Recent Advances in Electrical & Electronic Engineering

Author(s): Jayrajsinh B. Solanki* and Kalpeshkumar J. Chudasama

DOI: 10.2174/2352096515666220707120302

Concepts, Configurations, and Challenges of Solid-State Transformer: A Review

Page: [348 - 368] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Rapid and sudden increase in the use of small Distributed Renewable Energy Resources (DRER) and Distributed Energy Storage (DES), reduced compact dynamic electrical power consumer-like electrical vehicle loads, the requirement of a bidirectional power flow communication network to exchange critical information, other ancillary services, etc. has to be envisaged and fulfilled by a future smart distribution grid system. A solid-State Transformer (SST) has more potential solutions to provide stable and efficient distribution system operation to overcome the above problem. From various designs of converter control schemes, the solid-state transformer concept has been evaluated and summarized. The benefits and downsides of converters in the AC/DC, DC/DC, and DC/AC stages are studied for the best configuration. The High-Frequency Transformer (HFT) is a main part of SST. The design and optimization of an HFT are approached to minimize the weight and size of the SST. Researchers also face several challenges in the prototype design and implementation of SST before operating effectively in the distribution system which is presented. Some expected solutions and future recommendations for the establishment of the solid-state transformer for future smart electrical distribution systems are discussed.

Keywords: Solid state transformer (SST), Future Smart Grid Distribution System, High frequency transformer(HFT), Cascaded H bridg (CHB), Dual Active Bridge (DAB), MFT

Graphical Abstract

[1]
S.A. Saleh, "Solid-state transformers for distribution systems-part II: Deployment challenges", IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 5708-5716, 2019.
[http://dx.doi.org/10.1109/TIA.2019.2938143]
[2]
F. Vaca-Urbano, M.S. Alvarez-Alvarado, A.A. Recalde, and F. Moncayo-Rea, "Solid-state transformer for energy efficiency enhancement", In: Research Trends and Challenges in Smart Grids., IntechOpen, 2019, pp. 1-23.
[http://dx.doi.org/10.5772/intechopen.84345]
[3]
X. She, R. Burgos, G. Wang, F. Wang, and A.Q. Huang, "“Review of solid state transformer in the distribution system: From components to field application,” In 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 15-20 Sept, 2012, Raleigh, NC, USA, 2012, pp. 4077-4084.
[http://dx.doi.org/10.1109/ECCE.2012.6342269]
[4]
N. Verma, N. Singh, and S. Yadav, "Solid state transformer for electrical system: Challenges and solution", In 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), 4-5 May, 2018, Kolkata, India, 2018, pp. 1-5.
[http://dx.doi.org/10.1109/IEMENTECH.2018.8465315]
[5]
A. Abu-Siada, J. Budiri, and A.F. Abdou, "Solid state transformers topologies, controllers, and applications: State-of-the-art literature review", Electron., vol. 7, no. 11, p. 298, 2018.
[http://dx.doi.org/10.3390/electronics7110298]
[6]
P. García, S. Saeed, Á. Navarro-Rodríguez, J. Garcia, and H. Schneider, "Switching frequency optimization for a solid state transformer with energy storage capabilities", IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 6223-6233, 2018.
[http://dx.doi.org/10.1109/TIA.2018.2860561]
[7]
D. Dong, M. Agamy, J.Z. Bebic, Q. Chen, and G. Mandrusiak, "A modular sic high-frequency solid-state transformer for medium-voltage applications: Design, implementation, and testing", IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 2, pp. 768-778, 2019.
[http://dx.doi.org/10.1109/JESTPE.2019.2896046]
[8]
J.W. van der Merwe, "The solid-state transformer concept: A new era in power distribution", IEEE AFRICON Conference, 2009, pp. 1-6.
[http://dx.doi.org/10.1109/AFRCON.2009.5308264]
[9]
R. José, "Multilevel converters: An enabling technology for high-poer applications", Proc. IEEE, vol. 97, no. 11, pp. 1786-1817, 2009.
