Epilepsy and Cognitive Impairment in Childhood and Adolescence: A Mini-Review

Page: [1646 - 1665] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Managing epilepsy in people with an intellectual disability remains a therapeutic challenge and must take into account additional issues such as diagnostic difficulties and frequent drug resistance. Advances in genomic technologies improved our understanding of epilepsy and raised the possibility to develop patients-tailored treatments acting on the key molecular mechanisms involved in the development of the disease. In addition to conventional antiseizure medications (ASMs), ketogenic diet, hormone therapy and epilepsy surgery play an important role, especially in cases of drugresistance. This review aims to provide a comprehensive overview of the mainfactors influencing cognition in children and adolescents with epilepsy and the main therapeutic options available for the epilepsies associated with intellectual disability.

Keywords: Epilepsy, cognitive impairment, intellectual disability, anti-seizure medication, ketogenic diet, ganaxolone, gene therapy.

[1]
Löscher, W.; Potschka, H.; Sisodiya, S.M.; Vezzani, A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev., 2020, 72(3), 606-638.
[http://dx.doi.org/10.1124/pr.120.019539] [PMID: 32540959]
[2]
Robertson, J.; Hatton, C.; Emerson, E.; Baines, S. Prevalence of epilepsy among people with intellectual disabilities: A systematic review. Seizure, 2015, 29, 46-62.
[http://dx.doi.org/10.1016/j.seizure.2015.03.016] [PMID: 26076844]
[3]
Rantanen, K.; Eriksson, K.; Nieminen, P. Cognitive impairment in preschool children with epilepsy. Epilepsia, 2011, 52(8), 1499-1505.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03092.x] [PMID: 21569019]
[4]
Ortinski, P.; Meador, K.J. Cognitive side effects of antiepileptic drugs. Epilepsy Behav., 2004, 5(Suppl. 1), S60-S65.
[http://dx.doi.org/10.1016/j.yebeh.2003.11.008] [PMID: 14725848]
[5]
Nickels, K.C.; Zaccariello, M.J.; Hamiwka, L.D.; Wirrell, E.C. Cognitive and neurodevelopmental comorbidities in paediatric epilepsy. Nat. Rev. Neurol., 2016, 12(8), 465-476.
[http://dx.doi.org/10.1038/nrneurol.2016.98] [PMID: 27448186]
[6]
Hernan, A.E.; Alexander, A.; Jenks, K.R.; Barry, J.; Lenck-Santini, P.P.; Isaeva, E.; Holmes, G.L.; Scott, R.C. Focal epileptiform activity in the prefrontal cortex is associated with long-term attention and sociability deficits. Neurobiol. Dis., 2014, 63, 25-34.
[http://dx.doi.org/10.1016/j.nbd.2013.11.012] [PMID: 24269731]
[7]
Stafstrom, C.E.; Kossoff, E.M. Epileptic encephalopathy in infants and children. Epilepsy Curr., 2016, 16(4), 273-279.
[http://dx.doi.org/10.5698/1535-7511-16.4.273] [PMID: 27582673]
[8]
Holmes, G.L. Cognitive impairment in epilepsy: The role of network abnormalities. Epileptic Disord., 2015, 17(2), 101-116.
[http://dx.doi.org/10.1684/epd.2015.0739] [PMID: 25905906]
[9]
Van Bogaert, P.; Urbain, C.; Galer, S.; Ligot, N.; Peigneux, P.; De Tiège, X. Impact of focal interictal epileptiform discharges on behaviour and cognition in children. Neurophysiol. Clin., 2012, 42(1-2), 53-58.
[http://dx.doi.org/10.1016/j.neucli.2011.11.004] [PMID: 22200342]
[10]
Kleen, J.K.; Scott, R.C.; Holmes, G.L.; Roberts, D.W.; Rundle, M.M.; Testorf, M.; Lenck-Santini, P.P.; Jobst, B.C. Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology, 2013, 81(1), 18-24.
[http://dx.doi.org/10.1212/WNL.0b013e318297ee50] [PMID: 23685931]
[11]
Binnie, C.D.; Kasteleijn-Nolst Trenité, D.G.; Smit, A.M.; Wilkins, A.J. Interactions of epileptiform EEG discharges and cognition. Epilepsy Res., 1987, 1(4), 239-245.
[http://dx.doi.org/10.1016/0920-1211(87)90031-3] [PMID: 3504400]
[12]
Berg, A.T.; Langfitt, J.T.; Testa, F.M.; Levy, S.R.; DiMario, F.; Westerveld, M.; Kulas, J. Global cognitive function in children with epilepsy: A community-based study. Epilepsia, 2008, 49(4), 608-614.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01461.x] [PMID: 18070088]
[13]
Reilly, C.; Atkinson, P.; Das, K.B.; Chin, R.F.; Aylett, S.E.; Burch, V.; Gillberg, C.; Scott, R.C.; Neville, B.G. Cognition in school-aged children with “active” epilepsy: A population-based study. J. Clin. Exp. Neuropsychol., 2015, 37(4), 429-438.
[http://dx.doi.org/10.1080/13803395.2015.1024103] [PMID: 25921696]
[14]
Schouten, A.; Oostrom, K.; Jennekens-Schinkel, A.; Peters, A.C. School career of children is at risk before diagnosis of epilepsy only. Dev. Med. Child Neurol., 2001, 43(8), 575-576.
[http://dx.doi.org/10.1017/S0012162201241048] [PMID: 11508929]
[15]
Garcia-Ramos, C.; Jackson, D.C.; Lin, J.J.; Dabbs, K.; Jones, J.E.; Hsu, D.A.; Stafstrom, C.E.; Zawadzki, L.; Seidenberg, M.; Prabhakaran, V.; Hermann, B.P. Cognition and brain development in children with benign epilepsy with centrotemporal spikes. Epilepsia, 2015, 56(10), 1615-1622.
[http://dx.doi.org/10.1111/epi.13125] [PMID: 26337046]
[16]
Operto, F.F.; Pastorino, G.M.G.; Mazza, R.; Roccella, M.; Carotenuto, M.; Margari, L.; Verrotti, A. Cognitive profile in BECTS treated with levetiracetam: A 2-year follow-up. Epilepsy Behav., 2019, 97, 187-191.
[http://dx.doi.org/10.1016/j.yebeh.2019.05.046] [PMID: 31252277]
[17]
Hermann, B.P.; Zhao, Q.; Jackson, D.C.; Jones, J.E.; Dabbs, K.; Almane, D.; Hsu, D.A.; Stafstrom, C.E.; Koehn, M.A.; Seidenberg, M.; Rathouz, P.J. Cognitive phenotypes in childhood idiopathic epilepsies. Epilepsy Behav., 2016, 61, 269-274.
[http://dx.doi.org/10.1016/j.yebeh.2016.05.013] [PMID: 27442497]
[18]
Meekes, J.; van Schooneveld, M.M.; Braams, O.B.; Jennekens-Schinkel, A.; van Rijen, P.C.; Hendriks, M.P.; Braun, K.P.; van Nieuwenhuizen, O. Parental education predicts change in intelligence quotient after childhood epilepsy surgery. Epilepsia, 2015, 56(4), 599-607.
[http://dx.doi.org/10.1111/epi.12938] [PMID: 25705968]
[19]
Puka, K.; Widjaja, E.; Smith, M.L. The influence of patient, caregiver, and family factors on symptoms of anxiety and depression in children and adolescents with intractable epilepsy. Epilepsy Behav., 2017, 67, 45-50.
[http://dx.doi.org/10.1016/j.yebeh.2016.12.011] [PMID: 28088680]
[20]
Oostrom, K.J.; Smeets-Schouten, A.; Kruitwagen, C.L.; Peters, A.C.; Jennekens-Schinkel, A. Not only a matter of epilepsy: Early problems of cognition and behavior in children with “epilepsy only”--a prospective, longitudinal, controlled study starting at diagnosis. Pediatrics, 2003, 112(6 Pt 1), 1338-1344.
[http://dx.doi.org/10.1542/peds.112.6.1338] [PMID: 14654607]
[21]
Wright, S.; Vincent, A. Progress in autoimmune epileptic encephalitis. Curr. Opin. Neurol., 2016, 29(2), 151-157.
[http://dx.doi.org/10.1097/WCO.0000000000000304] [PMID: 26886357]
[22]
Vezzani, A.; Fujinami, R.S.; White, H.S.; Preux, P.M.; Blümcke, I.; Sander, J.W.; Löscher, W. Infections, inflammation and epilepsy. Acta Neuropathol., 2016, 131(2), 211-234.
[http://dx.doi.org/10.1007/s00401-015-1481-5] [PMID: 26423537]
[23]
Dulac, O.; Plecko, B.; Gataullina, S.; Wolf, N.I. Occasional seizures, epilepsy, and inborn errors of metabolism. Lancet Neurol., 2014, 13(7), 727-739.
