Therapeutic Approaches for Intravascular Microthrombi-induced Acute Respiratory Distress Syndrome (ARDS) in COVID-19 Infection

Page: [970 - 987] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

The COVID-19 pandemic has overwhelmed our health care capacity in an unprecedented way due to the sheer number of critically infected patients admitted to hospitals during the last two years. Endothelial injury is seen as one of the central hallmarks of COVID-19 infection that is the starting point in the generation of microthrombi and sepsis eventually leading to acute respiratory distress syndrome (ARDs) and multi-organ failure. The dramatic fall in lung function during ARDs is attributed to the microthrombi-induced coagulopathy primed by a hyperactive immune system. Due to the lack of effective antiviral agents, the line of treatment is limited to the management of two key risk factors i.e., immune activation and coagulopathy. In the present review, we describe the mechanistic role, therapeutic targets, and opportunities to control immune activation and coagulopathy during the pathogenesis of COVID-19-induced ARDs.

Keywords: COVID 19, acute respiratory distress syndrome, NETosis, complement, immunothrombosis, coagulopathy, complement activation.

Graphical Abstract

[1]
Kumar, R.; Harilal, S.; Al-Sehemi, A.G.; Mathew, G.E.; Carradori, S.; Mathew, B. The chronicle of COVID-19 and possible strategies to curb the pandemic. Curr. Med. Chem., 2021, 28(15), 2852-2886.
[http://dx.doi.org/10.2174/0929867327666200702151018] [PMID: 32614740]
[2]
Baby, B.; Devan, A.R.; Nair, B.; Nath, L.R. The Impetus of COVID -19 in multiple organ affliction apart from respiratory infection: Pathogenesis, diagnostic measures and current treatment strategy. Infect. Disord. Drug Targets, 2021, 21(4), 514-526.
[http://dx.doi.org/10.2174/1871526520999200905115050] [PMID: 32888278]
[3]
Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K-Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[4]
Hui, D.S.C.; Zumla, A. Severe acute respiratory syndrome: Historical, epidemiologic, and clinical features. Infect. Dis. Clin. North Am., 2019, 33(4), 869-889.
[http://dx.doi.org/10.1016/j.idc.2019.07.001] [PMID: 31668196]
[5]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[6]
Middeldorp, S.; Coppens, M.; van Haaps, T.F.; Foppen, M.; Vlaar, A.P.; Müller, M.C.A.; Bouman, C.C.S.; Beenen, L.F.M.; Kootte, R.S.; Heijmans, J.; Smits, L.P.; Bonta, P.I.; van Es, N. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost., 2020, 18(8), 1995-2002.
[http://dx.doi.org/10.1111/jth.14888] [PMID: 32369666]
[7]
Harenberg, J.; Favaloro, E. COVID-19: Progression of disease and intravascular coagulation - present status and future perspectives. Clin. Chem. Lab. Med., 2020, 58(7), 1029-1036.
[http://dx.doi.org/10.1515/cclm-2020-0502] [PMID: 32406381]
[8]
Nicolai, L.; Leunig, A.; Brambs, S.; Kaiser, R.; Weinberger, T.; Weigand, M.; Muenchhoff, M.; Hellmuth, J.C.; Ledderose, S.; Schulz, H.; Scherer, C.; Rudelius, M.; Zoller, M.; Höchter, D.; Keppler, O.; Teupser, D.; Zwißler, B.; von Bergwelt-Baildon, M.; Kääb, S.; Massberg, S.; Pekayvaz, K.; Stark, K. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation, 2020, 142(12), 1176-1189.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.048488] [PMID: 32755393]
[9]
Emanuel, E.J.; Persad, G.; Upshur, R.; Thome, B.; Parker, M.; Glickman, A.; Zhang, C.; Boyle, C.; Smith, M.; Phillips, J.P. Fair allocation of scarce medical resources in the time of Covid-19. N. Engl. J. Med., 2020, 382(21), 2049-2055.
[http://dx.doi.org/10.1056/NEJMsb2005114] [PMID: 32202722]
[10]
Manne, B.K.; Denorme, F.; Middleton, E.A.; Portier, I.; Rowley, J.W.; Stubben, C.; Petrey, A.C.; Tolley, N.D.; Guo, L.; Cody, M.; Weyrich, A.S.; Yost, C.C.; Rondina, M.T.; Campbell, R.A. Platelet gene expression and function in patients with COVID-19. Blood, 2020, 136(11), 1317-1329.
[http://dx.doi.org/10.1182/blood.2020007214] [PMID: 32573711]
[11]
Zhang, W.; Zhao, Y.; Zhang, F.; Wang, Q.; Li, T.; Liu, Z.; Wang, J.; Qin, Y.; Zhang, X.; Yan, X.; Zeng, X.; Zhang, S. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol., 2020, 214, 108393.
[http://dx.doi.org/10.1016/j.clim.2020.108393] [PMID: 32222466]
[12]
Jayarangaiah, A.; Kariyanna, P.T.; Chen, X.; Jayarangaiah, A.; Kumar, A. COVID-19-associated coagulopathy: An exacerbated immunothrombosis response. Clin. Appl. Thromb., 2020, 26, 1076029620943293.
[http://dx.doi.org/10.1177/1076029620943293] [PMID: 32735131]
[13]
Dhont, S.; Derom, E.; Van Braeckel, E.; Depuydt, P.; Lambrecht, B.N. The pathophysiology of ‘happy’ hypoxemia in COVID-19. Respir. Res., 2020, 21(1), 198.
[http://dx.doi.org/10.1186/s12931-020-01462-5] [PMID: 32723327]
[14]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[15]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[16]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[17]
Miesbach, W. Pathological role of angiotensin II in severe COVID-19. TH Open, 2020, 4(2), e138-e144.
[http://dx.doi.org/10.1055/s-0040-1713678] [PMID: 32607467]
[18]
Flude, B.M.; Nannetti, G.; Mitchell, P.; Compton, N.; Richards, C.; Heurich, M.; Brancale, A.; Ferla, S.; Bassetto, M. Targeting the complement serine protease MASP-2 as a therapeutic strategy for coronavirus infections. Viruses, 2021, 13(2), 312.
[http://dx.doi.org/10.3390/v13020312] [PMID: 33671334]
[19]
Zou, X.; Chen, K.; Zou, J.; Han, P.; Hao, J.; Han, Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med., 2020, 14(2), 185-192.
[http://dx.doi.org/10.1007/s11684-020-0754-0] [PMID: 32170560]
[20]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[21]
Liu, K.; Fang, Y.Y.; Deng, Y.; Liu, W.; Wang, M.F.; Ma, J.P.; Xiao, W.; Wang, Y.N.; Zhong, M.H.; Li, C.H.; Li, G.C.; Liu, H.G. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J., 2020, 133(9), 1025-1031.
[http://dx.doi.org/10.1097/CM9.0000000000000744] [PMID: 32044814]
[22]
Dean, A.Q.; Bozza, W.P.; Twomey, J.D.; Luo, S.; Nalli, A.; Zhang, B. The fight against COVID-19: Striking a balance in the renin-angiotensin system. Drug Discov. Today, 2021, 26(10), 2214-2220.
[http://dx.doi.org/10.1016/j.drudis.2021.04.006] [PMID: 33865979]
[23]
Jiang, F.; Yang, J.; Zhang, Y.; Dong, M.; Wang, S.; Zhang, Q.; Liu, F.F.; Zhang, K.; Zhang, C. Angiotensin-converting enzyme 2 and angiotensin 1-7: Novel therapeutic targets. Nat. Rev. Cardiol., 2014, 11(7), 413-426.