[http://dx.doi.org/10.1109/JPROC.2009.2030235]
[10]
S.A. Aniel, A solid-state transformer for interconnection between the medium-and the low-voltage grid design, control and behavior analysis challenge the future., Delft University of Technology, 2013.
[11]
K. Bhatt, and S. Chakravorty, "A comparative study on performance of fitness functions for harmonic profile improvement using parameter-less AI technique in multilevel inverter for electrical drives", Int. J. Comput. Digit. Syst., vol. 10, no. 1, pp. 1109-1121, 2021.
[http://dx.doi.org/10.12785/ijcds/1001100]
[12]
Y. Du, S. Baek, S. Bhattacharya, and A.Q. Huang, "High-voltage high-frequency transformer design for a 7.2kV to 120V/240V 20kVA solid state transformer", In IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, 7-10 Nov, 2010, Glendale, AZ, USA, 2010, pp. 493-498.
[http://dx.doi.org/10.1109/IECON.2010.5674828]
[13]
R.C. Mala, S. Tripathy, S. Tadepalli, and D.R. Reddy, "Performance analysis of three phase solid state transformers", In 2012 International Conference on Devices, Circuits and Systems (ICDCS), 15-16 Mar, 2012, Coimbatore, India, 2012, pp. 486-490.
[http://dx.doi.org/10.1109/ICDCSyst.2012.6188762]
[14]
Y. Liu, D.H. Zhang, and D. De Sun, "Performance analysis of a solid state transformer for smart grid", Appl. Mech. Mater. Tech Publ. Ltd., vol. 441, pp. 174-177, 2013.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.441.174]
[15]
J.W. Kolar, and G. Ortiz, "Solid-state-transformers: Key components of future traction and smart grid systems", In Proceedings of the International Power Electronics Conference-ECCE Asia (IPEC 2014), Hiroshima, Japan, 2014, pp. 22-35.
[16]
S. Paladhi, and S. Ashok, "Power-quality-improvements-in-wind-based-dg-systems-using-solid-state-transformer", Int. J. Sci. Eng. Res., vol. 6, no. 4, pp. 46-52, 2015.
[http://dx.doi.org/10.14299/ijser.2015.04.014]
[17]
J.E. Huber, and J.W. Kolar, "Solid-state transformers: On the origins and evolution of key concepts", IEEE Ind. Electron. Mag., vol. 10, no. 3, pp. 19-28, 2016.
[http://dx.doi.org/10.1109/MIE.2016.2588878]
[18]
A. El Shafei, S. Ozdemir, N. Altin, G. Jean-Pierre, and A. Nasiri, "Design and implementation of a medium voltage, high power, high frequency four-port transformer", In 2020 IEEE Applied Power Electronics Conference and Exposition., (APEC), 2020, pp. 2352-2357.
[http://dx.doi.org/10.1109/APEC39645.2020.9124337]
[19]
H. Qin, and J.W. Kimball, "Solid-state transformer architecture using AC-AC dual-active-bridge converter", IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3720-3730, 2013.
[http://dx.doi.org/10.1109/TIE.2012.2204710]
[20]
A. Shojaei, and G. Joos, In 2013 IEEE Electrical Power & Energy Conference, 21-23 Aug, 2013, Halifax, NS, Canada, 2013, pp. 1-5.
[http://dx.doi.org/10.1109/EPEC.2013.6802940]
[21]
R. Jaiswal, A. Agarwal, V. Agarwal, and B. Bossoufi, "Control strategy of a solid state transformer for the grid-side converter", Recent Adv. Electr. Electron. Eng. Formerly Recent Patents Electr. Electron. Eng., vol. 13, no. 1, pp. 27-35, 2018.
[http://dx.doi.org/10.2174/2352096511666181029123631]
[22]
R.J.G. Montoya, High-frequency transformer design for solid- state transformers in electric power distribution systems, Master Thesis, University Arkansas, Fayettev, 2015.
[23]
S. Falcones, R. Ayyanar, and X. Mao, "A DC-DC multiport-converter-based solid-state transformer integrating distributed generation and storage", IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2192-2203, 2013.