[http://dx.doi.org/10.1016/S1474-4422(14)70110-3] [PMID: 24943345]
[24]
Brooks-Kayal, A. Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia, 2011, 52(Suppl. 1), 13-20.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02906.x]
[25]
Chen, T.; Giri, M.; Xia, Z.; Subedi, Y.N.; Li, Y. Genetic and epigenetic mechanisms of epilepsy: A review. Neuropsychiatr. Dis. Treat., 2017, 13, 1841-1859.
[http://dx.doi.org/10.2147/NDT.S142032] [PMID: 28761347]
[26]
Savatt, J.M.; Myers, S.M. Genetic testing in neurodevelopmental disorders. Front Pediatr., 2021, 9, 526779.
[http://dx.doi.org/10.3389/fped.2021.526779] [PMID: 33681094]
[27]
Stouffer, MA; Golden, JA Francis, F Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis., 2016, 92(Pt A), 18-45.
[http://dx.doi.org/10.1016/j.nbd.2015.08.003]
[28]
Wang, J.; Lin, Z.J.; Liu, L.; Xu, H.Q.; Shi, Y.W.; Yi, Y.H.; He, N.; Liao, W.P. Epilepsy-associated genes. Seizure, 2017, 44, 11-20.
[http://dx.doi.org/10.1016/j.seizure.2016.11.030] [PMID: 28007376]
[29]
Verrotti, A.; Greco, M.; Varriale, G.; Tamborino, A.; Savasta, S.; Carotenuto, M.; Elia, M.; Operto, F.; Margari, L.; Belcastro, V.; Selicorni, A.; Freri, E.; Matricardi, S.; Granata, T.; Ragona, F.; Capovilla, G.; Spalice, A.; Coppola, G.; Striano, P. Electroclinical features of epilepsy monosomy 1p36 syndrome and their implications. Acta Neurol. Scand., 2018, 138(6), 523-530.
[http://dx.doi.org/10.1111/ane.13006] [PMID: 30109707]
[30]
Fu, Z.; Jia, Y.X.; Fu, J.X.; Li, T.X.; Zhao, J.J.; Wang, T.; Qiao, Z.D.; Liu, X.Y.; Tang, R.; Lv, T.; Yang, G.L. A case of 15q11-q13 duplication syndrome and literature review. Brain Behav., 2021, 11(8), e2219.
[http://dx.doi.org/10.1002/brb3.2219] [PMID: 34292674]
[31]
Khamirani, H.J.; Zoghi, S.; Faghihi, F.; Dastgheib, S.A.; Hassanipour, H.; Bagher, T.S.M.; Mohammadi, S.; Masoudi, M.; Poorang, S.; Ehsani, E.; Dianatpour, M. Phenotype of ST3GAL3 deficient patients: A case and review of the literature. Eur. J. Med. Genet., 2021, 64(8), 104250.
[http://dx.doi.org/10.1016/j.ejmg.2021.104250] [PMID: 34022416]
[32]
Chen, B.; Chen, S.; Xiong, J.; Yin, F. Cardio-facio-cutaneous syndrome with BRAF gene mutation: A case report and literature review. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2021, 46(4), 432-437.
[http://dx.doi.org/10.11817/j.issn.1672-7347.2021.190756]
[33]
Hofmeister, B.; von Stülpnagel, C.; Betzler, C.; Mari, F.; Renieri, A.; Baldassarri, M.; Haberlandt, E.; Jansen, K.; Schilling, S.; Weber, P.; Ahlbory, K.; Tang, S.; Berweck, S.; Kluger, G. Epilepsy in nicolaides-baraitser syndrome: Review of literature and report of 25 patients focusing on treatment aspects. Neuropediatrics, 2021, 52(2), 109-122.
[http://dx.doi.org/10.1055/s-0041-1722878] [PMID: 33578439]
[34]
Zanus, C.; Costa, P.; Faletra, F.; Musante, L.; Russo, A.; Grazian, L.; Carrozzi, M. Description of a peculiar alternating ICTAL electroclinical pattern in a young boy with a novel SPATA5 mutation. Epileptic Disord., 2020, 22(5), 659-663.
[http://dx.doi.org/10.1684/epd.2020.1204] [PMID: 33063670]
[35]
Coyan, A.G.; Dyer, L.M. 3q29 microduplication syndrome: Clinical and molecular description of eleven new cases. Eur. J. Med. Genet., 2020, 63(12), 104083.
[http://dx.doi.org/10.1016/j.ejmg.2020.104083] [PMID: 33039685]
[36]
Reynolds, C.; King, M.D.; Gorman, K.M. The phenotypic spectrum of SCN2A-related epilepsy. Eur. J. Paediatr. Neurol., 2020, 24, 117-122.
[http://dx.doi.org/10.1016/j.ejpn.2019.12.016] [PMID: 31924505]
[37]
Ponzi, E.; Gentile, M.; Agolini, E.; Matera, E.; Palumbi, R.; Buonadonna, A.L.; Peschechera, A.; Gabellone, A.; Antonucci, M.F.; Margari, L. 14q12q13.2 microdeletion syndrome: Clinical characterization of a new patient, review of the literature, and further evidence of a candidate region for CNS anomalies. Mol. Genet. Genomic Med., 2020, 8(7), e1289.
[http://dx.doi.org/10.1002/mgg3.1289] [PMID: 32415730]
[38]
Trivisano, M.; Rivera, M.; Terracciano, A.; Ciolfi, A.; Napolitano, A.; Pepi, C.; Calabrese, C.; Digilio, M.C.; Tartaglia, M.; Curatolo, P.; Vigevano, F.; Specchio, N. Developmental and epileptic encephalopathy due to SZT2 genomic variants: Emerging features of a syndromic condition. Epilepsy Behav., 2020, 108, 107097.
[http://dx.doi.org/10.1016/j.yebeh.2020.107097] [PMID: 32402703]
[39]
Camp, C.R.; Yuan, H. GRIN2D/GluN2D NMDA receptor: Unique features and its contribution to pediatric developmental and epileptic encephalopathy. Eur. J. Paediatr. Neurol., 2020, 24, 89-99.
[http://dx.doi.org/10.1016/j.ejpn.2019.12.007] [PMID: 31918992]
[40]
De Rinaldis, M.; Giorda, R.; Trabacca, A. Mild epileptic phenotype associates with de novo EEF1A2 mutation: Case report and review. Brain Dev., 2020, 42(1), 77-82.
[http://dx.doi.org/10.1016/j.braindev.2019.08.001] [PMID: 31477274]
[41]
Inuzuka, L.M.; Macedo-Souza, L.I.; Della-Ripa, B.; Cabral, K.S.S.; Monteiro, F.; Kitajima, J.P.; de Souza Godoy, L.F.; de Souza Delgado, D.; Kok, F.; Garzon, E. Neurodevelopmental disorder associated with de novo SCN3A pathogenic variants: Two new cases and review of the literature. Brain Dev., 2020, 42(2), 211-216.
[http://dx.doi.org/10.1016/j.braindev.2019.09.004] [PMID: 31677917]
[42]
Trivisano, M; Specchio, N. The role of PCDH19 in refractory status epilepticus. Epilepsy Behav., 2019, 101(Pt B), 106539.
[http://dx.doi.org/10.1016/j.yebeh.2019.106539]
[43]
Shelkowitz, E.; Singh, J.K.; Larson, A.; Elias, E.R. IRF2BPL gene mutation: Expanding on neurologic phenotypes. Am. J. Med. Genet. A., 2019, 179(11), 2263-2271.
[http://dx.doi.org/10.1002/ajmg.a.61328] [PMID: 31432588]
[44]
Stamberger, H.; Nikanorova, M.; Willemsen, M.H.; Accorsi, P.; Angriman, M.; Baier, H.; Benkel-Herrenbrueck, I.; Benoit, V.; Budetta, M.; Caliebe, A.; Cantalupo, G.; Capovilla, G.; Casara, G.; Courage, C.; Deprez, M.; Destrée, A.; Dilena, R.; Erasmus, C.E.; Fannemel, M.; Fjær, R.; Giordano, L.; Helbig, K.L.; Heyne, H.O.; Klepper, J.; Kluger, G.J.; Lederer, D.; Lodi, M.; Maier, O.; Merkenschlager, A.; Michelberger, N.; Minetti, C.; Muhle, H.; Phalin, J.; Ramsey, K.; Romeo, A.; Schallner, J.; Schanze, I.; Shinawi, M.; Sleegers, K.; Sterbova, K.; Syrbe, S.; Traverso, M.; Tzschach, A.; Uldall, P.; Van Coster, R.; Verhelst, H.; Viri, M.; Winter, S.; Wolff, M.; Zenker, M.; Zoccante, L.; De Jonghe, P.; Helbig, I.; Striano, P.; Lemke, J.R.; Møller, R.S.; Weckhuysen, S. STXBP1 encephalopathy: A neurodevelopmental disorder including epilepsy. Neurology, 2016, 86(10), 954-962.
