saba, A. Characterization of in vivo plasma metabolites of tepoxalin in horses using LC-MS-MS. J. Pharmaceut. Biomed., 2011, 56(1), 45-53.
[http://dx.doi.org/10.1016/j.jpba.2011.03.028] [PMID: 21497474]
[18]
Teerlink, J.; Hernandez, J.; Budd, R. Fipronil washoff to municipal wastewater from dogs treated with spot-on products. Sci. Total Environ., 2017, 599-600, 960-966.
[http://dx.doi.org/10.1016/j.scitotenv.2017.04.219] [PMID: 28505888]
[19]
Romero Arana, A. Adherence to anticoagulant treatment with apixaban and rivaroxaban in a real environment. Enferm. Clin., 2018, 28(1), 63-64.
[http://dx.doi.org/10.1016/j.enfcle.2017.07.005] [PMID: 28838681]
[20]
Sharma, M.K.; Murumkar, P.R.; Kanhed, A.M.; Giridhar, R.; Yadav, M.R. Prospective therapeutic agents for obesity: Molecular modification approaches of centrally and peripherally acting selective cannabinoid 1 receptor antagonists. Eur. J. Med. Chem., 2014, 79, 298-339.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.011] [PMID: 24747288]
[21]
Bharathi, Ch.; Prabahar, K.J.; Prasad, ChS.; Kumar, M.S.; Magesh, S.; Handa, V.K.; Dandala, R.; Naidu, A. Impurity profile study of zaleplon. J. Pharm. Biomed. Anal., 2007, 44(1), 101-109.
[http://dx.doi.org/10.1016/j.jpba.2007.01.051] [PMID: 17367980]
[22]
Das, D.; Banerjee, R.; Mitra, A. Bioactive and pharmacologically important pyrano [2, 3-c] pyrazoles. J. Chem. Pharm. Res., 2014, 6, 108-116.
[23]
Myrboh, B.; Mecadon, H.; Rohman, M.R.; Rajbangshi, M.; Kharkongor, I.; Laloo, B.M.; Kharbangar, I.; Kshiar, B. Synthetic developments in functionalized pyrano[2,3-c]pyrazoles. A Review. Org. Prep. Proced. Int., 2013, 45(4), 253-303.
[http://dx.doi.org/10.1080/00304948.2013.798566]
[24]
Fadda, A.A.; El-Mekabaty, A.; Elattar, K.M. Chemistry of enaminonitriles of pyrano[2,3-c]pyrazole and related compounds. Synth. Commun., 2013, 43(20), 2685-2719.
[http://dx.doi.org/10.1080/00397911.2012.744842]
[25]
Stollé, R. Ueber die condensation von acetessigester mit phenyl-methyl-pyrazolon und die einwirkungsproducte von phenylhydrazin und hydrazin auf dehydracetsäure. Ber. Dtsch. Chem. Ges., 1905, 38(3), 3023-3032.
[http://dx.doi.org/10.1002/cber.190503803111]
[26]
Junek, H.; Aigner, H. Synthesen mit Nitrilen, XXXV. reaktionen von tetracyanäthylen mit heterocyclen. Chem. Ber., 1973, 106(3), 914-921.
[http://dx.doi.org/10.1002/cber.19731060323]
[27]
Belal, A. Abdelgawad, M.A. New benzothiazole/benzoxazole-pyrazole hybrids with potential as COX inhibitors: Design, synthesis and anticancer activity evaluation. Res. Chem. Intermed., 2017, 43(7), 3859-3872.
[http://dx.doi.org/10.1007/s11164-016-2851-x]
[28]
Wang, F.; Yang, H.; He, B.; Jia, Y.; Meng, S.; Zhang, C.; Liu, H.; Liu, F. New benzothiazole/benzoxazole-pyrazole hybrids with potential as COX inhibitors: Design, synthesis and anticancer activity evaluation. Tetrahedron, 2016, 72, 5769-5775.
[http://dx.doi.org/10.1016/j.tet.2016.07.078]
[29]
Rupnar, B.D.; Pagore, V.P.; Tekale, S.U.; Shisodia, S.U.; Pawar, R.P. L-Tyrosine catalysed mild and efficient synthesis of dihydropyrano[2,3-c] pyrazole under microwave irradiation, Der. Chemica. Sinica., 2017, 8, 229-234.
[30]
Nimbalkar, U.D.; Seijas, J.A.; Vazquez-Tato, M.P.; Damale, M.G.; Sangshetti, J.N.; Nikalje, A.P.G. Ionic liquid-catalyzed green protocol for multi-component synthesis of dihydropyrano[2,3-c]pyrazoles as potential anticancer scaffolds. Molecules, 2017, 22(10), 1628.