[http://dx.doi.org/10.1109/TPEL.2012.2215965]
[24]
S.A.M. Saleh, "Solid-State transformers for distribution systems-part I: Technology and construction", IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 4524-4535, 2019.
[http://dx.doi.org/10.1109/TIA.2019.2923163]
[25]
L. Zhang, Z. Zhao, and J. Qin, Efficiency optimization design of DC-DC solid state transformer based on modular multilevel converters. In 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 1-5 Oct, 2017, Cincinnati, OH, USA, 2017, pp. 3508-3513.
[http://dx.doi.org/10.1109/ECCE.2017.8096626]
[26]
M. Saeed, M. Rogina, A. Rodriguez, M. Arias, and F. Briz, "SiC-Based high efficiency high isolation dual active bridge converter for a power electronic transformer", Energies, vol. 13, no. 1198, p. 18, 2020.
[http://dx.doi.org/10.3390/en13051198]
[27]
M.A. Hannan, "State of the art of solid-state transformers: Advanced topologies, implementation issues, recent progress and improvements", IEEE Access, vol. 8, pp. 19113-19132, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2967345]
[28]
H. Shadfar, M.G. Pashakolaei, and A.A. Foroud, "Solid-state transformers: An overview of the concept, topology, and its applications in the smart grid", Int. Trans. Electr. Energy Syst., vol. 31, no. 9, pp. 1-24, 2021.
[http://dx.doi.org/10.1002/2050-7038.12996]
[29]
R. Bhaskar, and V. Agarwal, "Dual pid loop controller for HF link inverter in two-stage SST",
[http://dx.doi.org/10.1109/POWERI.2016.8077474]
[30]
F. Zhang, "Design and demonstration of a SiC-based 800-V/10-kV 1-MW solid-state transformer for grid-connected photovoltaic systems", In 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), 3-7 June, 2017, Kaohsiung, 2017, pp. 1987-1990.
[http://dx.doi.org/10.1109/IFEEC.2017.7992355]
[31]
H.J. Yun, H.S. Kim, M.H. Ryu, J.W. Baek, and H.J. Kim, "A simple and practical voltage balance method for a solid-state transformer using cascaded H-bridge converters", In 9th Int. Conf. Power Electron. - ECCE Asia “Green World with Power Electron. ICPE 2015-ECCE Asia, vol. 2, pp. 2415-2420, 2015.
[http://dx.doi.org/10.1109/ICPE.2015.7168109]
[32]
N.B.Y. Gorla, S. Kollurand, and S.K. Panda, "Solid state transformer control aspects for various smart grid scenarios", In 2017 IEEE Innov. Smart Grid Technol. -Asia Smart Grid Smart Community ISGT-Asia, 4-7 Dec, 2017, vol. 2017, Auckland, New Zealand, pp. 1-6, 2018.
[http://dx.doi.org/10.1109/ISGT-Asia.2017.8378443]
[33]
X. She, X. Yu, F. Wang, and A.Q. Huang, "Design and demonstration of a 3.6kV-120V/10KVA solid state transformer for smart grid application", IEEE Trans. Power Electron., vol. 29, no. 8, pp. 3982-3996, 2013.
[http://dx.doi.org/10.1109/APEC.2014.6803801]
[34]
L. Wang, D. Zhang, Y. Wang, A. Wu, and H.S. Athab, "Power and voltage balance control of a novel three-phase solid-state transformer using multilevel cascaded h-bridge inverters for microgrid applications", IEEE Trans. Power Electron., vol. 31, no. 4, pp. 3289-3301, 2016.
[http://dx.doi.org/10.1109/TPEL.2015.2450756]
[35]
H. Fan, and H. Li, "High-frequency transformer isolated bidirectional DC-DC converter modules with high efficiency over wide load range for 20 kVA solid-state transformer", IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3599-3608, 2011.
[http://dx.doi.org/10.1109/TPEL.2011.2160652]
[36]
A.Q. Huang, "Medium-Voltage Solid-State Transformer: Technology for a Smarter and Resilient Grid", IEEE Ind. Electron. Mag., vol. 10, no. 3, pp. 29-42, 2016.