[http://dx.doi.org/10.1212/WNL.0000000000002457] [PMID: 26865513]
[45]
Romaniello, R.; Zucca, C.; Arrigoni, F.; Bonanni, P.; Panzeri, E.; Bassi, M.T.; Borgatti, R. Epilepsy in tubulinopathy: Personal series and literature review. Cells, 2019, 8(7), 669.
[http://dx.doi.org/10.3390/cells8070669] [PMID: 31269740]
[46]
Demarest, S.; Pestana-Knight, E.M.; Olson, H.E.; Downs, J.; Marsh, E.D.; Kaufmann, W.E.; Partridge, C.A.; Leonard, H.; Gwadry-Sridhar, F.; Frame, K.E.; Cross, J.H.; Chin, R.F.M.; Parikh, S.; Panzer, A.; Weisenberg, J.; Utley, K.; Jaksha, A.; Amin, S.; Khwaja, O.; Devinsky, O.; Neul, J.L.; Percy, A.K.; Benke, T.A. Severity assessment in CDKL5 deficiency disorder. Pediatr. Neurol., 2019, 97, 38-42.
[http://dx.doi.org/10.1016/j.pediatrneurol.2019.03.017] [PMID: 31147226]
[47]
Ferretti, A.; Barresi, S.; Trivisano, M.; Ciolfi, A.; Dentici, M.L.; Radio, F.C.; Vigevano, F.; Tartaglia, M.; Specchio, N. POGZ-related epilepsy: Case report and review of the literature. Am. J. Med. Genet. A., 2019, 179(8), 1631-1636.
[http://dx.doi.org/10.1002/ajmg.a.61206] [PMID: 31136090]
[48]
Fang, H.H.; Liu, S.Y.; Wang, Y.F.; Chiang, C.M.; Liu, C.C.; Lin, C.M. Phenotypic features of a microdeletion in chromosome band 20p13: A case report and review of the literature. Mol. Genet. Genomic Med., 2019, 7(7), e00739.
[http://dx.doi.org/10.1002/mgg3.739] [PMID: 31087544]
[49]
Bonnemason-Carrere, P.; Morice-Picard, F.; Pennamen, P.; Arveiler, B.; Fergelot, P.; Goizet, C.; Hellegouarch, M.; Lacombe, D.; Plaisant, C.; Raclet, V.; Rooryck, C.; Lasseaux, E.; Trimouille, A. PADDAS syndrome associated with hair dysplasia caused by a de novo missense variant of PUM1. Am. J. Med. Genet. A., 2019, 179(6), 1030-1033.
[http://dx.doi.org/10.1002/ajmg.a.61127] [PMID: 30903679]
[50]
Reijnders, M.R.F.; Janowski, R.; Alvi, M.; Self, J.E.; van Essen, T.J.; Vreeburg, M.; Rouhl, R.P.W.; Stevens, S.J.C.; Stegmann, A.P.A.; Schieving, J.; Pfundt, R.; van Dijk, K.; Smeets, E.; Stumpel, C.T.R.M.; Bok, L.A.; Cobben, J.M.; Engelen, M.; Mansour, S.; Whiteford, M.; Chandler, K.E.; Douzgou, S.; Cooper, N.S.; Tan, E.C.; Foo, R.; Lai, A.H.M.; Rankin, J.; Green, A.; Lönnqvist, T.; Isohanni, P.; Williams, S.; Ruhoy, I.; Carvalho, K.S.; Dowling, J.J.; Lev, D.L.; Sterbova, K.; Lassuthova, P.; Neupauerová, J.; Waugh, J.L.; Keros, S.; Clayton-Smith, J.; Smithson, S.F.; Brunner, H.G.; van Hoeckel, C.; Anderson, M.; Clowes, V.E.; Siu, V.M. Ddd Study, T.; Selber, P.; Leventer, R.J.; Nellaker, C.; Niessing, D.; Hunt, D.; Baralle, D. PURA syndrome: Clinical delineation and genotype-phenotype study in 32 individuals with review of published literature. J. Med. Genet., 2018, 55(2), 104-113.
[http://dx.doi.org/10.1136/jmedgenet-2017-104946] [PMID: 29097605]
[51]
Agostini, A.; Marchetti, D.; Izzi, C.; Cocco, I.; Pinelli, L.; Accorsi, P.; Iascone Maria, R.; Giordano, L. Expanding the phenotype of MED 17 mutations: Description of two new cases and review of the literature. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2018, 177(8), 687-690.
[http://dx.doi.org/10.1002/ajmg.b.32677] [PMID: 30345598]
[52]
Chapman, K.E.; Specchio, N.; Shinnar, S.; Holmes, G.L. Seizing control of epileptic activity can improve outcome. Epilepsia, 2015, 56(10), 1482-1485.
[http://dx.doi.org/10.1111/epi.13109] [PMID: 26293783]
[53]
Jehi, L.; Wyllie, E.; Devinsky, O. Epileptic encephalopathies: Optimizing seizure control and developmental outcome. Epilepsia, 2015, 56(10), 1486-1489.
[http://dx.doi.org/10.1111/epi.13107] [PMID: 26293588]
[54]
Widjaja, E.; Go, C.; McCoy, B.; Snead, O.C. Neurodevelopmental outcome of infantile spasms: A systematic review and meta-analysis. Epilepsy Res., 2015, 109, 155-162.
[http://dx.doi.org/10.1016/j.eplepsyres.2014.11.012] [PMID: 25524855]
[55]
Maltoni, L.; Posar, A.; Parmeggiani, A. Long-term follow-up of cognitive functions in patients with continuous spike-waves during sleep (CSWS). Epilepsy Behav., 2016, 60, 211-217.
[http://dx.doi.org/10.1016/j.yebeh.2016.04.006] [PMID: 27240307]
[56]
Holmes, G.L. Effect of seizures on the developing brain and cognition. Semin. Pediatr. Neurol., 2016, 23(2), 120-126.
[http://dx.doi.org/10.1016/j.spen.2016.05.001] [PMID: 27544468]
[57]
Saniya, K.; Patil, B.G.; Chavan, M.D.; Prakash, K.G.; Sailesh, K.S.; Archana, R.; Johny, M. Neuroanatomical changes in brain structures related to cognition in epilepsy: An update. J. Nat. Sci. Biol. Med., 2017, 8(2), 139-143.
[http://dx.doi.org/10.4103/0976-9668.210016] [PMID: 28781476]
[58]
van Diessen, E.; Diederen, S.J.; Braun, K.P.; Jansen, F.E.; Stam, C.J. Functional and structural brain networks in epilepsy: What have we learned? Epilepsia, 2013, 54(11), 1855-1865.
[http://dx.doi.org/10.1111/epi.12350] [PMID: 24032627]
[59]
Bernhardt, B.C.; Bonilha, L.; Gross, D.W. Network analysis for a network disorder: The emerging role of graph theory in the study of epilepsy. Epilepsy Behav., 2015, 50, 162-170.
[http://dx.doi.org/10.1016/j.yebeh.2015.06.005] [PMID: 26159729]
[60]
Otte, W.M.; Dijkhuizen, R.M.; van Meer, M.P.; van der Hel, W.S.; Verlinde, S.A.; van Nieuwenhuizen, O.; Viergever, M.A.; Stam, C.J.; Braun, K.P. Characterization of functional and structural integrity in experimental focal epilepsy: Reduced network efficiency coincides with white matter changes. PLoS One, 2012, 7(7), e39078.
[http://dx.doi.org/10.1371/journal.pone.0039078] [PMID: 22808026]
[61]
Binnie, C.D. Cognitive impairment during epileptiform discharges: Is it ever justifiable to treat the EEG? Lancet Neurol., 2003, 2(12), 725-730.
[http://dx.doi.org/10.1016/S1474-4422(03)00584-2] [PMID: 14636777]
[62]
Sánchez Fernández, I.; Loddenkemper, T.; Galanopoulou, A.S.; Moshé, S.L. Should epileptiform discharges be treated? Epilepsia, 2015, 56(10), 1492-1504.
[http://dx.doi.org/10.1111/epi.13108] [PMID: 26293670]
[63]
Karaoğlu, P.; Yaş, U.; Polat, A.İ.; Ayanoğlu, M.; Hız, S. Clinical predictors of drug-resistant epilepsy in children. Turk. J. Med. Sci., 2021, 51(3), 1249-1252.
[http://dx.doi.org/10.3906/sag-2010-27] [PMID: 33600098]
[64]
Mula, M. Emerging drugs for focal epilepsy. Expert Opin. Emerg. Drugs, 2018, 23(3), 243-249.
[http://dx.doi.org/10.1080/14728214.2018.1527903] [PMID: 30251907]
[65]
Asconapé, J.J. The selection of antiepileptic drugs for the treatment of epilepsy in children and adults. Neurol. Clin., 2010, 28(4), 843-852.
