Characterization of Pili Protein 67 kDa Streptococcus pneumoniae: New Candidate for Virulence Factor-Based Pneumococcal Antigen Vaccine

Page: [702 - 710] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Streptococcus pneumoniae is a Gram-positive diplococci bacteria that causes infectious diseases such as otitis, meningitis, and pneumonia. Streptococcus pneumoniae has various virulence factors, one of which is pilus. In addition to being immunogenic, pilus S. pneumoniae also plays a role in bacterial adhesion to host cells and biofilm formation. The S. pneumoniae pilus found in this study consisted of several proteins with various molecular weights, one of which was a 67 kDa protein.

Objective: This study aimed to determine the characteristics of the 67 kDa pilus protein, including its capacity as hemagglutinin and adhesin and its amino acid sequence (AA).

Methods: The LCMS/MS method is used to determine the AA sequence of the 67 kDa pilus protein. The AA structure was analyzed through BLASTP by matching it with the sequence of the protein data bank of S. pneumoniae (taxid: 1313). The ProtParam tool from ExPASY was used to calculate various physical and chemical parameters of the protein, while for evaluating its immunogenicity, the VaxiJen V2.0 online server was used.

Results: The results of this study indicate that the 67 kD a pilus protein, is an anti-hemagglutinin protein and has a role as an adhesin protein. Adhesion tests show the action between protein concentration and the number of bacteria attached to enterocyte cells. LCMS/MS test results obtained by BLASTP showed that the 67 kDa pilus protein had three AA sequences (ITYMSPDFAAPTLAGLDDATK, AEFVEVTK, and LVVSTQTALA), which had similarities with the A backbone chain of S. pneumoniae pilus. The physicochemical test showed that the protein is hydrophilic and nonpolar, while the antigenicity test showed that the protein is antigenic.

Conclusion: Based on these characteristics, it can be concluded that the 67 kDa S. pneumoniae pilus protein can be used as a vaccine candidate for pneumococcus.

Keywords: Pilus 67 kDa, S. pneumoniae, vaccine, virulence factors, gram-positive, antigen.