[http://dx.doi.org/10.1109/MIE.2016.2589061]
[37]
J.S. Lai, and Z.P. Fang, "Multilevel converters - A new breed of power converters", IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 509-517, 1996.
[http://dx.doi.org/10.1109/28.502161]
[38]
A. Marzoughi, R. Burgos, D. Boroyevich, and Y. Xue, "Investigation and comparison of cascaded H-bridge and modular multilevel converter topologies for medium-voltage drive application", In IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, 29 Oct- 01 Nov, 2014, Dallas, TX, USA, 2014, pp. 1562-1568.
[http://dx.doi.org/10.1109/IECON.2014.7048710]
[39]
G. Wang, S. Baek, J. Elliott, A. Kadavelugu, F. Wang, X. She, and S. Dutta, "Design and hardware implementation of Gen-1 silicon based solid state transformer", In 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 6-11 Mar, 2011, Fort Worth, TX, USA, 2011, pp. 1344-1349.
[http://dx.doi.org/10.1109/APEC.2011.5744766]
[40]
M.R Juan, B.R Aristeo, and S.B Joel, "Details and implementation of a SiC-based solid state transformer prototype", In 2017 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), 20-22 Sept, 2017, Quito, Ecuador, 2017, pp. 1-6.
[41]
A. Shojaei, Design of modular multilevel converter-based solid state transformers., McGill University: (Canada), 2015.
[42]
S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L.G. Franquelo, B. Wu, J. Rodriguez, and M.A. Pérez, "Recent advances and industrial applications of multilevel converters", IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553-2580, 2010.
[http://dx.doi.org/10.1109/TIE.2010.2049719]
[43]
D. Grahame Holmes and A.K. Thomas, Pulse Width Modulation for Power Converters Principles and Practice., John Wiley & Sons, 2003.
[44]
F. Briz, M. López, A. Rodríguez, A. Zapico, M. Arias, and D. Díaz-Reigosa, "MMC based SST", In 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), 22-24 July, 2015, Cambridge: UK, 2015, pp. 1591-1598.
[http://dx.doi.org/10.1109/INDIN.2015.7281971]
[45]
T. Zhao, Design and control of a cascaded H-bridge converter based solid state transformer (SST), PhD Thesis, p. 2832010. www.lib.ncsu.edu/resolver/1840.16/6475
[46]
A. SAILAJA, S. WAHAB, and M.L. Reddy, "A cascaded H-Bridge converter instigated for a solid- state transformer to restrain voltage and power", Int. J. Ind. Electron. Electr. Eng., vol. 2, no. 10, pp. 25-29, 2014.
[47]
J. Saha, G.N.B. Yadav, and S.K. Panda, "A matrix-based solid-state-transformer for A hybrid nanogrid", In 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 18-21 Dec, 2018, Chennai, India, 2018, pp. 1-6.
[http://dx.doi.org/10.1109/PEDES.2018.8707623]
[48]
H. Wong, W. Huang, and L. Yin, "Voltage balance control of cascaded H-bridge rectifier-based solid-state transformer with vector refactoring technology in αβ frame", J. Power Electron., vol. 19, no. 2, pp. 487-496, 2019.
[http://dx.doi.org/10.6113/JPE.2019.19.2.487]
[49]
R. Shrestha, Cascaded H bridge based solid state transformer for medium voltage and low voltage interface, simulation and analysis, M.Sc. Thesis, Texas Technical University, 2019. https://hdl.handle.net/2346/86865
[50]
K.A. Basu, A. Shahani, K. Sahoo, and A. Mohan, "A single-stage solid-state transformer for PWM AC drive with source-based commutation of leakage energy", IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1734-1746, 2014.
[http://dx.doi.org/10.1109/TPEL.2014.2320996]
[51]
T. Parreiras, A. Machado, F. Amaral, G. Lobato, J. Brito, and F.B. Cardoso, "Forward dual-active-bridge solid state transformer for a SiC-based cascated multilevel converter cell in solar applications", IEEE Trans. on Ind. Appl., vol. 54, no. 6, pp. 6353-6363, 2018.