[http://dx.doi.org/10.1016/j.ncl.2010.03.026] [PMID: 20816265]
[66]
Kerr, M.P.; Baker, G.A.; Brodie, M.J. A randomized, double-blind, placebo-controlled trial of topiramate in adults with epilepsy and intellectual disability: Impact on seizures, severity, and quality of life. Epilepsy Behav., 2005, 7(3), 472-480.
[http://dx.doi.org/10.1016/j.yebeh.2005.07.006] [PMID: 16140593]
[67]
Operto, F.F.; Pastorino, G.M.G.; Mazza, R.; Carotenuto, M.; Roccella, M.; Marotta, R.; di Bonaventura, C.; Verrotti, A. Effects on executive functions of antiepileptic monotherapy in pediatric age. Epilepsy Behav., 2020, 102, 106648.
[http://dx.doi.org/10.1016/j.yebeh.2019.106648] [PMID: 31715510]
[68]
Operto, F.F.; Pastorino, G.M.G.; Di Bonaventura, C.; Scuoppo, C.; Padovano, C.; Vivenzio, V.; Donadio, S.; Coppola, G. Effects of antiseizure monotherapy on visuospatial memory in pediatric age. Eur. J. Paediatr. Neurol., 2021, 32, 106-114.
[http://dx.doi.org/10.1016/j.ejpn.2021.04.004] [PMID: 33895643]
[69]
Crawford, P.; Brown, S.; Kerr, M. Parkedavisclinicaltrialsgroup, A randomized open-label study of gabapentin and lamotrigine in adults with learning disability and resistant epilepsy. Seizure, 2001, 10(2), 107-115.
[http://dx.doi.org/10.1016/S1059-1311(00)90474-6] [PMID: 11407953]
[70]
Pesaturo, K.A.; Spooner, L.M.; Belliveau, P. Vigabatrin for infantile spasms. Pharmacotherapy, 2011, 31(3), 298-311.
[http://dx.doi.org/10.1592/phco.31.3.298] [PMID: 21361740]
[71]
Matricardi, S.; Farello, G.; Operto, F.F.; Coppola, G.; Verrotti, A. What are the challenges with the pharmacological management of epilepsy in patients with Attention Deficit Hyperactivity Disorder (ADHD)? Expert Opin. Pharmacother., 2020, 21(7), 737-739.
[http://dx.doi.org/10.1080/14656566.2020.1732351] [PMID: 32077772]
[72]
Wirrell, E.C. Treatment of dravet syndrome. Can. J. Neurol. Sci., 2016, 43(S3)(Suppl. 3), S13-S18.
[http://dx.doi.org/10.1017/cjn.2016.249] [PMID: 27264138]
[73]
Eddy, C.M.; Rickards, H.E.; Cavanna, A.E. The cognitive impact of antiepileptic drugs. Ther. Adv. Neurol. Disord., 2011, 4(6), 385-407.
[http://dx.doi.org/10.1177/1756285611417920] [PMID: 22164192]
[74]
Operto, FF; Pastorino, GMG; Mazza, R; Di Bonaventura, C; Matricardi, S; Verrotti, A; Carotenuto, M; Viggiano, A; Coppola, G; Elia, M Perampanel tolerability in children and adolescents with focal epilepsy: Effects on behavior and executive functions. Epilepsy Behav., 2020, 103(Pt A), 106879.
[http://dx.doi.org/10.1016/j.yebeh.2019.106879]
[75]
Operto, F.F.; Vivenzio, V.; Scuoppo, C.; Padovano, C.; Roccella, M.; Quatrosi, G.; Pastorino, G.M.G. Perampanel and visuospatial skills in children with epilepsy. Front. Neurol., 2021, 12, 696946.
[http://dx.doi.org/10.3389/fneur.2021.696946] [PMID: 34305800]
[76]
Toledano, R.; Gil-Nagel, A. Adverse effects of antiepileptic drugs. Semin. Neurol., 2008, 28(3), 317-327.
[http://dx.doi.org/10.1055/s-2008-1079336] [PMID: 18777478]
[77]
Fernandes, M; Dainese, F; Operto, F; Lattanzi, S; Matricardi, S; Renna, R; Placidi, F; Paladin, F; Pastorino, GMG; Foschi, N; Cesaroni, E; Mercuri, NB; Liguori, C Perampanel effectiveness and tolerability in patients with epilepsy at long-term follow-up. Epilepsy Behav., 2021, 121(Pt A), 108069.
[http://dx.doi.org/10.1016/j.yebeh.2021.108069]
[78]
Operto, F.F.; Verrotti, A.; Marrelli, A.; Ciuffini, R.; Coppola, G.; Pastorino, G.M.G.; Striano, P.; Sole, M.; Zucca, C.; Manfredi, V.; Città, S.; Elia, M. Cognitive, adaptive, and behavioral effects of adjunctive rufinamide in Lennox-Gastaut syndrome: A prospective observational clinical study. Epilepsy Behav., 2020, 112, 107445.
[http://dx.doi.org/10.1016/j.yebeh.2020.107445] [PMID: 32920379]
[79]
Ettinger, A.B. Psychotropic effects of antiepileptic drugs. Neurology, 2006, 67(11), 1916-1925.
[http://dx.doi.org/10.1212/01.wnl.0000247045.85646.c0] [PMID: 17159095]
[80]
Khalil, N.Y.; AlRabiah, H.K.; Al Rashoud, S.S.; Bari, A.; Wani, T.A. Topiramate: Comprehensive profile. Profiles Drug Subst. Excip. Relat. Methodol., 2019, 44, 333-378.
[http://dx.doi.org/10.1016/bs.podrm.2018.11.005] [PMID: 31029222]
[81]
Emerson, E.; Robertson, J.; Baines, S.; Hatton, C. Obesity in British children with and without intellectual disability: Cohort study. BMC Public Health, 2016, 16(1), 644.
[http://dx.doi.org/10.1186/s12889-016-3309-1] [PMID: 27460572]
[82]
Lagae, L. Dravet syndrome. Curr. Opin. Neurol., 2021, 34(2), 213-218.
[http://dx.doi.org/10.1097/WCO.0000000000000902] [PMID: 33395108]
[83]
Kalilani, L.; Sun, X.; Pelgrims, B.; Noack-Rink, M.; Villanueva, V. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia, 2018, 59(12), 2179-2193.
[http://dx.doi.org/10.1111/epi.14596] [PMID: 30426482]
[84]
Kwan, P.; Brodie, M.J. Early identification of refractory epilepsy. N. Engl. J. Med., 2000, 342(5), 314-319.
[http://dx.doi.org/10.1056/NEJM200002033420503] [PMID: 10660394]
[85]
Scheffer, I.E.; Nabbout, R. SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia, 2019, 60(S3)(Suppl. 3), S17-S24.
[http://dx.doi.org/10.1111/epi.16386] [PMID: 31904117]
[86]
Pierson, T.M.; Yuan, H.; Marsh, E.D.; Fuentes-Fajardo, K.; Adams, D.R.; Markello, T.; Golas, G.; Simeonov, D.R.; Holloman, C.; Tankovic, A.; Karamchandani, M.M.; Schreiber, J.M.; Mullikin, J.C.; Tifft, C.J.; Toro, C.; Boerkoel, C.F.; Traynelis, S.F.; Gahl, W.A. GRIN2A mutation and early-onset epileptic encephalopathy: Personalized therapy with memantine. Ann. Clin. Transl. Neurol., 2014, 1(3), 190-198.
[http://dx.doi.org/10.1002/acn3.39] [PMID: 24839611]
[87]
Mir, A.; Qahtani, M.; Bashir, S. GRIN2A -related severe epileptic encephalopathy treated with memantine: An example of precision medicine. J. Pediatr. Genet., 2020, 9(4), 252-257.
[http://dx.doi.org/10.1055/s-0039-3401028] [PMID: 32765929]
[88]
Milligan, C.J.; Li, M.; Gazina, E.V.; Heron, S.E.; Nair, U.; Trager, C.; Reid, C.A.; Venkat, A.; Younkin, D.P.; Dlugos, D.J.; Petrovski, S.; Goldstein, D.B.; Dibbens, L.M.; Scheffer, I.E.; Berkovic, S.F.; Petrou, S. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann. Neurol., 2014, 75(4), 581-590.
[http://dx.doi.org/10.1002/ana.24128] [PMID: 24591078]
[89]
Mikati, M.A.; Jiang, Y.H.; Carboni, M.; Shashi, V.; Petrovski, S.; Spillmann, R.; Milligan, C.J.; Li, M.; Grefe, A.; McConkie, A.; Berkovic, S.; Scheffer, I.; Mullen, S.; Bonner, M.; Petrou, S.; Goldstein, D. Quinidine in the treatment of KCNT1-positive epilepsies. Ann. Neurol., 2015, 78(6), 995-999.