[http://dx.doi.org/10.3390/molecules22101628] [PMID: 28956863]
[31]
Kohli, P.; Steg, P.G.; Cannon, C.P.; Smith, S.C., Jr; Eagle, K.A.; Ohman, E.M.; Alberts, M.J.; Hoffman, E.; Guo, J.; Simon, T.; Sorbets, E.; Goto, S.; Bhatt, D.L. NSAID use and association with cardiovascular outcomes in outpatients with stable atherothrombotic disease. Am. J. Med., 2014, 127(1), 53-60.e1.
[http://dx.doi.org/10.1016/j.amjmed.2013.08.017] [PMID: 24280110]
[32]
El-Ansary, A.K.E.; Taher, A.T.; El-Rahmany, A.A.E.; Awdan, S.E. Synthesis,anti-inflammatory, analgesic and antipyretic activities of novel pyrano[2,3-c]pyrazoles and related fused ring derivatives. J. Am. Sci., 2014, 10, 284-294.
[33]
Ismail, M.M.F.; Khalifa, N.M.; Fahmy, H.H.; Nossier, E.S.; Abdulla, M.M. Design, docking and synthesis of some new pyrazoline and pyranopyrazole derivatives as anti-inflammatory agents. J. Heterocycl. Chem., 2014, 51(2), 450-458.
[http://dx.doi.org/10.1002/jhet.1757]
[34]
Faidallah, H.M.; Rostom, S.A.F. Synthesis, anti-inflammatory activity, and COX-1/2 inhibition profile of some novel non-acidic polysubstituted pyrazoles and pyrano[2,3-c]pyrazoles. Arch. Pharm. (Weinheim), 2017, 350(5), 1-17.
[http://dx.doi.org/10.1002/ardp.201700025] [PMID: 28370254]
[35]
Renuka, N.; Kumar, K.A. Synthesis and biological evaluation of fused pyrans bearing coumarin moiety as potent antimicrobial agents. Philipp. J. Sci., 2015, 144, 91-96.
[36]
Kathrotiya, H.G.; Patel, R.G.; Patel, M.P. Microwave-assisted multi-component synthesis of 3′-indolyl substituted pyrano[2,3-c]pyrazoles and their antimicrobial activity. J. Serb. Chem. Soc., 2012, 77(8), 983-991.
[http://dx.doi.org/10.2298/JSC110805199K]
[37]
Al-Thebeiti, M.S. Synthesis of some new spiropyrazolo[4′,5′:5,6]-pyrano[2,3-d]pyrimidines. Heterocycles, 2000, 53, 621-628.
[http://dx.doi.org/10.3987/COM-99-8797]
[38]
Ambethkar, S.; Padmini, V.; Bhuvanesh, N. A green and efficient protocol for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives via a one-pot, four component reaction by grinding method. J. Adv. Res., 2015, 6(6), 975-985.
[http://dx.doi.org/10.1016/j.jare.2014.11.011] [PMID: 26644936]
[39]
Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Review: Biologically active pyrazole derivatives. New J. Chem., 2017, 41(1), 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[40]
Abdelgaleil, S.A.M.; Badawy, Y.M. Herbicidal, insecticidal and structure-activity relationship studies on pyranopyrazole and oxinobispyrazole derivatives. ASEJ, 2016, 37, 572-580.
[41]
Coelho, P.; Caldeira, R.L. Critical analysis of molluscicide application in schistosomiasis control programs in Brazil. Infect. Dis. Poverty, 2016, 5(1), 57.
[http://dx.doi.org/10.1186/s40249-016-0153-6] [PMID: 27374126]
[42]
Abdelrazek, F.M.; Metz, P.; Metwally, N.H.; El-Mahrouky, S.F. Synthesis and molluscicidal activity of new cinnoline and pyrano [2,3-c]pyrazole derivatives. Arch. Pharm. (Weinheim), 2006, 339(8), 456-460.
[http://dx.doi.org/10.1002/ardp.200600057] [PMID: 16795107]
[43]
Nawwar, G.A.M.; Abdelrazek, F.M.; Swellam, R.H. Cinnamoylnitrile-, pyran-, and pyranopyrazole-derivatives containing the salicylanilide moiety with anticipated molluscicidal activity. Arch. Pharm. (Weinheim), 1991, 324(11), 875-877.
[http://dx.doi.org/10.1002/ardp.2503241110] [PMID: 1804064]
[44]
Abdelrazek, F.M.; Michael, F.A.; Mohamed, A.E. Synthesis and molluscicidal activity of some 1,3,4-triaryl-5-chloropyrazole, pyrano[2,3-c]pyrazole, pyrazolylphthalazine and pyrano[2,3-d]thiazole derivatives. Arch. Pharm. (Weinheim), 2006, 339(6), 305-312.