[http://dx.doi.org/10.1038/nrcardio.2014.59] [PMID: 24776703]
[24]
Wu, Z.; Hu, R.; Zhang, C.; Ren, W.; Yu, A.; Zhou, X. Elevation of plasma angiotensin II level is a potential pathogenesis for the critically ill COVID-19 patients. Crit. Care, 2020, 24(1), 290.
[http://dx.doi.org/10.1186/s13054-020-03015-0] [PMID: 32503680]
[25]
Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; Li, W.W.; Li, V.W.; Mentzer, S.J.; Jonigk, D. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19. N. Engl. J. Med., 2020, 383(2), 120-128.
[http://dx.doi.org/10.1056/NEJMoa2015432] [PMID: 32437596]
[26]
Bastarache, J.A.; Wang, L.; Geiser, T.; Wang, Z.; Albertine, K.H.; Matthay, M.A.; Ware, L.B. The alveolar epithelium can initiate the extrinsic coagulation cascade through expression of tissue factor. Thorax, 2007, 62(7), 608-616.
[http://dx.doi.org/10.1136/thx.2006.063305] [PMID: 17356058]
[27]
Idell, S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Crit. Care Med., 2003, 31(4)(Suppl.), S213-S220.
[http://dx.doi.org/10.1097/01.CCM.0000057846.21303.AB] [PMID: 12682443]
[28]
Ware, L.B.; Bastarache, J.A.; Wang, L. Coagulation and fibrinolysis in human acute lung injury--new therapeutic targets? Keio J. Med., 2005, 54(3), 142-149.
[http://dx.doi.org/10.2302/kjm.54.142] [PMID: 16237276]
[29]
Günther, A.; Mosavi, P.; Heinemann, S.; Ruppert, C.; Muth, H.; Markart, P.; Grimminger, F.; Walmrath, D.; Temmesfeld-Wollbrück, B.; Seeger, W. Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia. Comparison with the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 2000, 161(2 Pt 1), 454-462.
[http://dx.doi.org/10.1164/ajrccm.161.2.9712038] [PMID: 10673185]
[30]
Bautista-Vargas, M.; Bonilla-Abadía, F.; Cañas, C.A. Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. J. Thromb. Thrombolysis, 2020, 50(3), 479-483.
[http://dx.doi.org/10.1007/s11239-020-02172-x] [PMID: 32519164]
[31]
Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Fagot Gandet, F.; Fafi-Kremer, S.; Castelain, V.; Schneider, F.; Grunebaum, L.; Anglés-Cano, E.; Sattler, L.; Mertes, P.M.; Meziani, F. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med., 2020, 46(6), 1089-1098.
[http://dx.doi.org/10.1007/s00134-020-06062-x] [PMID: 32367170]
[32]
do Espírito Santo, D.A.; Lemos, A.C.B.; Miranda, C.H. In vivo demonstration of microvascular thrombosis in severe COVID-19. J. Thromb. Thrombolysis, 2020, 50(4), 790-794.
[http://dx.doi.org/10.1007/s11239-020-02245-x] [PMID: 32789730]
[33]
Coccheri, S. COVID-19: The crucial role of blood coagulation and fibrinolysis. Intern. Emerg. Med., 2020, 15(8), 1369-1373.
[http://dx.doi.org/10.1007/s11739-020-02443-8] [PMID: 32748128]
[34]
McGonagle, D.; Plein, S.; O’Donnell, J.S.; Sharif, K.; Bridgewood, C. Increased cardiovascular mortality in African Americans with COVID-19. Lancet Respir. Med., 2020, 8(7), 649-651.
[http://dx.doi.org/10.1016/S2213-2600(20)30244-7] [PMID: 32473125]
[35]
Fogarty, H.; Townsend, L.; Ni Cheallaigh, C.; Bergin, C.; Martin-Loeches, I.; Browne, P.; Bacon, C.L.; Gaule, R.; Gillett, A.; Byrne, M.; Ryan, K.; O’Connell, N.; O’Sullivan, J.M.; Conlon, N.; O’Donnell, J.S. COVID19 coagulopathy in Caucasian patients. Br. J. Haematol., 2020, 189(6), 1044-1049.
[http://dx.doi.org/10.1111/bjh.16749] [PMID: 32330308]
[36]
McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev., 2020, 19(6), 102537.
[http://dx.doi.org/10.1016/j.autrev.2020.102537] [PMID: 32251717]
[37]
Levi, M.; Sivapalaratnam, S. Disseminated intravascular coagulation: An update on pathogenesis and diagnosis. Expert Rev. Hematol., 2018, 11(8), 663-672.
[http://dx.doi.org/10.1080/17474086.2018.1500173] [PMID: 29999440]
[38]
Levi, M.; Iba, T. COVID-19 coagulopathy: Is it disseminated intravascular coagulation? Intern. Emerg. Med., 2021, 16(2), 309-312.
[http://dx.doi.org/10.1007/s11739-020-02601-y] [PMID: 33368021]
[39]
Amgalan, A.; Othman, M. Hemostatic laboratory derangements in COVID-19 with a focus on platelet count. Platelets, 2020, 31(6), 740-745.
[http://dx.doi.org/10.1080/09537104.2020.1768523] [PMID: 32456506]
[40]
Iba, T.; Levy, J.H.; Levi, M.; Thachil, J. Coagulopathy in COVID-19. J. Thromb. Haemost., 2020, 18(9), 2103-2109.
[http://dx.doi.org/10.1111/jth.14975] [PMID: 32558075]
[41]
Fu, L.; Wang, B.; Yuan, T.; Chen, X.; Ao, Y.; Fitzpatrick, T.; Li, P.; Zhou, Y.; Lin, Y.F.; Duan, Q.; Luo, G.; Fan, S.; Lu, Y.; Feng, A.; Zhan, Y.; Liang, B.; Cai, W.; Zhang, L.; Du, X.; Li, L.; Shu, Y.; Zou, H. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. J. Infect., 2020, 80(6), 656-665.
[http://dx.doi.org/10.1016/j.jinf.2020.03.041] [PMID: 32283155]
[42]
Kyriakoulis, K.G.; Kokkinidis, D.G.; Kyprianou, I.A.; Papanastasiou, C.A.; Archontakis-Barakakis, P.; Doundoulakis, I.; Bakoyiannis, C.; Giannakoulas, G.; Palaiodimos, L. Venous thromboembolism in the era of COVID-19. Phlebol. J. Venous Dis., 2021, 36(2), 91-99.
[http://dx.doi.org/10.1177/0268355520955083] [PMID: 33249999]
[43]
Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost., 2020, 18(5), 1094-1099.
[http://dx.doi.org/10.1111/jth.14817] [PMID: 32220112]
[44]
Chueh, T.I.; Zheng, C.M.; Hou, Y.C.; Lu, K.C. Novel evidence of acute kidney injury in COVID-19. J. Clin. Med., 2020, 9(11), 3547.
[http://dx.doi.org/10.3390/jcm9113547] [PMID: 33153216]
[45]
Kirschenbaum, D.; Imbach, L.L.; Rushing, E.J.; Frauenknecht, K.B.M.; Gascho, D.; Ineichen, B.V.; Keller, E.; Kohler, S.; Lichtblau, M.; Reimann, R.R.; Schreib, K.; Ulrich, S.; Steiger, P.; Aguzzi, A.; Frontzek, K. Intracerebral endotheliitis and microbleeds are neuropathological features of COVID-19. Neuropathol. Appl. Neurobiol., 2021, 47(3), 454-459.
[http://dx.doi.org/10.1111/nan.12677] [PMID: 33249605]
[46]
Shehi, E.; Chilimuri, S.; Shin, D.; Patel, M.; Ali, N.; Niazi, M. Microthrombi in skin biopsy of a patient with COVID-19. JAAD Case Rep., 2020, 6(12), 1327-1329.