[http://dx.doi.org/10.1109/APEC.2017.7931122]
[52]
S. Srinivasan, A.K. Parvathy, and P. Deivasundari, "Dual active bridge - A good candidate for solid state transformer", In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), 21-22 Sept, 2017, Chennai, India, 2017, pp. 1321-1326.
[http://dx.doi.org/10.1109/ICPCSI.2017.8391924]
[53]
A.S. Babokany, M. Jabbari, G. Shahgholian, and M. Mahdavian, "A review of bidirectional dual active bridge converter", In 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 16-18 May, 2012, Phetchaburi, Thailand, 2012, pp. 1-4.
[http://dx.doi.org/10.1109/ECTICon.2012.6254316]
[54]
J. Venkat, A. Shukla, and S.V. Kulkarni, "Operation of a three phase solid state-Transformer under unbalanced load conditions", In 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 16-19 Dec 2014, Mumbai, India, 2014, pp. 1-6.
[http://dx.doi.org/10.1109/PEDES.2014.7042116]
[55]
A.K. Tripathi, K. Hatua, H. Mirzaee, and S. Bhattacharya, "A three-phase three winding topology for dual active bridge and its D-Q mode control", In 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 5-9 Feb, 2012, Orlando, FL, USA, 2012, pp. 1368-1372.
[http://dx.doi.org/10.1109/APEC.2012.6165998]
[56]
S. Dutta, Controls and applications of the dual active bridge DC to DC converter for solid state transformer applications and integration of multiple renewable energy sources., North Carolina State University, 2014.
[57]
C. Gu, Z. Zheng, and Y. Li, "Control strategies of a multiport Power Electronic Transformer (PET) for DC distribution applications", Sh. Technol. Symp. ESTS, vol. 2015, pp. 135-139, 2015.
[http://dx.doi.org/10.1109/ESTS.2015.7157875]
[58]
Z. Malekjamshidi, and M. Jafari, "Design and development of a cascaded modular multi-level converter based on current-fed quadruple-active bridge converters for grid integration of photovoltaic systems", IET Energy Syst. Integr., vol. 3, no. 1, pp. 26-38, 2021.
[http://dx.doi.org/10.1049/esi2.12002]
[59]
A. El Shafei, S. Ozdemir, N. Altin, G. Jean-Pierre, and A. Nasiri, "A high power high frequency transformer design for solid state transformer applications", In 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), 3-6 Nov, 2019, Brasov, Romania, 2019, pp. 904-909.
[http://dx.doi.org/10.1109/ICRERA47325.2019.8996515]
[60]
K. Mainali, A. Tripathi, D.C. Patel, S. Bhattacharya, and T. Challita, "Design, measurement and equivalent circuit synthesis of high power HF transformer for three-phase composite dual active bridge topology", In 2014 IEEE Applied Power Electronics Conference and Exposition-APEC, 16-20 Mar, 2014, Fort Worth, TX, USA, 2014, pp. 342-349.
[http://dx.doi.org/10.1109/APEC.2014.6803331]
[61]
O. Aldosari, L.A. Garcia Rodriguez, J.C. Balda, and S.K. Mazumder, "Design trade-offs for medium- and high-frequency transformers for isolated power converters in distribution system applications", In 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 25-25 Jun, 2018, Charlotte, NC, USA, 2018, pp. 1-7.
[http://dx.doi.org/10.1109/PEDG.2018.8447788]
[62]
C. Deng, T. Islam, and J.C. Balda, "Design of medium-frequency transformers with silicon steel for mobile power substations", In 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 17-20 Apr, 2017, Florianopolis, Brazil, 2017, pp. 1-7.
[http://dx.doi.org/10.1109/PEDG.2017.7972448]
[63]
G. Kenny, "Solid-state transformers for interfacing solar panels to the power Grid: An optimum design methodology of a high frequency transformer for dc-dc converter applications", Inq. Univ. Arkansas Undergrad. Res. J., vol. 20, no. 5, pp. 15-22, 2016.