[http://dx.doi.org/10.1002/ardp.200500259] [PMID: 16649159]
[45]
Abdelrazek, F.M.; Metwally, N.H.; Sobhy, N.A. Synthesis and molluscicidal activity of some newly substituted chromene and pyrano[2,3-c]pyrazole derivatives. Afinidad. Lxv., 2008, 538, 482-487.
[46]
Yang, X.H.; Zhang, P.H.; Wang, Z.M.; Jing, F.; Zhou, Y.H.; Hu, L.H. Synthesis and bioactivity of lignin related high-added-value 2H,4H-dihydro-pyrano[2,3-c]pyrazoles and 1H,4H-dihydro-pyrano[2,3-c]pyrazoles. Ind. Crops Prod., 2014, 52, 413-419.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.017]
[47]
Ahmad, M.R.; Mohammed, A.H.A.K.; Ali, Y.; Al-Messri, Z.A.K. Synthesis, characterization and evaluation of some pyranopyrazoles and pyranopyrimidines derivatives as antioxidants for lubricating oils. Iraqi. J. Sci., 2014, 55, 1-11.
[48]
Bhosale, V.N.; Khansole, G.S.; Angulwar, J.A.; Choudhare, S.S.; Karad, A.R.; Wadwale, N.B. One Pot, four-component for the synthesis of pyrano pyrazole derivatives using TBAHS as green catalyst and their biological evaluation. Asian J. Res. Chem, 2017, 10(6), 745-749.
[http://dx.doi.org/10.5958/0974-4150.2017.00126.2]
[49]
Ueda, T.; Mase, H.; Oda, N.; Ito, I. Synthesis of pyrazolone derivatives. XXXIX. Synthesis and analgesic activity of pyrano[2,3-c]pyrazoles. Chem. Pharm. Bull. (Tokyo), 1981, 29(12), 3522-3528.
[http://dx.doi.org/10.1248/cpb.29.3522] [PMID: 7340946]
[50]
Kumar, A.; Lohan, P.; Aneja, D.K.; Gupta, G.K.; Kaushik, D.; Prakash, O. Design, synthesis, computational and biological evaluation of some new hydrazino derivatives of DHA and pyranopyrazoles. Eur. J. Med. Chem., 2012, 50, 81-89.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.042] [PMID: 22357113]
[51]
Dadaei, M.; Naeimi, H. An environment-friendly method for green synthesis of pyranopyrazole derivatives catalyzed by CoCuFe2O4 magnetic nanocrystals under solvent-free conditions. Polycycl. Aromat. Compd., 2020, 42(1), 204-217.
[52]
Ganesan, N.S.; Suresh, P. Nitrogen-Doped graphene oxide as a sustainable carbonaceous catalyst for greener synthesis: Benign and solvent-free synthesis of pyranopyrazoles. ChemistrySelect, 2020, 5(16), 4988-4993.
[http://dx.doi.org/10.1002/slct.202000748]
[53]
Hajizadeh, Z.; Maleki, A. Poly(ethylene imine)-modified magnetic halloysite nanotubes: A novel, efficient and recyclable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Mol. Catal., 2018, 460, 87-93.
[http://dx.doi.org/10.1016/j.mcat.2018.09.018]
[54]
Rahman, G.S.; Nongthombam, J.; Rani, J.W.S.; Nongrum, R.; Kharmawlong, G.K.; Nongkhlaw, R. An environment-friendly magnetic organo-nanomaterial as a potent catalyst in synthesis of pyranopyrazole derivatives. Curr. Organocatal., 2018, 5(2), 150-161.
[http://dx.doi.org/10.2174/2213337205666180731095751]
[55]
Nasab, M.J.; Kiasat, A.R.; Zarasvandi, R. β-Cyclodextrin nanosponge polymer: A basic and eco-friendly heterogeneous catalyst for the one-pot four-component synthesis of pyranopyrazole derivatives under solvent-free conditions. React. Kinet. Mech. Catal., 2018, 124(2), 767-778.
[http://dx.doi.org/10.1007/s11144-018-1373-5]
[56]
Fatahpour, M.; Sadeh, F.N.; Hazeri, N.; Maghsoodlou, M.T.; Hadavi, M.S.; Mahnaei, S. Ag/TiO2 nano-thin films as robust heterogeneous catalyst for one-pot, multi-component synthesis of bis (pyrazol-5-ol) and dihydropyrano[2,3-c]pyrazole analogs. J. Saudi Chem. Soc., 2017, 21(8), 998-1006.
[http://dx.doi.org/10.1016/j.jscs.2017.05.009]
[57]
Mahmoud, A.E.; Aleem, A.; Remaily, E. Synthesis of pyranopyrazoles using magnetic Fe3O4 nanoparticles as efficient and reusable catalyst. Tetrahedron, 2014, 70(18), 2971-2975.