[1]
O’Brien, K.L.; Wolfson, L.J.; Watt, J.P.; Henkle, E.; Deloria-Knoll, M.; McCall, N.; Lee, E.; Mulholland, K.; Levine, O.S.; Cherian, T. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: Global estimates. Lancet, 2009, 374(9693), 893-902.
[http://dx.doi.org/10.1016/S0140-6736(09)61204-6] [PMID: 19748398]
[2]
Rudan, I.; O’Brien, K.L.; Nair, H.; Liu, L.; Theodoratou, E.; Qazi, S. Lukšić I.; Fischer Walker, C.L.; Black, R.E.; Campbell, H. Epidemiology and etiology of childhood pneumonia in 2010: Estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J. Glob. Health, 2013, 3(1), 010401.
[http://dx.doi.org/10.7189/JOGH.03.010401] [PMID: 23826505]
[3]
Feldman, C.; Anderson, R. Epidemiology, virulence factors and management of the pneumococcus. F1000 Res., 2016, 5(0), 2320.
[http://dx.doi.org/10.12688/f1000research.9283.1] [PMID: 27703671]
[4]
Jansen, K.U.; Anderson, A.S. The role of vaccines in fighting antimicrobial resistance (AMR). Hum. Vaccin. Immunother., 2018, 14(9), 2142-2149.
[http://dx.doi.org/10.1080/21645515.2018.1476814] [PMID: 29787323]
[5]
Feldman, C.; Anderson, R. Review: Current and new generation pneumococcal vaccines. J. Infect., 2014, 69(4), 309-325.
[http://dx.doi.org/10.1016/j.jinf.2014.06.006] [PMID: 24968238]
[6]
Pichichero, M.E.; Khan, M.N.; Xu, Q. Next generation protein based Streptococcus pneumoniae vaccines. Hum. Vaccin. Immunother., 2016, 12(1), 194-205.
[http://dx.doi.org/10.1080/21645515.2015.1052198] [PMID: 26539741]
[7]
van der Poll, T.; Opal, S.M. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet, 2009, 374(9700), 1543-1556.
[http://dx.doi.org/10.1016/S0140-6736(09)61114-4] [PMID: 19880020]
[8]
Henriques-Normark, B.; Tuomanen, E.I. The pneumococcus: Epidemiology, microbiology, and pathogenesis. Cold Spring Harb. Perspect. Med., 2013, 3(7), 1-15.
[http://dx.doi.org/10.1101/cshperspect.a010215] [PMID: 23818515]
[9]
Day, C.J.; Paton, A.W.; Harvey, R.M.; Hartley-Tassell, L.E.; Seib, K.L.; Tiralongo, J.; Bovin, N.; Savino, S.; Masignani, V.; Paton, J.C.; Jennings, M.P. Lectin activity of the pneumococcal pilin proteins. Sci. Rep., 2017, 7(1), 17784.
[http://dx.doi.org/10.1038/s41598-017-17850-9] [PMID: 29259314]
[10]
Mufida, D.C.; Handono, K.; Prawiro, S.R.; Santoso, S. Identification of Hemagglutinin Protein from Streptococcus pneumoniae Pili as a Vaccine Candidate by Proteomic Analysis. Turkish J. Immunol., 2018, 6(1), 8-15.
[http://dx.doi.org/10.25002/tji.2018.698]
[11]
Sumarno, R.; Susanto, A.; Ismanoe, G. Combinations of Protein Sub-Unit PILI 37.8 KDA V. Cholerae with Cholera Toxin Sub-Unit B V. Cholerae can protect come out of the solution in the intestinal mice. J. Pharm. Biomed. Sci., 2011, 1(8), 154-160.
[12]
Jariyapan, N.; Roytrakul, S.; Paemanee, A.; Junkum, A.; Saeung, A.; Thongsahuan, S.; Sor-suwan, S.; Phattanawiboon, B.; Poovorawan, Y.; Choochote, W. Proteomic analysis of salivary glands of female Anopheles barbirostris species A2 (Diptera: Culicidae) by two-dimensional gel electrophoresis and mass spectrometry. Parasitol. Res., 2012, 111(3), 1239-1249.
[http://dx.doi.org/10.1007/s00436-012-2958-y] [PMID: 22584379]
[13]
Agustina, W. Antibody Protein Hemagglutinin Subunit Pili with MW 49,8 KDa Shigella dysenteriae can inhibit Shigella dysenteriae Adhesion on Mice enterocyte. IOSR J. Pharm., 2012, 2(5), 13-20.