[http://dx.doi.org/10.1002/ana.24520] [PMID: 26369628]
[90]
McTague, A.; Nair, U.; Malhotra, S.; Meyer, E.; Trump, N.; Gazina, E.V.; Papandreou, A.; Ngoh, A.; Ackermann, S.; Ambegaonkar, G.; Appleton, R.; Desurkar, A.; Eltze, C.; Kneen, R.; Kumar, A.V.; Lascelles, K.; Montgomery, T.; Ramesh, V.; Samanta, R.; Scott, R.H.; Tan, J.; Whitehouse, W.; Poduri, A.; Scheffer, I.E.; Chong, W.K.K.; Cross, J.H.; Topf, M.; Petrou, S.; Kurian, M.A. Clinical and molecular characterization of KCNT1-related severe early-onset epilepsy. Neurology, 2018, 90(1), e55-e66.
[http://dx.doi.org/10.1212/WNL.0000000000004762] [PMID: 29196579]
[91]
Lim, C.X.; Ricos, M.G.; Dibbens, L.M.; Heron, S.E. KCNT1 mutations in seizure disorders: The phenotypic spectrum and functional effects. J. Med. Genet., 2016, 53(4), 217-225.
[http://dx.doi.org/10.1136/jmedgenet-2015-103508] [PMID: 26740507]
[92]
Goto, A.; Ishii, A.; Shibata, M.; Ihara, Y.; Cooper, E.C.; Hirose, S. Characteristics of KCNQ2 variants causing either benign neonatal epilepsy or developmental and epileptic encephalopathy. Epilepsia, 2019, 60(9), 1870-1880.
[http://dx.doi.org/10.1111/epi.16314] [PMID: 31418850]
[93]
Gunthorpe, M.J.; Large, C.H.; Sankar, R. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia, 2012, 53(3), 412-424.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03365.x] [PMID: 22220513]
[94]
Millichap, J.J.; Park, K.L.; Tsuchida, T.; Ben-Zeev, B.; Carmant, L.; Flamini, R.; Joshi, N.; Levisohn, P.M.; Marsh, E.; Nangia, S.; Narayanan, V.; Ortiz-Gonzalez, X.R.; Patterson, M.C.; Pearl, P.L.; Porter, B.; Ramsey, K.; McGinnis, E.L.; Taglialatela, M.; Tracy, M.; Tran, B.; Venkatesan, C.; Weckhuysen, S.; Cooper, E.C. KCNQ2 encephalopathy: Features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol. Genet., 2016, 2(5), e96.
[http://dx.doi.org/10.1212/NXG.0000000000000096] [PMID: 27602407]
[95]
Wolff, M.; Brunklaus, A.; Zuberi, S.M. Phenotypic spectrum and genetics of SCN2A-related disorders, treatment options, and outcomes in epilepsy and beyond. Epilepsia, 2019, 60(S3)(Suppl. 3), S59-S67.
[http://dx.doi.org/10.1111/epi.14935] [PMID: 31904126]
[96]
Boerma, R.S.; Braun, K.P.; van den Broek, M.P.; van Berkestijn, F.M.; Swinkels, M.E.; Hagebeuk, E.O.; Lindhout, D.; van Kempen, M.; Boon, M.; Nicolai, J.; de Kovel, C.G.; Brilstra, E.H.; Koeleman, B.P. Remarkable phenytoin sensitivity in 4 children with SCN8A-related epilepsy: A molecular neuropharmacological approach. Neurotherapeutics, 2016, 13(1), 192-197.
[http://dx.doi.org/10.1007/s13311-015-0372-8] [PMID: 26252990]
[97]
Moloney, P.B.; Cavalleri, G.L.; Delanty, N. Epilepsy in the mTORopathies: Opportunities for precision medicine. Brain Commun., 2021, 3(4), fcab222.
[http://dx.doi.org/10.1093/braincomms/fcab222]
[98]
Klepper, J. Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia, 2008, 49(Suppl. 8), 46-49.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01833.x] [PMID: 19049586]
[99]
Symonds, J.D.; McTague, A. Epilepsy and developmental disorders: Next generation sequencing in the clinic. Eur. J. Paediatr. Neurol., 2020, 24, 15-23.
[http://dx.doi.org/10.1016/j.ejpn.2019.12.008] [PMID: 31882278]
[100]
Turner, T.J.; Zourray, C.; Schorge, S.; Lignani, G. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. J. Neurochem., 2021, 157(2), 229-262.
[http://dx.doi.org/10.1111/jnc.15168] [PMID: 32880951]
[101]
Setten, R.L.; Rossi, J.J.; Han, S.P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov., 2019, 18(6), 421-446.
[http://dx.doi.org/10.1038/s41573-019-0017-4] [PMID: 30846871]
[102]
Rinaldi, C.; Wood, M.J.A. Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Nat. Rev. Neurol., 2018, 14(1), 9-21.
[http://dx.doi.org/10.1038/nrneurol.2017.148] [PMID: 29192260]
[103]
Lykken, E.A.; Shyng, C.; Edwards, R.J.; Rozenberg, A.; Gray, S.J. Recent progress and considerations for AAV gene therapies targeting the central nervous system. J. Neurodev. Disord., 2018, 10(1), 16.
[http://dx.doi.org/10.1186/s11689-018-9234-0] [PMID: 29776328]
[104]
Lin, K.; Zhong, X.; Li, L.; Ying, M.; Yang, T.; Zhang, Z.; He, X.; Xu, F. AAV9-Retro mediates efficient transduction with axon terminal absorption and blood-brain barrier transportation. Mol. Brain, 2020, 13(1), 138.
[http://dx.doi.org/10.1186/s13041-020-00679-1] [PMID: 33054827]
[105]
Lubroth, P.; Colasante, G.; Lignani, G. In vivo genome editing therapeutic approaches for neurological disorders: Where are we in the translational pipeline? Front. Neurosci., 2021, 15, 632522.
[http://dx.doi.org/10.3389/fnins.2021.632522] [PMID: 33679313]
[106]
Gadalla, K.K.; Bailey, M.E.; Spike, R.C.; Ross, P.D.; Woodard, K.T.; Kalburgi, S.N.; Bachaboina, L.; Deng, J.V.; West, A.E.; Samulski, R.J.; Gray, S.J.; Cobb, S.R. Improved survival and reduced phenotypic severity following AAV9/MECP2 gene transfer to neonatal and juvenile male Mecp2 knockout mice. Mol. Ther., 2013, 21(1), 18-30.
[http://dx.doi.org/10.1038/mt.2012.200] [PMID: 23011033]
[107]
Garg, S.K.; Lioy, D.T.; Cheval, H.; McGann, J.C.; Bissonnette, J.M.; Murtha, M.J.; Foust, K.D.; Kaspar, B.K.; Bird, A.; Mandel, G. Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J. Neurosci., 2013, 33(34), 13612-13620.
[http://dx.doi.org/10.1523/JNEUROSCI.1854-13.2013] [PMID: 23966684]
[108]
Matagne, V.; Ehinger, Y.; Saidi, L.; Borges-Correia, A.; Barkats, M.; Bartoli, M.; Villard, L.; Roux, J.C. A codon-optimized Mecp2 transgene corrects breathing deficits and improves survival in a mouse model of Rett syndrome. Neurobiol. Dis., 2017, 99, 1-11.
[http://dx.doi.org/10.1016/j.nbd.2016.12.009] [PMID: 27974239]
[109]
Sinnett, S.E.; Hector, R.D.; Gadalla, K.K.E.; Heindel, C.; Chen, D.; Zaric, V.; Bailey, M.E.S.; Cobb, S.R.; Gray, S.J. Improved MECP2 gene therapy extends the survival of MeCP2-null mice without apparent toxicity after intracisternal delivery. Mol. Ther. Methods Clin. Dev., 2017, 5, 106-115.
[http://dx.doi.org/10.1016/j.omtm.2017.04.006] [PMID: 28497072]
[110]
Luoni, M.; Giannelli, S.; Indrigo, M.T.; Niro, A.; Massimino, L.; Iannielli, A.; Passeri, L.; Russo, F.; Morabito, G.; Calamita, P.; Gregori, S.; Deverman, B.; Broccoli, V. Whole brain delivery of an instability-prone Mecp2 transgene improves behavioral and molecular pathological defects in mouse models of Rett syndrome. eLife, 2020, 9, e52629.
[http://dx.doi.org/10.7554/eLife.52629] [PMID: 32207685]
[111]
Matagne, V.; Borloz, E.; Ehinger, Y.; Saidi, L.; Villard, L.; Roux, J.C. Severe offtarget effects following intravenous delivery of AAV9-MECP2 in a female mouse model of Rett syndrome. Neurobiol. Dis., 2021, 149, 105235.
[http://dx.doi.org/10.1016/j.nbd.2020.105235] [PMID: 33383186]
[112]
Gholizadeh, S.; Arsenault, J.; Xuan, I.C.; Pacey, L.K.; Hampson, D.R. Reduced phenotypic severity following adeno-associated virus-mediated Fmr1 gene delivery in fragile X mice. Neuropsychopharmacology, 2014, 39(13), 3100-3111.