[http://dx.doi.org/10.1016/j.tet.2014.03.024]
[58]
Tekale, S.U.; Kauthale, S.S.; Jadhav, K.M.; Pawar, R.P. Nano-ZnO catalyzed green and efficient one-pot four-component synthesis of pyranopyrazoles. J. Chem., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/840954]
[59]
Maddila, S.; Gorle, S.; Shabalala, S.; Oyetade, O.; Maddila, S.N.; Lavanya, P.; Jonnalagadda, S.B. Ultrasound mediated green synthesis of pyrano[2,3-c]pyrazole by using Mn doped ZrO2. Arab. J. Chem., 2019, 12(5), 671-679.
[http://dx.doi.org/10.1016/j.arabjc.2016.04.016]
[60]
Sonar, J.P.; Pardeshi, S.D.; Dokhe, S.A.; Bhavar, G.M.; Takale, S.U.; Zine, A.M.; Thore, S.N. One pot synthesis of pyranopyrazole using sodium lactate as an efficient catalyst. Eur. Chem. Bull., 2019, 8(6), 207-211.
[http://dx.doi.org/10.17628/ecb.2019.8.207-211]
[61]
Ablajan, K.; Wang, L-J.; Maimaiti, Z.; Lu, Y-T. CeCl3 promoted one-pot synthesis of multisubstituted bispyrano[2,3-c]pyrazole derivatives. Monatsh. Chem., 2014, 145(3), 491-496.
[http://dx.doi.org/10.1007/s00706-013-1104-6]
[62]
Kiyani, H.; Samimi, H.A.; Ghorbani, F.; Esmaieli, S. One-pot, four-component synthesis of pyrano[2,3-c]pyrazoles catalyzed by sodium benzoate in aqueous medium. Curr. Chem. Lett., 2013, 2, 197-206.
[http://dx.doi.org/10.5267/j.ccl.2013.07.002]
[63]
Mecadon, H.; Rohman, M.R.; Rajbangshi, M.; Myrboh, B. γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydro-] pyrano [2,3-c]pyrazole-5-carbonitriles in aqueous medium. Tetrahedron Lett., 2011, 52(19), 2523-2525.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.036]
[64]
Dehbalaei, M.G.; Foroughifar, N.; Pasdar, H.; Khajeh-Amiri, A.; Foroughifar, N.; Alikarami, M. Choline chloride based thiourea catalyzed highly efficient, eco-friendly synthesis and anti-bacterial evaluation of some new 6-amino-4-aryl-2,4-dihydro-3-phenyl pyrano [2,3-c] pyrazole-5-carbonitrile derivatives. Res. Chem. Intermed., 2017, 43(5), 3035-3051.
[http://dx.doi.org/10.1007/s11164-016-2810-6]
[65]
Bhosle, M.R.; Khillare, L.D.; Dhumal, S.T.; Mane, R.A. A facile synthesis of 6-amino-2H, 4H-pyrano[2,3-c]pyrazole-5-carbonitriles in deep eutectic solvent. Chin. Chem. Lett., 2016, 27(3), 370-374.
[http://dx.doi.org/10.1016/j.cclet.2015.12.005]
[66]
Hajipour, A.R.; Karimzadeh, M.; Tavallaei, H. Fast synthesis of pyrano[2,3‐c]pyrazoles: Strong effect of Brönsted and Lewis acidic ionic liquids. J. Iran. Chem. Soc., 2015, 12(6), 987-991.
[http://dx.doi.org/10.1007/s13738-014-0561-0]
[67]
Mamaghani, M.; Nia, R.H.; Shirini, F.; Tabatabaeian, K.; Rassa, M. An efficient and eco-friendly synthesis and evaluation of antibactrial activity of pyrano[2,3-c]pyrazole derivatives. Med. Chem. Res., 2015, 24(5), 1916-1926.
[http://dx.doi.org/10.1007/s00044-014-1271-y]
[68]
Ebrahimi, J.; Mohammadi, A.; Pakjoo, V.; Bahramzade, E.; Habibi, A. Highly efficient solvent-free synthesis of pyranopyrazoles by a Brønsted-acidic ionic liquid as a green and reusable catalyst. J. Chem. Soc., 2012, 124, 1013-1017.
[69]
Khurana, J.M.; Nand, B.; Kumar, S. Rapid Synthesis of polyfunctionalized pyrano[2,3-c]pyrazoles via multicomponent condensation in room-temperature ionic liquids. Synth. Commun., 2011, 41(3), 405-410.