[http://dx.doi.org/10.1016/j.jdcr.2020.10.009] [PMID: 33072831]
[47]
Gupta, N.; Zhao, Y.Y.; Evans, C.E. The stimulation of thrombosis by hypoxia. Thromb. Res., 2019, 181, 77-83.
[http://dx.doi.org/10.1016/j.thromres.2019.07.013] [PMID: 31376606]
[48]
Sadler, J.E. Biochemistry and genetics of von Willebrand factor. Annu. Rev. Biochem., 1998, 67, 395-424.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.395] [PMID: 9759493]
[49]
Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; Braun, F.; Lu, S.; Pfefferle, S.; Schröder, A.S.; Edler, C.; Gross, O.; Glatzel, M.; Wichmann, D.; Wiech, T.; Kluge, S.; Pueschel, K.; Aepfelbacher, M.; Huber, T.B. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med., 2020, 383(6), 590-592.
[http://dx.doi.org/10.1056/NEJMc2011400] [PMID: 32402155]
[50]
Edler, C.; Schröder, A.S.; Aepfelbacher, M.; Fitzek, A.; Heinemann, A.; Heinrich, F.; Klein, A.; Langenwalder, F.; Lütgehetmann, M.; Meißner, K.; Püschel, K.; Schädler, J.; Steurer, S.; Mushumba, H.; Sperhake, J.P. Dying with SARS-CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int. J. Legal Med., 2020, 134(4), 1275-1284.
[http://dx.doi.org/10.1007/s00414-020-02317-w] [PMID: 32500199]
[51]
Chauhan, A.J.; Wiffen, L.J.; Brown, T.P. COVID-19: A collision of complement, coagulation and inflammatory pathways. J. Thromb. Haemost., 2020, 18(9), 2110-2117.
[http://dx.doi.org/10.1111/jth.14981] [PMID: 32608159]
[52]
Fletcher-Sandersjöö, A.; Bellander, B.M. Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thromb. Res., 2020, 194, 36-41.
[http://dx.doi.org/10.1016/j.thromres.2020.06.027] [PMID: 32569879]
[53]
de Bont, C.M.; Boelens, W.C.; Pruijn, G.J.M. NETosis, complement, and coagulation: A triangular relationship. Cell. Mol. Immunol., 2019, 16(1), 19-27.
[http://dx.doi.org/10.1038/s41423-018-0024-0] [PMID: 29572545]
[54]
Grässle, S.; Huck, V.; Pappelbaum, K.I.; Gorzelanny, C.; Aponte-Santamaría, C.; Baldauf, C.; Gräter, F.; Schneppenheim, R.; Obser, T.; Schneider, S.W. von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arterioscler. Thromb. Vasc. Biol., 2014, 34(7), 1382-1389.
[http://dx.doi.org/10.1161/ATVBAHA.113.303016] [PMID: 24790143]
[55]
Ruf, W.; Ruggeri, Z.M. Neutrophils release brakes of coagulation. Nat. Med., 2010, 16(8), 851-852.
[http://dx.doi.org/10.1038/nm0810-851] [PMID: 20689544]
[56]
Henry, B.M.; Vikse, J.; Benoit, S.; Favaloro, E.J.; Lippi, G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta, 2020, 507, 167-173.
[http://dx.doi.org/10.1016/j.cca.2020.04.027] [PMID: 32348783]
[57]
Whyte, C.S.; Morrow, G.B.; Mitchell, J.L.; Chowdary, P.; Mutch, N.J. Fibrinolytic abnormalities in Acute Respiratory Distress Syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. J. Thromb. Haemost., 2020, 18(7), 1548-1555.
[http://dx.doi.org/10.1111/jth.14872] [PMID: 32329246]
[58]
Du, F.; Liu, B.; Zhang, S. COVID-19: The role of excessive cytokine release and potential ACE2 down-regulation in promoting hypercoagulable state associated with severe illness. J. Thromb. Thrombolysis, 2021, 51(2), 313-329.
[http://dx.doi.org/10.1007/s11239-020-02224-2] [PMID: 32676883]
[59]
Wang, J.; Hajizadeh, N.; Moore, E.E.; McIntyre, R.C.; Moore, P.K.; Veress, L.A.; Yaffe, M.B.; Moore, H.B.; Barrett, C.D. Tissue plasminogen activator (TPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J. Thromb. Haemost., 2020, 18(7), 1752-1755.
[http://dx.doi.org/10.1111/jth.14828] [PMID: 32267998]
[60]
Lang, J.P.; Wang, X.; Moura, F.A.; Siddiqi, H.K.; Morrow, D.A.; Bohula, E.A. A current review of COVID-19 for the cardiovascular specialist. Am. Heart J., 2020, 226, 29-44.
[http://dx.doi.org/10.1016/j.ahj.2020.04.025] [PMID: 32497913]
[61]
Pellegrini, D.; Kawakami, R.; Guagliumi, G.; Sakamoto, A.; Kawai, K.; Gianatti, A.; Nasr, A.; Kutys, R.; Guo, L.; Cornelissen, A.; Faggi, L.; Mori, M.; Sato, Y.; Pescetelli, I.; Brivio, M.; Romero, M.; Virmani, R.; Finn, A.V. Microthrombi as a major cause of cardiac injury in COVID-19: A pathologic study. Circulation, 2021, 143(10), 1031-1042.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.051828] [PMID: 33480806]
[62]
Polak, S.B.; Van Gool, I.C.; Cohen, D.; von der Thüsen, J.H.; van Paassen, J. A systematic review of pathological findings in COVID-19: A pathophysiological timeline and possible mechanisms of disease progression. Mod. Pathol., 2020, 33(11), 2128-2138.
[http://dx.doi.org/10.1038/s41379-020-0603-3] [PMID: 32572155]
[63]
Hunt, B.J.; Levi, M. Re The source of elevated plasma D-dimer levels in COVID-19 infection. Br. J. Haematol., 2020, 190(3), e133-e134.
[http://dx.doi.org/10.1111/bjh.16907] [PMID: 32484901]
[64]
Asakura, H.; Ogawa, H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int. J. Hematol., 2021, 113(1), 45-57.
[http://dx.doi.org/10.1007/s12185-020-03029-y] [PMID: 33161508]
[65]
Loo, J.; Spittle, D.A.; Newnham, M. COVID-19, immunothrombosis and venous thromboembolism: Biological mechanisms. Thorax, 2021, 76(4), 412-420.
[http://dx.doi.org/10.1136/thoraxjnl-2020-216243] [PMID: 33408195]
[66]
Roncati, L.; Ligabue, G.; Fabbiani, L.; Malagoli, C.; Gallo, G.; Lusenti, B.; Nasillo, V.; Manenti, A.; Maiorana, A. Type 3 hypersensitivity in COVID-19 vasculitis. Clin. Immunol., 2020, 217, 108487.
[http://dx.doi.org/10.1016/j.clim.2020.108487] [PMID: 32479986]
[67]
van Dam, L.F.; Kroft, L.J.M.; van der Wal, L.I.; Cannegieter, S.C.; Eikenboom, J.; de Jonge, E.; Huisman, M.V.; Klok, F.A. Clinical and computed tomography characteristics of COVID-19 associated acute pulmonary embolism: A different phenotype of thrombotic disease? Thromb. Res., 2020, 193, 86-89.
[http://dx.doi.org/10.1016/j.thromres.2020.06.010] [PMID: 32531548]
[68]
Bajc, M.; Schümichen, C.; Grüning, T.; Lindqvist, A.; Le Roux, P.Y.; Alatri, A.; Bauer, R.W.; Dilic, M.; Neilly, B.; Verberne, H.J.; Delgado Bolton, R.C.; Jonson, B. EANM guideline for ventilation/perfusion Single-Photon Emission Computed Tomography (SPECT) for diagnosis of pulmonary embolism and beyond. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(12), 2429-2451.