[http://dx.doi.org/10.1038/npp.2014.167] [PMID: 24998620]
[113]
Zeier, Z.; Kumar, A.; Bodhinathan, K.; Feller, J.A.; Foster, T.C.; Bloom, D.C. Fragile X mental retardation protein replacement restores hippocampal synaptic function in a mouse model of fragile X syndrome. Gene Ther., 2009, 16(9), 1122-1129.
[http://dx.doi.org/10.1038/gt.2009.83] [PMID: 19571888]
[114]
Haenfler, J.M.; Skariah, G.; Rodriguez, C.M.; Monteiro da Rocha, A.; Parent, J.M.; Smith, G.D.; Todd, P.K. Targeted reactivation of FMR1 transcription in fragile X syndrome embryonic stem cells. Front. Mol. Neurosci., 2018, 11, 282.
[http://dx.doi.org/10.3389/fnmol.2018.00282] [PMID: 30158855]
[115]
Park, C.Y.; Halevy, T.; Lee, D.R.; Sung, J.J.; Lee, J.S.; Yanuka, O.; Benvenisty, N.; Kim, D.W. Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep., 2015, 13(2), 234-241.
[http://dx.doi.org/10.1016/j.celrep.2015.08.084] [PMID: 26440889]
[116]
Xie, N.; Gong, H.; Suhl, J.A.; Chopra, P.; Wang, T.; Warren, S.T. Reactivation of FMR1 by CRISPR/Cas9-mediated deletion of the expanded CGG-repeat of the fragile X chromosome. PLoS One, 2016, 11(10), e0165499.
[http://dx.doi.org/10.1371/journal.pone.0165499] [PMID: 27768763]
[117]
Wolter, J.M.; Mao, H.; Fragola, G.; Simon, J.M.; Krantz, J.L.; Bazick, H.O.; Oztemiz, B.; Stein, J.L.; Zylka, M.J. Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA. Nature, 2020, 587(7833), 281-284.
[http://dx.doi.org/10.1038/s41586-020-2835-2] [PMID: 33087932]
[118]
Meng, L.; Person, R.E.; Beaudet, A.L. Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum. Mol. Genet., 2012, 21(13), 3001-3012.
[http://dx.doi.org/10.1093/hmg/dds130] [PMID: 22493002]
[119]
Prabhakar, S.; Zhang, X.; Goto, J.; Han, S.; Lai, C.; Bronson, R.; Sena-Esteves, M.; Ramesh, V.; Stemmer-Rachamimov, A.; Kwiatkowski, D.J.; Breakefield, X.O. Survival benefit and phenotypic improvement by hamartin gene therapy in a tuberous sclerosis mouse brain model. Neurobiol. Dis., 2015, 82, 22-31.
[http://dx.doi.org/10.1016/j.nbd.2015.04.018] [PMID: 26019056]
[120]
Prabhakar, S.; Cheah, P.S.; Zhang, X.; Zinter, M.; Gianatasio, M.; Hudry, E.; Bronson, R.T.; Kwiatkowski, D.J.; Stemmer-Rachamimov, A.; Maguire, C.A.; Sena-Esteves, M.; Tannous, B.A.; Breakefield, X.O. Long-term therapeutic efficacy of intravenous AAV-mediated hamartin replacement in mouse model of tuberous sclerosis type 1. Mol. Ther. Methods Clin. Dev., 2019, 15, 18-26.
[http://dx.doi.org/10.1016/j.omtm.2019.08.003] [PMID: 31534984]
[121]
Higurashi, N.; Broccoli, V.; Hirose, S. Genetics and gene therapy in Dravet syndrome. Epilepsy Behav., 2022, 131(Pt B), 108043.
[http://dx.doi.org/10.1016/j.yebeh.2021.108043] [PMID: 34053869]
[122]
Isom, L.L.; Knupp, K.G. Dravet syndrome: Novel approaches for the most common genetic epilepsy. Neurotherapeutics, 2021, 18(3), 1524-1534.
[http://dx.doi.org/10.1007/s13311-021-01095-6] [PMID: 34378168]
[123]
Carvill, G.L.; Engel, K.L.; Ramamurthy, A.; Cochran, J.N.; Roovers, J.; Stamberger, H.; Lim, N.; Schneider, A.L.; Hollingsworth, G.; Holder, D.H.; Regan, B.M.; Lawlor, J.; Lagae, L.; Ceulemans, B.; Bebin, E.M.; Nguyen, J.; Barsh, G.S.; Weckhuysen, S.; Meisler, M.; Berkovic, S.F.; De Jonghe, P.; Scheffer, I.E.; Myers, R.M.; Cooper, G.M.; Mefford, H.C.; Striano, P.; Zara, F.; Helbig, I.; Møller, R.S.; von Spiczak, S.; Muhle, H.; Caglayan, H.; Sterbova, K.; Craiu, D.; Hoffman, D.; Lehesjoki, A-E.; Selmer, K.; Depienne, C.; Lemke, J.; Marini, C.; Guerrini, R.; Neubauer, B.; Talvik, T.; Leguern, E.; de Jonghe, P.; Weckhuysen, S. Aberrant inclusion of a poison exon causes dravet syndrome and related SCN1A-associated genetic epilepsies. Am. J. Hum. Genet., 2018, 103(6), 1022-1029.
[http://dx.doi.org/10.1016/j.ajhg.2018.10.023] [PMID: 30526861]
[124]
Mistry, A.M.; Thompson, C.H.; Miller, A.R.; Vanoye, C.G.; George, A.L., Jr; Kearney, J.A. Strain- and age-dependent hippocampal neuron sodium currents correlate with epilepsy severity in Dravet syndrome mice. Neurobiol. Dis., 2014, 65, 1-11.
[http://dx.doi.org/10.1016/j.nbd.2014.01.006] [PMID: 24434335]
[125]
Liau, G. TANGO oligonucleotides for the treatment of dravet syndrome: Safety, biodistribution, and pharmacology in the non-human primate. 2019 Annual Meeting Abstract Database, 2019.
[126]
Laux, L. Safety and pharmacokinetics of antisense oligonucleotide stk-001 in children and adolescents with dravet syndrome: Single ascending dose design for the open-label phase 1/2a monarch study. 2020 Annual Meeting Abstract Database, 2020.
[127]
Colasante, G.; Lignani, G.; Brusco, S.; Di Berardino, C.; Carpenter, J.; Giannelli, S.; Valassina, N.; Bido, S.; Ricci, R.; Castoldi, V.; Marenna, S.; Church, T.; Massimino, L.; Morabito, G.; Benfenati, F.; Schorge, S.; Leocani, L.; Kullmann, D.M.; Broccoli, V. dCas9-based scn1a gene activation restores inhibitory interneuron excitability and attenuates seizures in dravet syndrome mice. Mol. Ther., 2020, 28(1), 235-253.
[http://dx.doi.org/10.1016/j.ymthe.2019.08.018] [PMID: 31607539]
[128]
Yamagata, T.; Raveau, M.; Kobayashi, K.; Miyamoto, H.; Tatsukawa, T.; Ogiwara, I.; Itohara, S.; Hensch, T.K.; Yamakawa, K. CRISPR/dCas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of Dravet syndrome model mice. Neurobiol. Dis., 2020, 141, 104954.
[http://dx.doi.org/10.1016/j.nbd.2020.104954] [PMID: 32445790]
[129]
Taubøll, E.; Sveberg, L.; Svalheim, S. Interactions between hormones and epilepsy. Seizure, 2015, 28, 3-11.
[http://dx.doi.org/10.1016/j.seizure.2015.02.012] [PMID: 25765693]
[130]
Marcus, E.M.; Watson, C.W.; Goldman, P.L. Effects of steroids on cerebral electrical activity. Epileptogenic effects of conjugated estrogens and related compounds in the cat and rabbit. Arch. Neurol., 1966, 15(5), 521-532.
[http://dx.doi.org/10.1001/archneur.1966.00470170075008] [PMID: 4380963]
[131]
Ahmad, A.; Vohora, D. Proconvulsant effects of estriol, the third estrogen, in the mouse PTZ-kindling model. Neurol. Sci., 2014, 35(10), 1561-1566.
[http://dx.doi.org/10.1007/s10072-014-1795-4] [PMID: 24748480]
[132]
Bäckström, T.; Zetterlund, B.; Blom, S.; Romano, M. Effects of intravenous progesterone infusions on the epileptic discharge frequency in women with partial epilepsy. Acta Neurol. Scand., 1984, 69(4), 240-248.
[http://dx.doi.org/10.1111/j.1600-0404.1984.tb07807.x] [PMID: 6430018]
[133]
Herzog, A.G.; Coleman, A.E.; Jacobs, A.R.; Klein, P.; Friedman, M.N.; Drislane, F.W.; Ransil, B.J.; Schomer, D.L. Interictal EEG discharges, reproductive hormones, and menstrual disorders in epilepsy. Ann. Neurol., 2003, 54(5), 625-637.
[http://dx.doi.org/10.1002/ana.10732] [PMID: 14595652]
[134]
Belelli, D.; Lambert, J.J. Neurosteroids: Endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci., 2005, 6(7), 565-575.