[64]
M. Mogorovic, and D. Dujic, "Medium frequency transformer design and optimization", In PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 16-18 May, 2017, Nuremberg, Germany, 2017, pp. 15-22.
[65]
G. Ortiz, J. Biela, and J.W. Kolar, "Optimized design of medium frequency transformers with high isolation requirements", In IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, 7-10 Nov, 2010, Glendale, AZ, USA, 2010, pp. 631-638.
[http://dx.doi.org/10.1109/IECON.2010.5675240]
[66]
S. Zhao, Q. Li, F.C. Lee, and B. Li, "High-Frequency Transformer Design for Modular Power Conversion from Medium-Voltage AC to 400 VDC", IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7545-7557, 2018.
[http://dx.doi.org/10.1109/TPEL.2017.2774440]
[67]
K.D. Hoang, and J. Wang, "Design optimization of high frequency transformer for dual active bridge DC-DC converter", In 2012 XXth International Conference on Electrical Machines, 2-5 Sept, 2012, Marseille, France, 2012, pp. 2311-2317.
[http://dx.doi.org/10.1109/ICElMach.2012.6350205]
[68]
W. Shen, Design of high-density transformers for high-frequency high-power converters, 2006.
[69]
W.G Hurley, and W.H WolFLE, Transformers and Inductors for Power Electronics, Theory, Design and Applications.., A John Willey Sons Ltd. Publication, 2013.
[70]
H.H.H. De Silva, D.K.J. Jayamaha, and N.W.A. Lidula, "Review on design and control of solid state transformer based microgrids", AIMS Energy, vol. 7, no. 6, pp. 901-923, 2019.
[http://dx.doi.org/10.3934/energy.2019.6.901]
[71]
D. Ruiz-Robles, J. Ortíz-Marín, V. Venegas-Rebollar, E. Moreno-Goytia, R. Granados-Lieberman, and J. Rodríguez-Rodriguez, "Nanocrystalline and silicon steel medium-frequency transformers applied to DC-DC converters: Analysis and experimental comparison", Energies, vol. 12, no. 2062, p. 16, 2019.
[http://dx.doi.org/10.3390/en12112062]
[72]
G. Ortiz, M. Leibl, J.W. Kolar, and O. Apeldoorn, "Medium frequency transformers for solid-state-transformer applications-Design and experimental verification", In 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), 22-25 Apr, 2013, Kitakyushu, Japan, 2013, pp. 1285-1290.
[http://dx.doi.org/10.1109/PEDS.2013.6527217]
[73]
C.W.T. McLyman, Transformer and Inductor Design Handbook., CRC Press, 2017.
[74]
S.B. Du, G. Wang, and S. Bhattacharya, "Design considerations of high voltage and high frequency transformer for solid state transformer application", In IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, 7-10 Nov, 2010, Glendale, AZ, USA, 2010, pp. 421-426.
[75]
T.U. Jung, M.H. Kim, and J.H. Yoo, "Design optimization of high frequency transformer with controlled leakage inductance for current fed dual active bridge converter", AIP Adv., vol. 8, no. 5, pp. 1-6, 2018.
[http://dx.doi.org/10.1063/1.5007773]
[76]
D. Ruiz-Robles, J. Ortíz-Marín, V. Venegas-Rebollar, E. Moreno-Goytia, R. Granados-Lieberman, and J. Rodríguez-Rodriguez, "Design and prototyping medium-frequency transformers featuring a nanocrystalline core for DC-DC converters", Energies, vol. 11, no. 8, p. 2081, 2018.
[http://dx.doi.org/10.3390/en11082081]
[77]
A.M. Elrajoubi, and S.S. Ang, "High-frequency transformer review and design for low-power solid-state transformer topology", In 2019 IEEE Texas Power and Energy Conference (TPEC), 7-8 Feb, 2019, College Station, TX, USA, 2019, pp. 1-6.