[http://dx.doi.org/10.1080/00397910903576669]
[70]
Oudi, M.; Tazeh, K.S.; Hazeri, N.; Fatahpour, M.; Ahmadi, R. A convenient route toward one-pot multicomponent synthesis of spirochromenes and pyranopyrazoles accelerated via quinolinic acid. J. Chin. Chem. Soc. (Taipei), 2019, 66(12), 1721-1728.
[http://dx.doi.org/10.1002/jccs.201800470]
[71]
Zhou, C-F.; Li, J-J.; Su, W-K. Morpholine triflate promoted one-pot, four-component synthesis of dihydropyrano[2,3-c]pyrazoles. Chin. Chem. Lett., 2016, 27(11), 1686-1690.
[http://dx.doi.org/10.1016/j.cclet.2016.05.010]
[72]
Chavan, H.V.; Babar, S.B.; Hoval, R.U.; Bandgar, B.P. Rapid one-pot, four component synthesis of pyranopyrazoles using heteropolyacid under solvent-free condition. Bull. Korean Chem. Soc., 2011, 32(11), 3963-3965.
[http://dx.doi.org/10.5012/bkcs.2011.32.11.3963]
[73]
Ablajan, K.; Maimaiti, Z. An efficient four-component synthesis of multisubstituted pyrano[2,3-c]pyrazole. Synth. Commun., 2012, 42(13), 1959-1966.
[http://dx.doi.org/10.1080/00397911.2010.551169]
[74]
Siddekha, A.; Nizam, A.; Pasha, M.A. An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium, and the vibrational spectroscopic studies on 6-amino-4-(4′-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyra-] zole using density functional theory. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 81(1), 431-440.
[http://dx.doi.org/10.1016/j.saa.2011.06.033] [PMID: 21795106]
[75]
Albadi, J.; Mansournezhadb, A. Poly(4-vinylpyridine) efficiently catalyzed one-pot four-component synthesis of pyrano[2,3-c]pyrazoles. Curr. Chem. Lett., 2014, 3(4), 221-227.
[http://dx.doi.org/10.5267/j.ccl.2014.10.001]
[76]
Azzam, S.H.S.; Pasha, M.A. Simple and efficient protocol for the synthesis of novel dihydro-1H-pyrano[2,3-c]pyrazol-6-ones via a one-pot four-component reaction. Tetrahedron Lett., 2012, 53(50), 6834-6837.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.025]
[77]
Shrivas, P.; Pandey, R.; Zodape, S.; Wankhadw, A.; Pratap, U. Green synthesis of pyranopyrazoles via biocatalytic one‐pot knoevenagel condensation–michael‐type addition–he-] terocyclization cascade in non‐aqueous media. Res. Chem. Intermed., 2020, 46(5), 2805-2816.
[http://dx.doi.org/10.1007/s11164-020-04122-x]
[78]
Patil, U.P.; Patil, R.C.; Patil, S.S. An eco-friendly catalytic system for one-pot multicomponent synthesis of diverse and densely functionalized pyranopyrazole and benzochromene derivatives. J. Heterocycl. Chem., 2019, 56(7), 1898-1913.
[http://dx.doi.org/10.1002/jhet.3564]
[79]
Mokhtary, M. Green approach for the synthesis of pyranopyrazoles and hexahydroquinoline-3-carboxamides using unripe grape juice (verjuice) as catalyst. Iran. J. Catal., 2019, 9(1), 21-26.
[80]
Vekariya, R.H.; Patel, K.D.; Patel, H.D. Fruit juice of Citrus limon as a biodegradable and reusable catalyst for facile, eco-friendly and green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones and dihydropyrano[2,3-c]-pyrazole derivatives. Res. Chem. Intermed., 2016, 42(10), 7559-7579.
[http://dx.doi.org/10.1007/s11164-016-2553-4]
[81]
Kangani, M.; Hazeri, N.; Mghsoodlou, M.T.; Habibi-khorasani, S.M.; Salahi, S. Green synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives using maltose as biodegradable catalyst. Res. Chem. Intermed., 2015, 41(4), 2513-2519.
[http://dx.doi.org/10.1007/s11164-013-1365-z]
[82]
Seydimemet, M.; Ablajan, K.; Hamdulla, M.; Li, W.; Omar, A.; Obul, M. L-Proline catalyzed four-component one-pot synthesis of coumarin-containing dihydropyrano[2,3-c]pyrazoles under ultrasonic irradiation. Tetrahedron, 2014, 72(47), 7599-7605.