[http://dx.doi.org/10.1007/s00259-019-04450-0] [PMID: 31410539]
[69]
Polycarpou, A.; Howard, M.; Farrar, C.A.; Greenlaw, R.; Fanelli, G.; Wallis, R.; Klavinskis, L.S.; Sacks, S. Rationale for targeting complement in COVID-19. EMBO Mol. Med., 2020, 12(8), e12642.
[http://dx.doi.org/10.15252/emmm.202012642] [PMID: 32559343]
[70]
Middleton, E.A.; He, X-Y.; Denorme, F.; Campbell, R.A.; Ng, D.; Salvatore, S.P.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk, A.C.; Loda, M.; Cody, M.J.; Manne, B.K.; Portier, I.; Harris, E.S.; Petrey, A.C.; Beswick, E.J.; Caulin, A.F.; Iovino, A.; Abegglen, L.M.; Weyrich, A.S.; Rondina, M.T.; Egeblad, M.; Schiffman, J.D.; Yost, C.C. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 2020, 136(10), 1169-1179.
[http://dx.doi.org/10.1182/blood.2020007008] [PMID: 32597954]
[71]
Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol., 2007, 176(2), 231-241.
[http://dx.doi.org/10.1083/jcb.200606027] [PMID: 17210947]
[72]
Lefrançais, E.; Mallavia, B.; Zhuo, H.; Calfee, C.S.; Looney, M.R. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight, 2018, 3(3), 98178.
[http://dx.doi.org/10.1172/jci.insight.98178] [PMID: 29415887]
[73]
Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol., 2018, 18(2), 134-147.
[http://dx.doi.org/10.1038/nri.2017.105] [PMID: 28990587]
[74]
Thålin, C.; Hisada, Y.; Lundström, S.; Mackman, N.; Wallén, H. Neutrophil extracellular traps: Villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler. Thromb. Vasc. Biol., 2019, 39(9), 1724-1738.
[http://dx.doi.org/10.1161/ATVBAHA.119.312463] [PMID: 31315434]
[75]
Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Daßler-Plenker, J.; Guerci, P.; Huynh, C.; Knight, J.S.; Loda, M.; Looney, M.R.; McAllister, F.; Rayes, R.; Renaud, S.; Rousseau, S.; Salvatore, S.; Schwartz, R.E.; Spicer, J.D.; Yost, C.C.; Weber, A.; Zuo, Y.; Egeblad, M. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med., 2020, 217(6), e20200652.
[http://dx.doi.org/10.1084/jem.20200652] [PMID: 32302401]
[76]
Bonaventura, A.; Liberale, L.; Carbone, F.; Vecchié, A.; Diaz-Cañestro, C.; Camici, G.G.; Montecucco, F.; Dallegri, F. The pathophysiological role of neutrophil extracellular traps in inflammatory diseases. Thromb. Haemost., 2018, 118(1), 6-27.
[http://dx.doi.org/10.1160/TH17-09-0630] [PMID: 29304522]
[77]
Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Frydas, I.; Kritas, S.K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents, 2020, 34(2), 327-331.
[http://dx.doi.org/10.23812/CONTI-E] [PMID: 32171193]
[78]
Chen, X.Y.; Yan, B.X.; Man, X.Y. TNFα inhibitor may be effective for severe COVID-19: Learning from toxic epidermal necrolysis. Ther. Adv. Respir. Dis., 2020, 14, 1753466620926800.
[http://dx.doi.org/10.1177/1753466620926800] [PMID: 32436460]
[79]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[80]
Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents, 2020, 55(5), 105954.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105954] [PMID: 32234467]
[81]
Luo, P.; Liu, Y.; Qiu, L.; Liu, X.; Liu, D.; Li, J. Tocilizumab treatment in COVID-19: A single center experience. J. Med. Virol., 2020, 92(7), 814-818.
[http://dx.doi.org/10.1002/jmv.25801] [PMID: 32253759]
[82]
Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; Zhang, X.; Pan, A.; Wei, H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA, 2020, 117(20), 10970-10975.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[83]
Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci., 2012, 8(9), 1237-1247.
[http://dx.doi.org/10.7150/ijbs.4989] [PMID: 23136552]
[84]
Wang, Z.; Han, W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark. Res., 2018, 6(4), 4.
[http://dx.doi.org/10.1186/s40364-018-0116-0] [PMID: 29387417]
[85]
Shieh, J.M.; Tseng, H.Y.; Jung, F.; Yang, S.H.; Lin, J.C. Elevation of IL-6 and IL-33 levels in serum associated with lung fibrosis and skeletal muscle wasting in a bleomycin-induced lung injury mouse model. Mediators Inflamm., 2019, 2019, 7947596.
[http://dx.doi.org/10.1155/2019/7947596] [PMID: 31049028]
[86]
Akhmerov, A.; Marbán, E. COVID-19 and the Heart. Circ. Res., 2020, 126(10), 1443-1455.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317055] [PMID: 32252591]
[87]
Dholaria, B.R.; Bachmeier, C.A.; Locke, F. Mechanisms and management of chimeric antigen receptor T-Cell therapy-related toxicities. BioDrugs, 2019, 33(1), 45-60.
[http://dx.doi.org/10.1007/s40259-018-0324-z] [PMID: 30560413]
[88]
Li, L.; Li, J.; Gao, M.; Fan, H.; Wang, Y.; Xu, X.; Chen, C.; Liu, J.; Kim, J.; Aliyari, R.; Zhang, J.; Jin, Y.; Li, X.; Ma, F.; Shi, M.; Cheng, G.; Yang, H. Interleukin-8 as a biomarker for disease prognosis of coronavirus disease-2019 patients. Front. Immunol., 2021, 11, 602395.
[http://dx.doi.org/10.3389/fimmu.2020.602395] [PMID: 33488599]
[89]
Pasquereau, S.; Kumar, A.; Herbein, G. Targeting TNF and TNF receptor pathway in HIV-1 infection: From immune activation to viral reservoirs. Viruses, 2017, 9(4), 64.
[http://dx.doi.org/10.3390/v9040064] [PMID: 28358311]
[90]
Mastaglio, S.; Ruggeri, A.; Risitano, A.M.; Angelillo, P.; Yancopoulou, D.; Mastellos, D.C.; Huber-Lang, M.; Piemontese, S.; Assanelli, A.; Garlanda, C.; Lambris, J.D.; Ciceri, F. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin. Immunol., 2020, 215, 108450.
[http://dx.doi.org/10.1016/j.clim.2020.108450] [PMID: 32360516]
[91]
Diurno, F.; Numis, F.G.; Porta, G.; Cirillo, F.; Maddaluno, S.; Ragozzino, A.; De Negri, P.; Di Gennaro, C.; Pagano, A.; Allegorico, E.; Bressy, L.; Bosso, G.; Ferrara, A.; Serra, C.; Montisci, A.; D’Amico, M.; Schiano Lo Morello, S.; Di Costanzo, G.; Tucci, A.G.; Marchetti, P.; Di Vincenzo, U.; Sorrentino, I.; Casciotta, A.; Fusco, M.; Buonerba, C.; Berretta, M.; Ceccarelli, M.; Nunnari, G.; Diessa, Y.; Cicala, S.; Facchini, G. Eculizumab treatment in patients with COVID-19: Preliminary results from real life ASL Napoli 2 Nord experience. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(7), 4040-4047.