[http://dx.doi.org/10.1109/TPEC.2019.8662131]
[78]
S. Balci, I. Sefa, and N. Altin, "Design and analysis of a 35 kVA medium frequency power transformer with the nanocrystalline core material", Int. J. Hydrogen Energy, vol. 42, no. 28, pp. 17895-17909, 2017.
[http://dx.doi.org/10.1016/j.ijhydene.2017.03.158]
[79]
H. Chen, and D.D. Ivan, "High-frequency transformer design for the soft-switching solid state transformer (S4T)", In 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 26-30 Mar, 2017, Tampa, FL, USA, 2017, pp. 2534-2541.
[http://dx.doi.org/10.1109/APEC.2017.7931054]
[80]
Y. Liang, Z. Wang, H. Wu, C. Wang, and X. Li, "Design of a multi-winding high-frequency transformer for DC-DC applications", In 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), 26-28 Nov, 2017, Beijing, China, 2017, pp. 1-6.
[http://dx.doi.org/10.1109/EI2.2017.8245507]
[81]
H. Tian, S. Vaisambhayana, and A. Tripathi, "Multi-objective optimization and modeling of high frequency transformers for DC-DC Stage in solid state transformer", 2019 10th International Conference on Power Electronics ECCE Asia (ICPE 2019 - ECCE Asia), 27-30 May, 2019, Busan, Korea (South), 2019, pp. 1-8.
[http://dx.doi.org/10.23919/ICPE2019-ECCEAsia42246.2019.8796853]
[82]
M. Leibl, G. Ortiz, and J.W. Kolar, "Design and experimental analysis of a medium-frequency transformer for solid-state transformer applications", IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 1, pp. 110-123, 2017.
[http://dx.doi.org/10.1109/JESTPE.2016.2623679]
[83]
J.E. Huber, and J.W. Kolar, "Applicability of solid-state transformers in today’s and future distribution grids", IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 317-326, 2019.
[http://dx.doi.org/10.1109/TSG.2017.2738610]
[84]
D.G. Shah, and M.L. Crow, "Stability design criteria for distribution systems with solid-state transformers", IEEE Trans. Power Deliv., vol. 29, no. 6, pp. 2588-2595, 2014.
[http://dx.doi.org/10.1109/TPWRD.2014.2311963]
[85]
T. Guillod, F. Krismer, and J.W. Kolar, "Protection of MV converters in the grid: The Case of MV/LV solid-state transformers", IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 1, pp. 393-408, 2017.
[http://dx.doi.org/10.1109/JESTPE.2016.2617620]
[86]
T. Guillod, F. Krismer, R. Färber, C.M. Franck, and J.W. Kolar, "Protection of MV/LV solid-state transformers in the distribution grid", IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., 2015, pp. 3531-3538.
[http://dx.doi.org/10.1109/IECON.2015.7392648]
[87]
K. Booth, H. Subramanyan, X. Liang, J. Liu, S. Srdic, and S. Lukic, "Optimization of medium frequency transformers with practical considerations", In 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 17-21 Mar, 2019, Anaheim, CA, USA, 2019, pp. 2906-2911.
[http://dx.doi.org/10.1109/APEC.2019.8722164]
[88]
X. She, A.Q. Huang, and R. Burgos, "Review of solid-state transformer technologies and their application in power distribution systems", IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 3, pp. 186-198, 2013.
[http://dx.doi.org/10.1109/JESTPE.2013.2277917]
[89]
U. Tahir, "Design of three phase solid state transformer deployed within multi-stage power switching converters", Appl. Sci., vol. 9, no. 17, pp. 1-18, 2019.
[http://dx.doi.org/10.3390/app9173545]
[90]
X. She, F. Wang, R. Burgos, and A.Q. Huang, Solid state transformer interfaced wind energy system with integrated active power transfer, reactive power compensation and voltage conversion functions., 2012.
[http://dx.doi.org/10.1109/ECCE.2012.6342508]
[91]
J.W. Kolar, and G.I. Ortiz, "Solid state transformer concepts in traction and smart grid applications", In Proceedings of the International Power Electronics Conference-ECCE Asia (IPEC 2014), 18-21 May, 2014, Hiroshima, Japan, 2014, pp. 18-21.