[http://dx.doi.org/10.1038/nrn1703] [PMID: 15959466]
[135]
Kerrigan, J.F.; Shields, W.D.; Nelson, T.Y.; Bluestone, D.L.; Dodson, W.E.; Bourgeois, B.F.; Pellock, J.M.; Morton, L.D.; Monaghan, E.P. Ganaxolone for treating intractable infantile spasms: A multicenter, open-label, add-on trial. Epilepsy Res., 2000, 42(2-3), 133-139.
[http://dx.doi.org/10.1016/S0920-1211(00)00170-4] [PMID: 11074186]
[136]
Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). II. Drugs in more advanced clinical development. Epilepsia, 2018, 59(10), 1842-1866.
[http://dx.doi.org/10.1111/epi.14555] [PMID: 30368788]
[137]
Marinus Pharmaceutical. Pharmacokinetic-pharmacodynamic analysis of oral ganaxolone in patients with CDKL5 deficiency disorder: Results from the marigold study. 2021. Available from: https://marinuspharma.com/wp-content/uploads/2020/12/Hulihan_ PKPD_Poster_111720b_FINAL.pdf [Accessed December 14 2021].
[138]
Sorel, L.; Dusaucy-Bauloye, A. A propos de casd’hypsarythmia de Gibbs: Son traitmentspectulaire per l’ACTH. Acta Neurol. Belg., 1958, 58, 130-141.
[139]
Singer, W.D.; Rabe, E.F.; Haller, J.S. The effect of ACTH therapy upon infantile spasms. J. Pediatr., 1980, 96(3 Pt 1), 485-489.
[http://dx.doi.org/10.1016/S0022-3476(80)80706-2] [PMID: 6244378]
[140]
Sinclair, D.B. Prednisone therapy in pediatric epilepsy. Pediatr. Neurol., 2003, 28(3), 194-198.
[http://dx.doi.org/10.1016/S0887-8994(02)00513-1] [PMID: 12770672]
[141]
You, S.J.; Jung, D.E.; Kim, H.D.; Lee, H.S.; Kang, H.C. Efficacy and prognosis of a short course of prednisolone therapy for pediatric epilepsy. Eur. J. Paediatr. Neurol., 2008, 12(4), 314-320.
[http://dx.doi.org/10.1016/j.ejpn.2007.09.003] [PMID: 17951084]
[142]
Tsuru, T.; Mori, M.; Mizuguchi, M.; Momoi, M.Y. Effects of high-dose intravenous corticosteroid therapy in Landau-Kleffner syndrome. Pediatr. Neurol., 2000, 22(2), 145-147.
[http://dx.doi.org/10.1016/S0887-8994(99)00127-7] [PMID: 10738922]
[143]
Riikonen, R. Recent advances in the pharmacotherapy of infantile spasms. CNS Drugs, 2014, 28(4), 279-290.
[http://dx.doi.org/10.1007/s40263-014-0139-5] [PMID: 24504827]
[144]
Brunson, K.L.; Avishai-Eliner, S.; Baram, T.Z. ACTH treatment of infantile spasms: Mechanisms of its effects in modulation of neuronal excitability. Int. Rev. Neurobiol., 2002, 49, 185-197.
[http://dx.doi.org/10.1016/S0074-7742(02)49013-7] [PMID: 12040892]
[145]
Oguni, H.; Yanagaki, S.; Hayashi, K.; Imai, K.; Funatsuka, M.; Kishi, T.; Osawa, M. Extremely low-dose ACTH step-up protocol for West syndrome: Maximum therapeutic effect with minimal side effects. Brain Dev., 2006, 28(1), 8-13.
[http://dx.doi.org/10.1016/j.braindev.2005.02.010] [PMID: 15925463]
[146]
Yanagaki, S.; Oguni, H.; Hayashi, K.; Imai, K.; Funatuka, M.; Tanaka, T.; Yanagaki, M.; Osawa, M. A comparative study of high-dose and low-dose ACTH therapy for West syndrome. Brain Dev., 1999, 21(7), 461-467.
[http://dx.doi.org/10.1016/S0387-7604(99)00053-4] [PMID: 10522523]
[147]
Hamano, S.; Yamashita, S.; Tanaka, M.; Yoshinari, S.; Minamitani, M.; Eto, Y. Therapeutic efficacy and adverse effects of adrenocorticotropic hormone therapy in west syndrome: Differences in dosage of adrenocorticotropic hormone, onset of age, and cause. J. Pediatr., 2006, 148(4), 485-488.
[http://dx.doi.org/10.1016/j.jpeds.2005.11.041] [PMID: 16647410]
[148]
Gupta, R.; Appleton, R. Corticosteroids in the management of the paediatric epilepsies. Arch. Dis. Child., 2005, 90(4), 379-384.
[http://dx.doi.org/10.1136/adc.2004.051375] [PMID: 15781928]
[149]
Wheless, J.W. History of the ketogenic diet. Epilepsia, 2008, 49(Suppl. 8), 3-5.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01821.x] [PMID: 19049574]
[150]
Borges, K. Mouse models: The ketogenic diet and polyunsaturated fatty acids. Epilepsia, 2008, 49(Suppl. 8), 64-66.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01838.x] [PMID: 19049591]
[151]
Wlaź, P.; Socała, K.; Nieoczym, D.; Łuszczki, J.J.; Żarnowska, I.; Żarnowski, T.; Czuczwar, S.J.; Gasior, M. Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice. Neuropharmacology, 2012, 62(4), 1882-1889.
[http://dx.doi.org/10.1016/j.neuropharm.2011.12.015] [PMID: 22210332]
[152]
Willis, S.; Stoll, J.; Sweetman, L.; Borges, K. Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models. Neurobiol. Dis., 2010, 40(3), 565-572.
[http://dx.doi.org/10.1016/j.nbd.2010.07.017] [PMID: 20691264]
[153]
Ko, A; Kwon, HE; Kim, HD Updates on the ketogenic diet therapy for pediatric epilepsy. Biomed. J., 2021, S2319-4170(21), 152-159.
[http://dx.doi.org/10.1016/j.bj.2021.11.003]
[154]
Youngson, N.A.; Morris, M.J.; Ballard, J.W.O. The mechanisms mediating the antiepileptic effects of the ketogenic diet, and potential opportunities for improvement with metabolism-altering drugs. Seizure, 2017, 52, 15-19.
[http://dx.doi.org/10.1016/j.seizure.2017.09.005] [PMID: 28941398]
[155]
Cai, Q.Y.; Zhou, Z.J.; Luo, R.; Gan, J.; Li, S.P.; Mu, D.Z.; Wan, C.M. Safety and tolerability of the ketogenic diet used for the treatment of refractory childhood epilepsy: A systematic review of published prospective studies. World J. Pediatr., 2017, 13(6), 528-536.
[http://dx.doi.org/10.1007/s12519-017-0053-2] [PMID: 28702868]
[156]
Kossoff, E.H.; Zupec-Kania, B.A.; Auvin, S.; Ballaban-Gil, K.R.; Christina Bergqvist, A.G.; Blackford, R.; Buchhalter, J.R.; Caraballo, R.H.; Cross, J.H.; Dahlin, M.G.; Donner, E.J.; Guzel, O.; Jehle, R.S.; Klepper, J.; Kang, H.C.; Lambrechts, D.A.; Liu, Y.M.C.; Nathan, J.K.; Nordli, D.R., Jr; Pfeifer, H.H.; Rho, J.M.; Scheffer, I.E.; Sharma, S.; Stafstrom, C.E.; Thiele, E.A.; Turner, Z.; Vaccarezza, M.M.; van der Louw, E.J.T.M.; Veggiotti, P.; Wheless, J.W.; Wirrell, E.C. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open, 2018, 3(2), 175-192.
[http://dx.doi.org/10.1002/epi4.12225] [PMID: 29881797]
[157]
Kossoff, E.H.; Cervenka, M.C.; Henry, B.J.; Haney, C.A.; Turner, Z. A decade of the modified Atkins diet (2003–2013): Results, insights, and future directions. Epilepsy Behav., 2013, 29(3), 437-442.
[http://dx.doi.org/10.1016/j.yebeh.2013.09.032] [PMID: 24386671]
[158]
Cervenka, M.C.; Patton, K.; Eloyan, A.; Henry, B.; Kossoff, E.H. The impact of the modified Atkins diet on lipid profiles in adults with epilepsy. Nutr. Neurosci., 2016, 19(3), 131-137.
[http://dx.doi.org/10.1179/1476830514Y.0000000162] [PMID: 25383724]
[159]
Pfeifer, H.H.; Thiele, E.A. Low-glycemic-index treatment: A liberalized ketogenic diet for treatment of intractable epilepsy. Neurology, 2005, 65(11), 1810-1812.