[http://dx.doi.org/10.26355/EURREV_202004_20875] [PMID: 32329881]
[92]
Reis, E.S.; Berger, N.; Wang, X.; Koutsogiannaki, S.; Doot, R.K.; Gumas, J.T.; Foukas, P.G.; Resuello, R.R.G.; Tuplano, J.V.; Kukis, D.; Tarantal, A.F.; Young, A.J.; Kajikawa, T.; Soulika, A.M.; Mastellos, D.C.; Yancopoulou, D.; Biglarnia, A.R.; Huber-Lang, M.; Hajishengallis, G.; Nilsson, B.; Lambris, J.D. Safety profile after prolonged C3 inhibition. Clin. Immunol., 2018, 197, 96-106.
[http://dx.doi.org/10.1016/j.clim.2018.09.004] [PMID: 30217791]
[93]
Mastellos, D.C.; Pires da Silva, B.G.P.; Fonseca, B.A.L.; Fonseca, N.P.; Auxiliadora-Martins, M.; Mastaglio, S.; Ruggeri, A.; Sironi, M.; Radermacher, P.; Chrysanthopoulou, A.; Skendros, P.; Ritis, K.; Manfra, I.; Iacobelli, S.; Huber-Lang, M.; Nilsson, B.; Yancopoulou, D.; Connolly, E.S.; Garlanda, C.; Ciceri, F.; Risitano, A.M.; Calado, R.T.; Lambris, J.D. Complement C3 vs C5 inhibition in severe COVID-19: Early clinical findings reveal differential biological efficacy. Clin. Immunol., 2020, 220, 108598.
[http://dx.doi.org/10.1016/j.clim.2020.108598] [PMID: 32961333]
[94]
Risitano, A.M.; Mastellos, D.C.; Huber-Lang, M.; Yancopoulou, D.; Garlanda, C.; Ciceri, F.; Lambris, J.D. Complement as a target in COVID-19? Nat. Rev. Immunol., 2020, 20(6), 343-344.
[http://dx.doi.org/10.1038/s41577-020-0320-7] [PMID: 32327719]
[95]
Stahel, P.F.; Barnum, S.R. Complement inhibition in coronavirus disease (COVID)-19: A neglected therapeutic option. Front. Immunol., 2020, 11, 1661.
[http://dx.doi.org/10.3389/fimmu.2020.01661] [PMID: 32733489]
[96]
Gao, T.; Hu, M.; Zhang, X.; Li, H.; Zhu, L.; Liu, H.; Dong, Q.; Zhang, Z.; Wang, Z.; Hu, Y.; Fu, Y.; Jin, Y.; Li, K.; Zhao, S.; Xiao, Y.; Luo, S.; Li, L.; Zhao, L.; Liu, J.; Zhao, H.; Liu, Y.; Yang, W.; Peng, J.; Chen, X.; Li, P.; Liu, Y.; Xie, Y.; Song, J.; Zhang, L.; Ma, Q.; Bian, X.; Chen, W.; Liu, X.; Mao, Q.; Cao, C. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.29.20041962]
[97]
Holter, J.C.; Pischke, S.E.; de Boer, E.; Lind, A.; Jenum, S.; Holten, A.R.; Tonby, K.; Barratt-Due, A.; Sokolova, M.; Schjalm, C.; Chaban, V.; Kolderup, A.; Tran, T.; Tollefsrud Gjølberg, T.; Skeie, L.G.; Hesstvedt, L.; Ormåsen, V.; Fevang, B.; Austad, C.; Müller, K.E.; Fladeby, C.; Holberg-Petersen, M.; Halvorsen, B.; Müller, F.; Aukrust, P.; Dudman, S.; Ueland, T.; Andersen, J.T.; Lund-Johansen, F.; Heggelund, L.; Dyrhol-Riise, A.M.; Mollnes, T.E. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc. Natl. Acad. Sci. USA, 2020, 117(40), 25018-25025.
[http://dx.doi.org/10.1073/pnas.2010540117] [PMID: 32943538]
[98]
Kulkarni, H.S.; Atkinson, J.P. Targeting complement activation in COVID-19. Blood, 2020, 136(18), 2000-2001.
[http://dx.doi.org/10.1182/blood.2020008925] [PMID: 33119763]
[99]
Kim, A.H.J.; Wu, X.; Atkinson, J.P. The beneficial and pathogenic roles of complement in COVID-19. Cleve. Clin. J. Med., 2020.
[http://dx.doi.org/10.3949/ccjm.87a.ccc065] [PMID: 33115882]
[100]
Lo, M.W.; Kemper, C.; Woodruff, T.M. COVID-19: complement, coagulation, and collateral damage. J. Immunol., 2020, 205(6), 1488-1495.
[http://dx.doi.org/10.4049/jimmunol.2000644] [PMID: 32699160]
[101]
Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Cheng, L.; Li, J.; Wang, X.; Wang, F.; Liu, L.; Amit, I.; Zhang, S.; Zhang, Z. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med., 2020, 26(6), 842-844.
[http://dx.doi.org/10.1038/s41591-020-0901-9] [PMID: 32398875]
[102]
Foley, J.H.; Conway, E.M. Cross talk pathways between coagulation and inflammation. Circ. Res., 2016, 118(9), 1392-1408.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.306853] [PMID: 27126649]
[103]
Ward, P.A. The dark side of C5a in sepsis. Nat. Rev. Immunol., 2004, 4(2), 133-142.
[http://dx.doi.org/10.1038/nri1269] [PMID: 15040586]
[104]
McBride, R.; van Zyl, M.; Fielding, B.C. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 2014, 6(8), 2991-3018.
[http://dx.doi.org/10.3390/v6082991] [PMID: 25105276]
[105]
Gralinski, L.E.; Sheahan, T.P.; Morrison, T.E.; Menachery, V.D.; Jensen, K.; Leist, S.R.; Whitmore, A.; Heise, M.T.; Baric, R.S. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio, 2018, 9(5), e01753-e18.
[http://dx.doi.org/10.1128/mBio.01753-18] [PMID: 30301856]
[106]
Radermecker, C.; Detrembleur, N.; Guiot, J.; Cavalier, E.; Henket, M.; d’Emal, C.; Vanwinge, C.; Cataldo, D.; Oury, C.; Delvenne, P.; Marichal, T. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J. Exp. Med., 2020, 217(12), e20201012.
[http://dx.doi.org/10.1084/jem.20201012] [PMID: 32926097]
[107]
Shaw, R.J.; Austin, J.; Taylor, J.; Dutt, T.; Wang, G.; Abrams, S.T.; Toh, C.H. Circulating histone levels correlate with the severity of COVID-19 and the extent of coagulation activation and inflammation. Blood, 2020, 136(Suppl. 1), 19-19.
[http://dx.doi.org/10.1182/blood-2020-142344]
[108]
Abrams, S.T.; Su, D.; Sahraoui, Y.; Lin, Z.; Cheng, Z.; Nesbitt, K.; Alhamdi, Y.; Harrasser, M.; Du, M.; Foley, J.H.; Lillicrap, D.; Wang, G.; Toh, C.H. Assembly of alternative prothrombinase by extracellular histones initiates and disseminates intravascular coagulation. Blood, 2021, 137(1), 103-114.
[http://dx.doi.org/10.1182/blood.2019002973] [PMID: 33410894]
[109]
Gál, Z.; Gézsi, A.; Pállinger, É.; Visnovitz, T.; Nagy, A.; Kiss, A.; Sultész, M.; Csoma, Z.; Tamási, L.; Gálffy, G.; Szalai, C. Plasma neutrophil extracellular trap level is modified by disease severity and inhaled corticosteroids in chronic inflammatory lung diseases. Sci. Rep., 2020, 10(1), 4320.
[http://dx.doi.org/10.1038/s41598-020-61253-2] [PMID: 32152402]
[110]
Vulesevic, B.; Lavoie, S.S.; Neagoe, P.E.; Dumas, E.; Räkel, A.; White, M.; Sirois, M.G. CRP Induces NETosis in heart failure patients with or without diabetes. Immunohorizons, 2019, 3(8), 378-388.