[92]
P. A. J, Solid-State Transformer, "An Effective Alternative to Traditional Transformers", Available from: https://www.researchdive.com/blog/solid-state-transformer-an-effective-alternative-to-traditional-transformers
[93]
X. She, A.Q. Huang, F. Wang, and R. Burgos, "Wind energy system with integrated functions of active power transfer, reactive power compensation, and voltage conversion", IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4512-4524, 2013.
[http://dx.doi.org/10.1109/TIE.2012.2216245]
[94]
N.C. Foureaux, L. Adolpho, S.M. Silva, J.A.D.S. Brito, and B.D.J. Cardoso Filho, "Application of solid state transformers in utility scale solar power plants", In 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 8-13 June, 2014, Denver, CO, USA, 2014, pp. 3695-3700.
[http://dx.doi.org/10.1109/PVSC.2014.6924909]
[95]
C. Zhao, "Power electronic traction transformer-medium voltage prototype", IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3257-3268, 2014.
[http://dx.doi.org/10.1109/TIE.2013.2278960]
[96]
M.K. Das, C. Capell, D.E. Grider, S. Leslie, J. Ostop, R. Raju, and M. Schutten, "10 kV, 120 a SiC half H-bridge power MOSFET modules suitable for high frequency, medium voltage applications", In 2011 IEEE Energy Conversion Congress and Exposition, 17-22 Sept, 2011, Phoenix, AZ, USA, 2011, pp. 2689-2692.
[http://dx.doi.org/10.1109/ECCE.2011.6064129]
[97]
S. Bifaretti, P. Zanchetta, A. Watson, L. Tarisciotti, and J.C. Clare, "Advanced power electronic conversion and control system for universal and flexible power management", IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 231-243, 2011.
[http://dx.doi.org/10.1109/TSG.2011.2115260]
[98]
J.S. Lai, A. Maitra, A. Mansoor, and F. Goodman, "Multilevel intelligent universal transformer for medium voltage applications", In Fourtieth IAS Annual Meeting. Conference Record of the 2005 Fourtieth IAS Annual Meeting. Conference Record of the 2005, vol. 3, Hong Kong, China, pp. 1893-1899, 2005.
[http://dx.doi.org/10.1109/IAS.2005.1518705]
[99]
A. Maitra, S. Rajagopalan, J. Harding, J. Halliwell, and J. Lai, 15KV Class 25KVA Single-Phase IUT Prototype Development., Testing, and Performance Verification, 2013.
[100]
S. Madhusoodhanan, A. Tripathi, D. Patel, K. Mainali, A. Kadavelugu, S. Hazra, S. Bhattacharya, and K. Hatua, "Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters", IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3343-3360, 2015.
[http://dx.doi.org/10.1109/TIA.2015.2412096]
[101]
S. Srdic, and S. Lukic, "Toward extreme fast charging: Challenges and opportunities in directly connecting to medium-voltage line", IEEE Electrif. Mag., vol. 7, no. 1, pp. 22-31, 2019.
[http://dx.doi.org/10.1109/MELE.2018.2889547]
[102]
M. Khazraei, V.A.K. Prabhala, R. Ahmadi, and M. Ferdowsi, "Solid-state transformer stability and control considerations", Conf.Proc. - IEEE Appl. Power Electron. Conf. Expo. -APEC, 2014, pp. 2237-2244.
[http://dx.doi.org/10.1109/APEC.2014.6803615]
[103]
K.V. Iyer, W.P. Robbins, and N. Mohan, "Winding design of a high power medium frequency transformer", In 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 18-20 June, 2014, Ischia, Italy, 2014, pp. 665-669.
[http://dx.doi.org/10.1109/SPEEDAM.2014.6871956]
[104]
S. Hamdinou, D. Roger, M. Rossi, and T. Belgrand, "Solid state transformer based on grain-oriented electrical steel wound cores", In 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), 23-25 Apr, 2019, Sonderborg, Denmark, 2019, pp. 1-6.
[http://dx.doi.org/10.1109/CPE.2019.8862413]