[http://dx.doi.org/10.9790/3013-25501320]
[14]
Vázquez-Iglesias, L.; Estefanell-Ucha, B.; Barcia-Castro, L.; de la Cadena, M.P. álvarez-Chaver, P.; Ayude-Vázquez, D.; Rodríguez-Berrocal, F.J. A simple electroelution method for rapid protein purification: Isolation and antibody production of alpha toxin from clostridium septicum. PeerJ, 2017, 2017(6)
[http://dx.doi.org/10.7717/PEERJ.3407/SUPP-3]
[15]
Li, X.I.N.; Johnson, D.E.; Mobley, H.L.T. Requirement of MrpH for mannose-resistant proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. Infect. Immun., 1999, 67(6), 2822-2833.
[http://dx.doi.org/10.1128/IAI.67.6.2822-2833.1999] [PMID: 10338487]
[16]
Agustina, D.; Retoprawiro, S.; As, N. Inhibition of bacterial adhesion on mice enterocyte by the hemagglutinin pili protein 12, 8 kda Klebsiella pneumoniae antibody. J. Trop. Life Sci., 2014, 4(1), 19-25.
[http://dx.doi.org/10.11594/jtls.04.01.04]
[17]
Nagayama, K.; Oguchi, T.; Arita, M.; Honda, T. Purification and characterization of a cell-associated hemagglutinin of Vibrio parahaemolyticus. Infect. Immun., 1995, 63(5), 1987-1992.
[http://dx.doi.org/10.1128/iai.63.5.1987-1992.1995] [PMID: 7729912]
[18]
Eivazi, S.; Majidi, J.; Aghebati Maleki, L.; Abdolalizadeh, J.; Yousefi, M.; Ahmadi, M.; Dadashi, S.; Moradi, Z.; Zolali, E. Production and purification of a polyclonal antibody against purified mouse igg2b in rabbits towards designing mouse monoclonal isotyping kits. Adv. Pharm. Bull., 2015, 5(1), 109-113.
[http://dx.doi.org/10.5681/APB.2015.015] [PMID: 25789227]
[19]
Mahmood, T.; Yang, P.C. Western blot: Technique, theory, and trouble shooting. N. Am. J. Med. Sci., 2012, 4(9), 429-434.
[http://dx.doi.org/10.4103/1947-2714.100998] [PMID: 23050259]
[20]
Bringans, S.; Eriksen, S.; Kendrick, T.; Gopalakrishnakone, P.; Livk, A.; Lock, R.; Lipscombe, R. Proteomic analysis of the venom of Heterometrus longimanus (Asian black scorpion). Proteomics, 2008, 8(5), 1081-1096.
[http://dx.doi.org/10.1002/pmic.200700948] [PMID: 18246572]
[21]
Armiyanti, Y.; Arifianto, R.P.; Riana, E.N.; Senjarini, K.; Widodo, W.; Fitri, L.E.; Sardjono, T.W. Identification of antigenic proteins from salivary glands of female Anopheles maculatus by proteomic analysis. Asian Pac. J. Trop. Biomed., 2016, 6(11), 924-930.
[http://dx.doi.org/10.1016/j.apjtb.2016.08.012]
[22]
Manochitra, K.; Parija, S.C. In-silico prediction and modeling of the Entamoeba histolytica proteins: Serine-rich Entamoeba histolytica protein and 29 kDa Cysteine-rich protease. PeerJ, 2017, 5(6), e3160.
[http://dx.doi.org/10.7717/peerj.3160] [PMID: 28674640]
[23]
Mitra, S.; Saha, D.R.; Pal, A.; Niyogi, S.K.; Mitra, U.; Koley, H. Hemagglutinating activity is directly correlated with colonization ability of shigellae in suckling mouse model. Can. J. Microbiol., 2012, 58(10), 1159-1166.
[http://dx.doi.org/10.1139/w2012-095] [PMID: 22978650]
[24]
Basset, A.; Herd, M.; Daly, R.; Dove, S.L.; Malley, R. The pneumococcal type 1 pilus genes are thermoregulated and are repressed by a member of the snf2 protein family. J. Bacteriol., 2017, 199(15), e00078-e17.
[http://dx.doi.org/10.1128/JB.00078-17] [PMID: 28507246]
[25]
Melvin, J.A.; Scheller, E.V.; Noël, C.R.; Cotter, P.A. New insight into filamentous hemagglutinin secretion reveals a role for full-length fhab in bordetella virulence. MBio, 2015, 6(4), 12-15.