[http://dx.doi.org/10.1016/j.tet.2016.10.016]
[83]
Khoobi, M.; Ghanoni, F.; Nadri, H.; Moradi, A.; Pirali Hamedani, M.; Homayouni Moghadam, F.; Emami, S.; Vosooghi, M.; Zadmard, R.; Foroumadi, A.; Shafiee, A. New tetracyclic tacrine analogs containing pyrano[2,3-c]pyrazole: Efficient synthesis, biological assessment and docking simulation study. Eur. J. Med. Chem., 2015, 89, 296-303.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.049] [PMID: 25462245]
[84]
Mecadon, H.; Rohman, M.R.; Kharbangar, I.; Laloo, B.M.; Kharkongor, I.; Rajbangshi, M.; Myrboh, B. L-Proline as an efficicent catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in water. Tetrahedron Lett., 2011, 52(25), 3228-3231.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.048]
[85]
Reddy, M.B.M.; Jayashankara, V.P.; Pasha, M.A. Glycine-catalyzed efficient synthesis of pyranopyrazoles via one-pot multicomponent reaction. Synth. Commun., 2010, 40(19), 2930-2934.
[http://dx.doi.org/10.1080/00397910903340686]
[86]
Safari, J.; Ahmadzadeh, M. Zwitterionic sulfamic acid functionalized nanoclay: A novel nanocatalyst for the synthesis of dihydropyrano[2,3-c]pyrazoles and spiro[indoline-3,4 ́-pyrano[2,3-c]pyrazole] derivatives. J. Taiwan Inst. Chem. Eng., 2017, 17, 14-24.
[http://dx.doi.org/10.1016/j.jtice.2016.12.010]
[87]
Davarpanah, J.; Kgaram, R. Synthesis of pyranopyrazole compounds using heterogeneous base catalyst based on 1,3,5-Triazine-2,4,6-Triamine modified nano rice husk silica. J. Nanoanalysis., 2017, 4(1), 20-30.
[88]
Gujar, J.B.; Chaudhari, M.A.; Kawade, D.S.; Shingare, M.S. Molecular sieves: An efficient and reusable catalyst for multi-component synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Tetrahedron Lett., 2014, 55(44), 6030-6033.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.127]
[89]
Wu, M.; Feng, Q.; Wan, D.; Ma, J. CTACl as catalyst for four-component, one-pot synthesis of pyranopyrazole derivatives in aqueous medium. Synth. Commun., 2013, 43(12), 1721-1726.
[http://dx.doi.org/10.1080/00397911.2012.666315]
[90]
Guo, R-Y.; An, Z-M.; Mo, L-P.; Yang, S-T.; Liu, H-X.; Wang, S-X.; Zhang, Z-H. Meglumine promoted one-pot, four-component synthesis of pyranopyrazole derivatives. Tetrahedron, 2013, 69(47), 9931-9938.
[http://dx.doi.org/10.1016/j.tet.2013.09.082]
[91]
Kanagaraj, K.; Pitchumani, K. Solvent-free multicomponent synthesis of pyranopyrazoles: Per-6-amino-b-cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett., 2010, 51(25), 3312-3316.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.087]
[92]
Dekamin, M.G.; Alikhani, M.; Emami, A.; Ghafuri, H.; Javanshir, S. An efficient catalyst- and solvent-free method for the synthesis of medicinally important dihydropyrano[2,3-c]pyrazole derivatives using ball milling technique. J. Iran. Chem. Soc., 2016, 13(3), 591-596.
[http://dx.doi.org/10.1007/s13738-015-0793-7]
[93]
Shabalala, N.G.; Pagadala, R.; Jonnalagadda, S.B. Ultrasonic-accelerated rapid protocol for the improved synthesis of pyrazoles. Ultrason. Sonochem., 2015, 27, 423-429.
[http://dx.doi.org/10.1016/j.ultsonch.2015.06.005] [PMID: 26186863]
[94]
Zou, Y.; Wu, H.; Hu, Y.; Liu, H.; Zhao, X.; Ji, H.; Shi, D. A novel and environment-friendly method for preparing dihydropyrano[2,3-c]pyrazoles in water under ultrasound irradiation. Ultrason. Sonochem., 2011, 18(3), 708-712.
[http://dx.doi.org/10.1016/j.ultsonch.2010.11.012] [PMID: 21185215]
[95]
Shen, T.; Fu, Z.; Che, F.; Dang, H.; Lin, Y.; Song, Q. An efficient one-pot four-component synthesis of 5H-spiro[benzo[7,8]chromeno[2,3-c]pyrazole-7,3′-indoline]-2,5,6(9H)-trione derivatives catalyzed by MgCl2. Tetrahedron Lett., 2015, 56, 1072-1075.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.062]
[96]
Gein, V.L.; Zamaraeva, T.M.; Slepukhin, P.A. Diethyl oxalacetate sodium salt as a reagent to obtain functionalized spiro[indoline-3,4-pyrano[2,3-c]pyrazoles Tetrahedron Lett., 2017, 58(2), 134-136.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.117]
[97]
Feng, J.; Ablajan, K.; Sali, A. 4-Dimethylaminopyridine-catalyzed multi-component one-pot reactions for the convenient synthesis of spiro[indoline-3,4-pyrano [2,3-c]pyrazole] derivatives. Tetrahedron, 2014, 70(2), 484-489.