[http://dx.doi.org/10.4049/immunohorizons.1900026] [PMID: 31399487]
[111]
Ali, R.A.; Gandhi, A.A.; Meng, H.; Yalavarthi, S.; Vreede, A.P.; Estes, S.K.; Palmer, O.R.; Bockenstedt, P.L.; Pinsky, D.J.; Greve, J.M.; Diaz, J.A.; Kanthi, Y.; Knight, J.S. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nat. Commun., 2019, 10(1), 1916.
[http://dx.doi.org/10.1038/s41467-019-09801-x] [PMID: 31015489]
[112]
Insel, P.A.; Murray, F.; Yokoyama, U.; Romano, S.; Yun, H.; Brown, L.; Snead, A.; Lu, D.; Aroonsakool, N. cAMP and Epac in the regulation of tissue fibrosis. Br. J. Pharmacol., 2012, 166(2), 447-456.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01847.x] [PMID: 22233238]
[113]
Liu, X.; Li, Z.; Liu, S.; Sun, J.; Chen, Z.; Jiang, M.; Zhang, Q.; Wei, Y.; Wang, X.; Huang, Y.Y.; Shi, Y.; Xu, Y.; Xian, H.; Bai, F.; Ou, C.; Xiong, B.; Lew, A.M.; Cui, J.; Fang, R.; Huang, H.; Zhao, J.; Hong, X.; Zhang, Y.; Zhou, F.; Luo, H.B. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm. Sin. B, 2020, 10(7), 1205-1215.
[http://dx.doi.org/10.1016/j.apsb.2020.04.008] [PMID: 32318327]
[114]
Yost, C.C.; Schwertz, H.; Cody, M.J.; Wallace, J.A.; Campbell, R.A.; Vieira-de-Abreu, A.; Araujo, C.V.; Schubert, S.; Harris, E.S.; Rowley, J.W.; Rondina, M.T.; Fulcher, J.M.; Koening, C.L.; Weyrich, A.S.; Zimmerman, G.A. Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation. J. Clin. Invest., 2016, 126(10), 3783-3798.
[http://dx.doi.org/10.1172/JCI83873] [PMID: 27599294]
[115]
Muraro, S.P.; De Souza, G.F.; Gallo, S.W.; Da Silva, B.K.; De Oliveira, S.D.; Vinolo, M.A.R.; Saraiva, E.M.; Porto, B.N. Respiratory Syncytial Virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. Sci. Rep., 2018, 8(1), 14166.
[http://dx.doi.org/10.1038/s41598-018-32576-y] [PMID: 30242250]
[116]
Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; Woods, R.J.; Kanthi, Y.; Knight, J.S. Neutrophil extracellular traps in COVID-19. JCI Insight, 2020, 5(11), e138999.
[http://dx.doi.org/10.1172/jci.insight.138999] [PMID: 32329756]
[117]
Satarker, S.; Tom, A.A.; Shaji, R.A.; Alosious, A.; Luvis, M.; Nampoothiri, M. JAK-STAT Pathway Inhibition and their Implications in COVID-19 Therapy. Postgrad. Med., 2021, 133(5), 489-507.
[http://dx.doi.org/10.1080/00325481.2020.1855921] [PMID: 33245005]
[118]
Yadav, V.; Chi, L.; Zhao, R.; Tourdot, B.E.; Yalavarthi, S.; Jacobs, B.N.; Banka, A.; Liao, H.; Koonse, S.; Anyanwu, A.C.; Visovatti, S.H.; Holinstat, M.A.; Michelle Kahlenberg, J.; Knight, J.S.; Pinsky, D.J.; Kanthi, Y. ENTPD-1 disrupts inflammasome IL-1β-driven venous thrombosis. J. Clin. Invest., 2019, 129(7), 2872-2877.
[http://dx.doi.org/10.1172/JCI124804] [PMID: 30990798]
[119]
Roschewski, M.; Lionakis, M.S.; Sharman, J.P.; Roswarski, J.; Goy, A.; Monticelli, M.A.; Roshon, M.; Wrzesinski, S.H.; Desai, J.V.; Zarakas, M.A.; Collen, J.; Rose, K.; Hamdy, A.; Izumi, R.; Wright, G.W.; Chung, K.K.; Baselga, J.; Staudt, L.M.; Wilson, W.H. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci. Immunol., 2020, 5(48), eabd0110.
[http://dx.doi.org/10.1126/sciimmunol.abd0110] [PMID: 32503877]
[120]
Vargas, A.; Boivin, R.; Cano, P.; Murcia, Y.; Bazin, I.; Lavoie, J.P. Neutrophil extracellular traps are downregulated by glucocorticosteroids in lungs in an equine model of asthma. Respir. Res., 2017, 18(1), 207.
[http://dx.doi.org/10.1186/s12931-017-0689-4] [PMID: 29233147]
[121]
Robinson, P.C.; Morand, E. Divergent effects of acute versus chronic glucocorticoids in COVID-19. Lancet Rheumatol., 2021, 3(3), e168-e170.
[http://dx.doi.org/10.1016/S2665-9913(21)00005-9] [PMID: 33521656]
[122]
Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Green, C.; Felton, T.; Chadwick, D.; Rege, K.; Fegan, C.; Chappell, L.C.; Faust, S.N.; Jaki, T.; Jeffery, K.; Montgomery, A.; Rowan, K.; Juszczak, E.; Baillie, J.K.; Haynes, R.; Landray, M.J. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med., 2021, 384(8), 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[123]
Gianfrancesco, M.; Hyrich, K.L.; Al-Adely, S.; Carmona, L.; Danila, M.I.; Gossec, L.; Izadi, Z.; Jacobsohn, L.; Katz, P.; Lawson-Tovey, S.; Mateus, E.F.; Rush, S.; Schmajuk, G.; Simard, J.; Strangfeld, A.; Trupin, L.; Wysham, K.D.; Bhana, S.; Costello, W.; Grainger, R.; Hausmann, J.S.; Liew, J.W.; Sirotich, E.; Sufka, P.; Wallace, Z.S.; Yazdany, J.; Machado, P.M.; Robinson, P.C.; Sufka, P.; Wallace, Z.S.; Wallace, Z.S.; Yazdany, J.; MacHado, P.M.; MacHado, P.M.; MacHado, P.M.; Robinson, P.C.; Robinson, P.C. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 global rheumatology Alliance physician-reported registry. Ann. Rheum. Dis., 2020, 79(7), 859-866.
[http://dx.doi.org/10.1136/annrheumdis-2020-217871] [PMID: 32471903]
[124]
Guiducci, C.; Gong, M.; Xu, Z.; Gill, M.; Chaussabel, D.; Meeker, T.; Chan, J.H.; Wright, T.; Punaro, M.; Bolland, S.; Soumelis, V.; Banchereau, J.; Coffman, R.L.; Pascual, V.; Barrat, F.J. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature, 2010, 465(7300), 937-941.
[http://dx.doi.org/10.1038/nature09102] [PMID: 20559388]
[125]
Xiang, Z.; Liu, J.; Shi, D.; Chen, W.; Li, J.; Yan, R.; Bi, Y.; Hu, W.; Zhu, Z.; Yu, Y.; Yang, Z. Glucocorticoids improve severe or critical COVID-19 by activating ACE2 and reducing IL-6 levels. Int. J. Biol. Sci., 2020, 16(13), 2382-2391.
[http://dx.doi.org/10.7150/ijbs.47652] [PMID: 32760206]
[126]
Dandona, P.; Mohanty, P.; Hamouda, W.; Aljada, A.; Kumbkarni, Y.; Garg, R. Effect of dexamethasone on reactive oxygen species generation by leukocytes and plasma interleukin-10 concentrations: A pharmacodynamic study. Clin. Pharmacol. Ther., 1999, 66(1), 58-65.