[http://dx.doi.org/10.1128/mBio.01189-15] [PMID: 26286694]
[26]
Connolly, E.; Millhouse, E.; Doyle, R.; Culshaw, S.; Ramage, G.; Moran, G.P. The Porphyromonas gingivalis hemagglutinins HagB and HagC are major mediators of adhesion and biofilm formation. Mol. Oral Microbiol., 2017, 32(1), 35-47.
[http://dx.doi.org/10.1111/omi.12151] [PMID: 28051836]
[27]
Sharma, V.; von Ossowski, I.; Krishnan, V. Exploiting pilus-mediated bacteria-host interactions for health benefits. Mol. Aspects Med., 2021, 81, 100998.
[http://dx.doi.org/10.1016/j.mam.2021.100998] [PMID: 34294411]
[28]
Bagnoli, F.; Moschioni, M.; Donati, C.; Dimitrovska, V.; Ferlenghi, I.; Facciotti, C.; Muzzi, A.; Giusti, F.; Emolo, C.; Sinisi, A.; Hilleringmann, M.; Pansegrau, W.; Censini, S.; Rappuoli, R.; Covacci, A.; Masignani, V.; Barocchi, M.A. A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J. Bacteriol., 2008, 190(15), 5480-5492.
[http://dx.doi.org/10.1128/JB.00384-08] [PMID: 18515415]
[29]
Moschioni, M.; Emolo, C.; Biagini, M.; Maccari, S.; Pansegrau, W.; Donati, C.; Hilleringmann, M.; Ferlenghi, I.; Ruggiero, P.; Sinisi, A.; Pizza, M.; Norais, N.; Barocchi, M.A.; Masignani, V. The two variants of the Streptococcus pneumoniae pilus 1 RrgA adhesin retain the same function and elicit cross-protection in vivo. Infect. Immun., 2010, 78(12), 5033-5042.
[http://dx.doi.org/10.1128/IAI.00601-10] [PMID: 20823200]
[30]
Paterson, N.G.; Baker, E.N. Structure of the full-length major pilin from Streptococcus pneumoniae: Implications for isopeptide bond formation in gram-positive bacterial pili. PLoS One, 2011, 6(7), e22095.
[http://dx.doi.org/10.1371/journal.pone.0022095] [PMID: 21760959]
[31]
Gentile, M.A.; Melchiorre, S.; Emolo, C.; Moschioni, M.; Gianfaldoni, C.; Pancotto, L.; Ferlenghi, I.; Scarselli, M.; Pansegrau, W.; Veggi, D.; Merola, M.; Cantini, F.; Ruggiero, P.; Banci, L.; Masignani, V. Structural and functional characterization of the Streptococcus pneumoniae RrgB pilus backbone D1 domain. J. Biol. Chem., 2011, 286(16), 14588-14597.
[http://dx.doi.org/10.1074/jbc.M110.202739] [PMID: 21367860]
[32]
Spraggon, G.; Koesema, E.; Scarselli, M.; Malito, E.; Biagini, M.; Norais, N.; Emolo, C.; Barocchi, M.A.; Giusti, F.; Hilleringmann, M.; Rappuoli, R.; Lesley, S.; Covacci, A.; Masignani, V.; Ferlenghi, I. Supramolecular organization of the repetitive backbone unit of the Streptococcus pneumoniae pilus. PLoS One, 2010, 5(6), e10919.
[http://dx.doi.org/10.1371/journal.pone.0010919] [PMID: 20559564]
[33]
Potocnakova, L.; Bhide, M.; Pulzova, L.B. An introduction to b-cell epitope mapping and in silico epitope prediction. J. Immunol. Res., 2016, 2016, 6760830.
[http://dx.doi.org/10.1155/2016/6760830] [PMID: 28127568]
[34]
Tong, X.; Guo, M.; Jin, M.; Chen, H.; Li, Y.; Wei, J.F. In silico epitope prediction, expression and functional analysis of Per a 10 allergen from the American cockroach. Int. J. Mol. Med., 2016, 38(6), 1806-1814.
[http://dx.doi.org/10.3892/ijmm.2016.2790] [PMID: 27840898]
[35]
EL-Manzalawy, Y.; Dobbs, D.; Honavar, V.G. In silico prediction of linear b-cell epitopes on proteins yasser. Biopolymers Cell, 2017, 8(5), 21-31.
[http://dx.doi.org/10.7124/bc.000335]