[http://dx.doi.org/10.1016/j.tet.2013.11.019]
[98]
Liu, X.; Xu, X.; Wang, X.; Yang, W.; Qian, Q.; Zhang, M.; Song, L.; Deng, H.; Shao, M. A facile and convenient way to functionalized trifluoromethylated spirocyclic[indole-3,4-pyrano[2,3-c]pyrazole] derivatives. Tetrahedron Lett., 2013, 54(33), 4451-4455.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.038]
[99]
Zou, Y.; Hu, Y.; Liu, H.; Shi, D. Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. ACS Comb. Sci., 2012, 14(1), 38-43.
[http://dx.doi.org/10.1021/co200128k] [PMID: 22141731]
[100]
Tayade, Y.A.; Padvi, S.A.; Wagh, Y.B.; Dalal, D.S. β-Cyclodextrin as a supramolecular catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole and spiro[indoline-3,4-pyrano [2,3-c]pyrazole] in aqueous medium. Tetrahedron Lett., 2015, 56(19), 2441-2447.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.084]
[101]
Maddila, S.; Gorle, S.; Shabalala, S.; Oyetade, O.; Maddila, S.N.; Lavanya, P.; Jonnalagadda, S.B. Ultrasound mediated green synthesis of pyrano[2,3-c]pyrazoles by using Mn doped ZrO2. Arab. J. Chem., 2016, 12, 1-9.
[102]
Wang, C.; Jiang, Y.H.; Yan, C.G. Convenient synthesis of spiro[indoline-3,4-pyrano[2,3-c]pyrazole] and spiro[acenaphthyl-3,4-pyrano[2,3-c]pyrazoles] via four-component reaction. Chin. Chem. Lett., 2015, 26(7), 889-893.
[http://dx.doi.org/10.1016/j.cclet.2015.05.018]
[103]
Pal, S.; Khan, M.N.; Karamthulla, S.; Abbas, S.J.; Choudhury, L.H. One pot four-component reaction for the efficient synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole]-3-carboxylate derivatives. Tetrahedron Lett., 2013, 54(40), 5434-5440.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.117]
[104]
Liju, W.; Ablajan, K.; Jun, F. Rapid and efficient one-pot synthesis of spiro[indoline-3,4′-pyrano[2, 3-c]pyrazole] derivatives catalyzed by l-proline under ultrasound irradiation. Ultrason. Sonochem., 2015, 22, 113-118.
[http://dx.doi.org/10.1016/j.ultsonch.2014.05.013] [PMID: 24931425]
[105]
Zonouz, A.M.; Eskandari, I.; Khavasi, H.R. A green and convenient approach for the synthesis of methyl 6-amino-5-cyano-4-aryl-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates via a one-pot, multi-component reaction in water. Tetrahedron Lett., 2012, 53(41), 5519-5522.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.010]
[106]
Shaabanj, B.; Maleki, H.; Rakhtsah, J. Environmentally benign synthesis of pyranopyrazole derivatives by cobalt Schiff-base complexes immobilized on magnetic iron oxide nanoparticles. J. Organomet. Chem., 2019, 897, 139-147.
[http://dx.doi.org/10.1016/j.jorganchem.2019.06.030]
[107]
Zolfigol, M.A.; Nasrabadi, R.A.; Baghery, S.; Khakyzadeh, V. Applications of a novel nano magnetic catalyst in the synthesis of 1,8-dioxo-octahydroxanthene and dihydropyrano[2,3-c]pyrazole derivatives. J. Mol. Catal. Chem., 2016, 418-419, 54-67.
[http://dx.doi.org/10.1016/j.molcata.2016.03.027]
[108]
Ziarani, G.M.; Nouri, F.; Rahimifard, M.; Badiei, A.; Soorki, A.A. One-pot synthesis of pyrano[2,3-c]pyrazoles using SBA-15-PR-NH2 and their antimicrobial activities. Rev. Roum. Chim., 2015, 60(4), 331-337.
[109]
Iravani, N.; Keshavarz, M.; Kish, H.A.S.; Parandvar, R. Tin sulfide nanoparticles supported on activated carbon as an efficient and reusable Lewis acid catalyst for three‐component one‐pot synthesis of 4H‐pyrano[2,3‐c]pyrazole derivatives. Chin. J. Catal., 2015, 36(4), 626-633.
[http://dx.doi.org/10.1016/S1872-2067(14)60284-9]
[110]
Survase, D.N.; Chavan, H.V.; Dongare, S.B.; Ganapure, S.D.; Helavi, V.B. Indium chloride (InCl3) catalysed domino protocol for the regioselective synthesis of highly functionalized pyranopyrazoles under mild conditions. Chem. Commun. (Camb.), 2017, 5, 105-114.