[http://dx.doi.org/10.1016/S0009-9236(99)70054-8] [PMID: 10430110]
[127]
Schultze, A.; Walker, A.J.; MacKenna, B.; Morton, C.E.; Bhaskaran, K.; Brown, J.P.; Rentsch, C.T.; Williamson, E.; Drysdale, H.; Croker, R.; Bacon, S.; Hulme, W.; Bates, C.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; Cockburn, J.; McDonald, H.I.; Tomlinson, L.; Mathur, R.; Wing, K.; Wong, A.Y.S.; Forbes, H.; Parry, J.; Hester, F.; Harper, S.; Evans, S.J.W.; Quint, J.; Smeeth, L.; Douglas, I.J.; Goldacre, B. Risk of COVID-19-related death among patients with chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: An observational cohort study using the OpenSAFELY platform. Lancet Respir. Med., 2020, 8(11), 1106-1120.
[http://dx.doi.org/10.1016/S2213-2600(20)30415-X] [PMID: 32979987]
[128]
Fan, F.; Huang, X.; Yuan, K.; Zhu, B.; Zhao, Y.; Hu, R.; Wan, T.; Zhu, L.; Jin, X. Glucocorticoids may exacerbate fungal keratitis by increasing fungal aggressivity and inhibiting the formation of neutrophil extracellular traps. Curr. Eye Res., 2020, 45(2), 124-133.
[http://dx.doi.org/10.1080/02713683.2019.1657464] [PMID: 31429304]
[129]
Pasero, D.; Sanna, S.; Liperi, C.; Piredda, D.; Branca, G.P.; Casadio, L.; Simeo, R.; Buselli, A.; Rizzo, D.; Bussu, F.; Rubino, S.; Terragni, P. A challenging complication following SARS-CoV-2 infection: A case of pulmonary mucormycosis. Infection, 2021, 49(5), 1055-1060.
[http://dx.doi.org/10.1007/s15010-020-01561-x] [PMID: 33331988]
[130]
Russo, V.; Di Maio, M.; Attena, E.; Silverio, A.; Scudiero, F.; Celentani, D.; Lodigiani, C.; Di Micco, P. Clinical impact of pre-admission antithrombotic therapy in hospitalized patients with COVID-19: A multicenter observational study. Pharmacol. Res., 2020, 159, 104965.
[http://dx.doi.org/10.1016/j.phrs.2020.104965] [PMID: 32474087]
[131]
Flam, B.; Wintzell, V.; Ludvigsson, J.F.; Mårtensson, J.; Pasternak, B. Direct oral anticoagulant use and risk of severe COVID-19. J. Intern. Med., 2021, 289(3), 411-419.
[http://dx.doi.org/10.1111/joim.13205] [PMID: 33258156]
[132]
Gremese, E.; Ferraccioli, G. The pathogenesis of microthrombi in COVID-19 cannot be controlled by DOAC: NETosis should be the target. J. Intern. Med., 2021, 289(3), 420-421.
[http://dx.doi.org/10.1111/joim.13228] [PMID: 33423337]
[133]
Viecca, M.; Radovanovic, D.; Forleo, G.B.; Santus, P. Enhanced platelet inhibition treatment improves hypoxemia in patients with severe Covid-19 and hypercoagulability. A case control, proof of concept study. Pharmacol. Res., 2020, 158, 104950.
[http://dx.doi.org/10.1016/j.phrs.2020.104950] [PMID: 32450344]
[134]
Spyropoulos, A.C. The management of venous thromboembolism in hospitalized patients with COVID-19. Blood Adv., 2020, 4(16), 4028.
[http://dx.doi.org/10.1182/bloodadvances.2020002496] [PMID: 32841342]
[135]
Lemos, A.C.B.; do Espírito Santo, D.A.; Salvetti, M.C.; Gilio, R.N.; Agra, L.B.; Pazin-Filho, A.; Miranda, C.H. Therapeutic versus prophylactic anticoagulation for severe COVID-19: A randomized phase II clinical trial (HESACOVID). Thromb. Res., 2020, 196, 359-366.
[http://dx.doi.org/10.1016/j.thromres.2020.09.026] [PMID: 32977137]
[136]
Bashir, D.A.; Da, Q.; Pradhan, S.; Sekhar, N.; Valladolid, C.; Lam, F.; Guffey, D.; Goldman, J.; Desai, M.S.; Cruz, M.A.; Allen, C.; Nguyen, T.C.; Vijayan, K.V. Secretion of von Willebrand factor and suppression of ADAMTS-13 activity by markedly high Concentration of Ferritin. Clin. Appl. Thromb., 2021, 27, 1076029621992128.
[http://dx.doi.org/10.1177/1076029621992128] [PMID: 33539188]
[137]
Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; Kucher, N.; Lang, I.M.; Lankeit, M.; Lorusso, R.; Mazzolai, L.; Meneveau, N.; Ní Áinle, F.; Prandoni, P.; Pruszczyk, P.; Righini, M.; Torbicki, A.; Van Belle, E.; Zamorano, J.L.; Lee, G.; Le Gal, G.; Messas, E.; Morais, J.; Piepoli, M.F.; Price, S.; Salvi, A.; Sanchez, O.; Stortecky, S.; Thielmann, M.; Noordegraaf, A.V.; Becattini, C.; Harjola, V.P.; Geersing, G.J.; Humbert, M.; Jennings, C.S.; Jiménez, D.; Kucher, N.; Lang, I.M.; Lankeit, M.; Lankeit, M.; Lankeit, M.; Lorusso, R.; Mazzolai, L.; Meneveau, N.; Áinle, F.N.; Prandoni, P.; Pruszczyk, P.; Righini, M.; Torbicki, A.; Van Belle, E.; Zamorano, J.L.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J.P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.E.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.E.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Hammoudi, N.; Hayrapetyan, H.; Mascherbauer, J.; Ibrahimov, F.; Polonetsky, O.; Lancellotti, P.; Tokmakova, M.; Skoric, B.; Michaloliakos, I.; Hutyra, M.; Mellemkjaer, S.; Mansour, M.; Reinmets, J.; Jääskeläinen, P.; Angoulvant, D.; Bauersachs, J.; Giannakoulas, G.; Zima, E.; Vizza, C.D.; Sugraliyev, A.; Bytyçi, I.; Maca, A.; Ereminiene, E.; Huijnen, S.; Xuereb, R.; Diaconu, N.; Bulatovic, N.; Asfalou, I.; Bosevski, M.; Halvorsen, S.; Sobkowicz, B.; Ferreira, D.; Petris, A.O.; Moiseeva, O.; Zavatta, M.; Obradovic, S.; Šimkova, I.; Radsel, P.; Ibanez, B.; Wikström, G.; Aujesky, D.; Kaymaz, C.; Parkhomenko, A.; Pepke-Zaba, J. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J., 2020, 41(4), 543-603.
[http://dx.doi.org/10.1093/eurheartj/ehz405] [PMID: 31504429]
[138]
Zhai, Z.; Li, C.; Chen, Y.; Gerotziafas, G.; Zhang, Z.; Wan, J.; Liu, P.; Elalamy, I.; Wang, C. Prevention and treatment of venous thromboembolism associated with coronavirus disease 2019 infection: a consensus statement before guidelines. Thromb. Haemost., 2020, 120(6), 937-948.
[http://dx.doi.org/10.1055/s-0040-1710019] [PMID: 32316065]
[139]
Cattaneo, M.; Bertinato, E.M.; Birocchi, S.; Brizio, C.; Malavolta, D.; Manzoni, M.; Muscarella, G.; Orlandi, M. Pulmonary embolism or pulmonary thrombosis in COVID-19? is the recommendation to use high-dose heparin for thromboprophylaxis justified? Thromb. Haemost., 2020, 120(8), 1230-1232.