[111]
Derabli, C.; Boualia, I.; Abdelwahab, A.B.; Boulcina, R.; Bensouici, C.; Kirsch, G.; Debache, A. Corrigendum to “A cascade synthesis, in vitro cholinesterases inhibitory activity and docking studies of novel Tacrine-pyranopyrazole derivatives”. Bioorg. Med. Chem. Lett., 2018, 28(18), 3129.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.008] [PMID: 30119958]
[112]
Heravi, M.M.; Ghods, A.; Derikvand, F.; Bakhtiari, K.; Bamoharram, F.F. H14[NaP5W30O110] catalyzed one-pot three-component synthesis of dihydropyrano[2,3-c]pyrazole and pyrano[2,3-d]pyrimidine derivatives. J. Iran. Chem. Soc., 2010, 7(3), 615-620.
[http://dx.doi.org/10.1007/BF03246049]
[113]
Khurana, J.M.; Chaudhary, A. Efficient and green synthesis of 4H-pyrans and 4H-pyrano[2,3-c] pyrazoles catalyzed by task-specific ionic liquid [bmim]OH under solvent-free conditions. Green Chem. Lett. Rev., 2012, 5(4), 633-638.
[http://dx.doi.org/10.1080/17518253.2012.691183]
[114]
Balaskar, R.S.; Gavade, S.N.; Mane, M.S.; Shingate, B.B.; Shingare, M.S.; Mane, D.V. Greener approach towards the facile synthesis of 1,4-dihydropyrano[2,3-c]pyrazol-5-yl cyanide derivatives at room temperature. Chin. Chem. Lett., 2010, 21(10), 1175-1179.
[http://dx.doi.org/10.1016/j.cclet.2010.06.013]
[115]
Dianat, H.; Nazif, A.; Salimi, S. An efficient synthesis of benzochromeno-pyrazoles. Int. J. Eng. Technol. Res., 2014, 2, 208-210.
[116]
Heravi, M.M.; Saeedi, M.; Beheshtiha, Y.S.; Oskooie, H.A. One-pot synthesis of benzochromeno-pyrazole derivatives. Mol. Divers., 2011, 15(1), 239-243.
[http://dx.doi.org/10.1007/s11030-010-9263-4] [PMID: 20683770]
[117]
Rather, R.A.; Siddiqui, Z.N. Synthesis, characterization and application of Nd-Salen schiff base complex Immobilized Mesoporous Silica in solvent free synthesis of pyranopyrazoles. J. Organomet. Chem., 2018, 868, 164-174.
[http://dx.doi.org/10.1016/j.jorganchem.2018.05.008]
[118]
Keyume, A.; Esmayil, Z.; Wang, L.; Jun, F. Convenient DABCO-catalyzed one-pot synthesis of multi-substituted pyrano[2,3-c]pyrazole dicarboxylates. Tetrahedron, 2014, 70(26), 3976-3980.
[http://dx.doi.org/10.1016/j.tet.2014.04.088]
[119]
Dawane, B.S.; Yemul, O.S.; Chobe, S.S.; Mandawad, G.G.; Kamble, R.D.; Shinde, A.V.; Kale, V.S.; Hurne, A.O.; Pawde, M.A.; Kale, M.P.; Desai, N.P.; Salgare, R.R.; Patil, M.B.; Mundhe, S.N.; Chavan, S.R. One-pot multicomponent synthesis and antimicrobial evaluation of some novel pyrano-[2,3-c]- pyrazoles derivatives. Pharma Chem., 2011, 3, 300-305.
[120]
Al-Matar, H.M.; Khalil, K.D.; Adam, A.Y.; Elnagdi, M.H. Green one pot solvent-free synthesis of pyrano[2,3-c]-pyrazoles and pyrazolo[1,5-a]pyrimidines. Molecules, 2010, 15(9), 6619-6629.
[http://dx.doi.org/10.3390/molecules15096619] [PMID: 20877248]
[121]
Ganta, R.K.; Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Advances in pyranopyrazole scaffolds’ syntheses using sustainable catalysts - A Review. Molecules, 2021, 26(11), 3270.
[http://dx.doi.org/10.3390/molecules26113270] [PMID: 34071629]
[122]
Al-Amiery, A.A.; Al-Bayati, R.I.; Saed, F.M.; Ali, W.B.; Kadhum, A.A.H.; Mohamad, A.B. Novel pyranopyrazoles: Synthesis and theoretical studies. Molecules, 2012, 17(9), 10377-10389.
[http://dx.doi.org/10.3390/molecules170910377] [PMID: 22936110]