[http://dx.doi.org/10.1055/s-0040-1712097] [PMID: 32349132]
[140]
Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; Endeman, H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res., 2020, 191, 145-147.
[http://dx.doi.org/10.1016/j.thromres.2020.04.013] [PMID: 32291094]
[141]
White, D.; MacDonald, S.; Bull, T.; Hayman, M.; de Monteverde-Robb, R.; Sapsford, D.; Lavinio, A.; Varley, J.; Johnston, A.; Besser, M.; Thomas, W. Heparin resistance in COVID-19 patients in the intensive care unit. J. Thromb. Thrombolysis, 2020, 50(2), 287-291.
[http://dx.doi.org/10.1007/s11239-020-02145-0] [PMID: 32445064]
[142]
Longstaff, C.; Hogwood, J.; Gray, E.; Komorowicz, E.; Varjú, I.; Varga, Z.; Kolev, K. Neutralisation of the anti-coagulant effects of heparin by histones in blood plasma and purified systems. Thromb. Haemost., 2016, 115(3), 591-599.
[http://dx.doi.org/10.1160/th15-03-0214] [PMID: 26632486]
[143]
Connors, J.M.; Levy, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood, 2020, 135(23), 2033-2040.
[http://dx.doi.org/10.1182/blood.2020006000] [PMID: 32339221]
[144]
Zhu, C.; Liang, Y.; Li, X.; Chen, N.; Ma, X. Unfractionated heparin attenuates histone-mediated cytotoxicity in vitro and prevents intestinal microcirculatory dysfunction in histone-infused rats. J. Trauma Acute Care Surg., 2019, 87(3), 614-622.
[http://dx.doi.org/10.1097/TA.0000000000002387] [PMID: 31454337]
[145]
Meara, C.H.O.; Coupland, L.A.; Kordbacheh, F.; Quah, B.J.C.; Chang, C-W.; Simon Davis, D.A.; Bezos, A.; Browne, A.M.; Freeman, C.; Hammill, D.J.; Chopra, P.; Pipa, G.; Madge, P.D.; Gallant, E.; Segovis, C.; Dulhunty, A.F.; Arnolda, L.F.; Mitchell, I.; Khachigian, L.M.; Stephens, R.W.; von Itzstein, M.; Parish, C.R. Neutralizing the pathological effects of extracellular histones with small polyanions. Nat. Commun., 2020, 11(1), 6408.
[http://dx.doi.org/10.1038/s41467-020-20231-y] [PMID: 33328478]
[146]
Hogwood, J.; Pitchford, S.; Mulloy, B.; Page, C.; Gray, E. Heparin and non-anticoagulant heparin attenuate histone-induced inflammatory responses in whole blood. PLoS One, 2020, 15(5), e0233644.
[http://dx.doi.org/10.1371/journal.pone.0233644] [PMID: 32469940]
[147]
Leppkes, M.; Knopf, J.; Naschberger, E.; Lindemann, A.; Singh, J.; Herrmann, I.; Stürzl, M.; Staats, L.; Mahajan, A.; Schauer, C.; Kremer, A.N.; Völkl, S.; Amann, K.; Evert, K.; Falkeis, C.; Wehrfritz, A.; Rieker, R.J.; Hartmann, A.; Kremer, A.E.; Neurath, M.F.; Muñoz, L.E.; Schett, G.; Herrmann, M. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine, 2020, 58, 102925.
[http://dx.doi.org/10.1016/j.ebiom.2020.102925] [PMID: 32745993]
[148]
Buijsers, B.; Yanginlar, C.; de Nooijer, A.; Grondman, I.; Maciej-Hulme, M.L.; Jonkman, I.; Janssen, N.A.F.; Rother, N.; de Graaf, M.; Pickkers, P.; Kox, M.; Joosten, L.A.B.; Nijenhuis, T.; Netea, M.G.; Hilbrands, L.; van de Veerdonk, F.L.; Duivenvoorden, R.; de Mast, Q.; van der Vlag, J. Increased plasma heparanase activity in COVID-19 patients. Front. Immunol., 2020, 11, 575047.
[http://dx.doi.org/10.3389/fimmu.2020.575047]
[149]
Manfredi, A.A.; Rovere-Querini, P.; D’Angelo, A.; Maugeri, N. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol. Res., 2017, 123, 146-156.
[http://dx.doi.org/10.1016/j.phrs.2016.08.008] [PMID: 28161237]
[150]
Wildhagen, K.C.A.A.; García de Frutos, P.; Reutelingsperger, C.P.; Schrijver, R.; Aresté, C.; Ortega-Gómez, A.; Deckers, N.M.; Hemker, H.C.; Soehnlein, O.; Nicolaes, G.A.F. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood, 2014, 123(7), 1098-1101.
[http://dx.doi.org/10.1182/blood-2013-07-514984] [PMID: 24264231]
[151]
Kazatchkine, M.D.; Fearon, D.T.; Metcalfe, D.D.; Rosenberg, R.D.; Austen, K.F. Structural determinants of the capacity of heparin to inhibit the formation of the human amplification C3 convertase. J. Clin. Invest., 1981, 67(1), 223-228.
[http://dx.doi.org/10.1172/JCI110017] [PMID: 6778897]
[152]
Potje, S.R.; Costa, T.J.; Fraga-Silva, T.F.C.; Martins, R.B.; Benatti, M.N.; Almado, C.E.L.; de Sá, K.S.G.; Bonato, V.L.D.; Arruda, E.; Louzada-Junior, P.; Oliveira, R.D.R.; Zamboni, D.S.; Becari, C.; Auxiliadora-Martins, M.; Tostes, R.C. Heparin prevents in vitro glycocalyx shedding induced by plasma from COVID-19 patients. Life Sci., 2021, 276, 119376.
[http://dx.doi.org/10.1016/j.lfs.2021.119376] [PMID: 33781826]
[153]
Rabelink, T.J.; van den Berg, B.M.; Garsen, M.; Wang, G.; Elkin, M.; van der Vlag, J. Heparanase: Roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nat. Rev. Nephrol., 2017, 13(4), 201-212.
[http://dx.doi.org/10.1038/nrneph.2017.6] [PMID: 28163306]
[154]
Shi, C.; Wang, C.; Wang, H.; Yang, C.; Cai, F.; Zeng, F.; Cheng, F.; Liu, Y.; Zhou, T.; Deng, B.; Vlodavsky, I.; Li, J.P.; Zhang, Y. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective cohort study. Clin. Transl. Sci., 2020, 13(6), 1087-1095.
[http://dx.doi.org/10.1111/cts.12880] [PMID: 32881340]
[155]
Chimenti, L.; Camprubí-Rimblas, M.; Guillamat-Prats, R.; Gomez, M.N.; Tijero, J.; Blanch, L.; Artigas, A. Nebulized heparin attenuates pulmonary coagulopathy and inflammation through alveolar macrophages in a rat model of acute lung injury. Thromb. Haemost., 2017, 117(11), 2125-2134.
[http://dx.doi.org/10.1160/TH17-05-0347] [PMID: 29202212]
[156]
Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; Abbate, A. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol., 2021, 21(5), 319-329.
[http://dx.doi.org/10.1038/s41577-021-00536-9] [PMID: 33824483]
[157]
Pemán, J.; Ruiz-Gaitán, A.; García-Vidal, C.; Salavert, M.; Ramírez, P.; Puchades, F.; García-Hita, M.; Alastruey-Izquierdo, A.; Quindós, G. Fungal co-infection in COVID-19 patients: Should we be concerned? Rev. Iberoam. Micol., 2020, 37(2), 41-46.
[http://dx.doi.org/10.1016/j.riam.2020.07.001] [PMID: 33041191]