[http://dx.doi.org/10.1212/01.wnl.0000187071.24292.9e] [PMID: 16344529]
[160]
Hu, Q.; Shen, Y.; Su, T.; Liu, Y.; Xu, S. Clinical and genetic characteristics of Chinese children with GLUT1 deficiency syndrome: Case report and literature review. Front. Genet., 2021, 12, 734481.
[http://dx.doi.org/10.3389/fgene.2021.734481] [PMID: 34880899]
[161]
Pires, M.E.; Ilea, A.; Bourel, E.; Bellavoine, V.; Merdariu, D.; Berquin, P.; Auvin, S. Ketogenic diet for infantile spasms refractory to first-line treatments: An open prospective study. Epilepsy Res., 2013, 105(1-2), 189-194.
[http://dx.doi.org/10.1016/j.eplepsyres.2012.11.009] [PMID: 23357723]
[162]
Chianese, R.; Coccurello, R.; Viggiano, A.; Scafuro, M.; Fiore, M.; Coppola, G.; Operto, F.F.; Fasano, S.; Laye, S.; Pierantoni, R.; Meccariello, R. Impact of dietary fats on brain functions. Curr. Neuropharmacol., 2018, 16(7), 1059-1085.
[http://dx.doi.org/10.2174/1570159X15666171017102547] [PMID: 29046155]
[163]
Prezioso, G.; Carlone, G.; Zaccara, G.; Verrotti, A. Efficacy of ketogenic diet for infantile spasms: A systematic review. Acta Neurol. Scand., 2018, 137(1), 4-11.
[http://dx.doi.org/10.1111/ane.12830] [PMID: 28875525]
[164]
Lyons, L.; Schoeler, N.E.; Langan, D.; Cross, J.H. Use of ketogenic diet therapy in infants with epilepsy: A systematic review and meta-analysis. Epilepsia, 2020, 61(6), 1261-1281.
[http://dx.doi.org/10.1111/epi.16543] [PMID: 32452537]
[165]
Shah, L.M.; Turner, Z.; Bessone, S.K.; Winesett, S.P.; Stanfield, A.; Kossoff, E.H. How often is antiseizure drug-free ketogenic diet therapy achieved? Epilepsy Behav., 2019, 93, 29-31.
[http://dx.doi.org/10.1016/j.yebeh.2019.01.042] [PMID: 30831398]
[166]
Cross, J.H.; Auvin, S.; Falip, M.; Striano, P.; Arzimanoglou, A. Expert opinion on the management of lennox-gastaut syndrome: Treatment algorithms and practical considerations. Front. Neurol., 2017, 8, 505.
[http://dx.doi.org/10.3389/fneur.2017.00505] [PMID: 29085326]
[167]
Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40.
[http://dx.doi.org/10.1038/nrneurol.2010.178] [PMID: 21135885]
[168]
Mehta, V.; Ferrie, C.D.; Cross, J.H.; Vadlamani, G. Corticosteroids including ACTH for childhood epilepsy other than epileptic spasms. Cochrane Database Syst. Rev., 2015, 2015(6), CD005222.
[http://dx.doi.org/10.1002/14651858.CD005222.pub3] [PMID: 26086765]
[169]
Shin, Y.W.; Lee, S.T.; Park, K.I.; Jung, K.H.; Jung, K.Y.; Lee, S.K.; Chu, K. Treatment strategies for autoimmune encephalitis. Ther. Adv. Neurol. Disord., 2017, 11, 1756285617722347.
[http://dx.doi.org/10.1177/1756285617722347] [PMID: 29399043]
[170]
Go, C.Y.; Mackay, M.T.; Weiss, S.K.; Stephens, D.; Adams-Webber, T.; Ashwal, S.; Snead, O.C. III Evidence-based guideline update: Medical treatment of infantile spasms. Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology, 2012, 78(24), 1974-1980.
[http://dx.doi.org/10.1212/WNL.0b013e318259e2cf] [PMID: 22689735]
[171]
Wanigasinghe, J.; Arambepola, C.; Sri Ranganathan, S.; Sumanasena, S.; Attanapola, G. Randomized, single-blind, parallel clinical trial on efficacy of oral prednisolone versus intramuscular corticotropin on immediate and continued spasm control in west syndrome. Pediatr. Neurol., 2015, 53(3), 193-199.
[http://dx.doi.org/10.1016/j.pediatrneurol.2015.05.004] [PMID: 26216500]
[172]
Kapoor, D.; Sharma, S.; Garg, D.; Samaddar, S.; Panda, I.; Patra, B.; Mukherjee, S.B.; Pemde, H.K. Intravenous methylprednisolone versus oral prednisolone for west syndrome: A randomized open-label trial. Indian J. Pediatr., 2021, 88(8), 778-784.
[http://dx.doi.org/10.1007/s12098-020-03630-3] [PMID: 33575989]
[173]
Sinclair, D.B.; Snyder, T.J. Corticosteroids for the treatment of Landau-kleffner syndrome and continuous spike-wave discharge during sleep. Pediatr. Neurol., 2005, 32(5), 300-306.
[http://dx.doi.org/10.1016/j.pediatrneurol.2004.12.006] [PMID: 15866429]
[174]
Higurashi, N.; Takahashi, Y.; Kashimada, A.; Sugawara, Y.; Sakuma, H.; Tomonoh, Y.; Inoue, T.; Hoshina, M.; Satomi, R.; Ohfu, M.; Itomi, K.; Takano, K.; Kirino, T.; Hirose, S. Immediate suppression of seizure clusters by corticosteroids in PCDH19 female epilepsy. Seizure, 2015, 27, 1-5.
[http://dx.doi.org/10.1016/j.seizure.2015.02.006] [PMID: 25891919]
[175]
Ariizumi, M.; Baba, K.; Hibio, S.; Shiihara, H.; Michihiro, N.; Ogawa, K.; Okubo, O. Immunoglobulin therapy in the West syndrome. Brain Dev., 1987, 9(4), 422-425.
[http://dx.doi.org/10.1016/S0387-7604(87)80117-1] [PMID: 3124656]
[176]
Mikati, M.A.; Kurdi, R.; El-Khoury, Z.; Rahi, A.; Raad, W. Intravenous immunoglobulin therapy in intractable childhood epilepsy: Open-label study and review of the literature. Epilepsy Behav., 2010, 17(1), 90-94.
[http://dx.doi.org/10.1016/j.yebeh.2009.10.020] [PMID: 20004620]
[177]
Mikati, M.A.; Saab, R.; Fayad, M.N.; Choueiri, R.N. Efficacy of intravenous immunoglobulin in Landau-Kleffner syndrome. Pediatr. Neurol., 2002, 26(4), 298-300.
[http://dx.doi.org/10.1016/S0887-8994(01)00402-7] [PMID: 11992758]
[178]
Hausman-Kedem, M.; Menascu, S.; Greenstein, Y.; Fattal-Valevski, A. Immunotherapy for GRIN2A and GRIN2D-related epileptic encephalopathy. Epilepsy Res., 2020, 163, 106325.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106325] [PMID: 32289570]
[179]
Nepal, G.; Shing, Y.K.; Yadav, J.K.; Rehrig, J.H.; Ojha, R.; Huang, D.Y.; Gajurel, B.P. Efficacy and safety of rituximab in autoimmune encephalitis: A meta-analysis. Acta Neurol. Scand., 2020, 142(5), 449-459.
[http://dx.doi.org/10.1111/ane.13291] [PMID: 32484900]
[180]
Gaspard, N. A new hose to extinguish the fires? Epilepsy Curr., 2019, 19(2), 86-87.
[http://dx.doi.org/10.1177/1535759719835363] [PMID: 30955421]
[181]
Lee, W.J.; Lee, S.T.; Moon, J.; Sunwoo, J.S.; Byun, J.I.; Lim, J.A.; Kim, T.J.; Shin, Y.W.; Lee, K.J.; Jun, J.S.; Lee, H.S.; Kim, S.; Park, K.I.; Jung, K.H.; Jung, K.Y.; Kim, M.; Lee, S.K.; Chu, K. Tocilizumab in autoimmune encephalitis refractory to rituximab: An institutional cohort study. Neurotherapeutics, 2016, 13(4), 824-832.
[http://dx.doi.org/10.1007/s13311-016-0442-6] [PMID: 27215218]
[182]
Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.; Cortese, I.; Dale, R.C.; Gelfand, J.M.; Geschwind, M.; Glaser, C.A.; Honnorat, J.; Höftberger, R.; Iizuka, T.; Irani, S.R.; Lancaster, E.; Leypoldt, F.; Prüss, H.; Rae-Grant, A.; Reindl, M.; Rosenfeld, M.R.; Rostásy, K.; Saiz, A.; Venkatesan, A.; Vincent, A.; Wandinger, K.P.; Waters, P.; Dalmau, J. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol., 2016, 15(4), 391-404.
[http://dx.doi.org/10.1016/S1474-4422(15)00401-9] [PMID: 26906964]
[183]
Shinnar, S.; Pellock, J.M. Update on the epidemiology and prognosis of pediatric epilepsy. J. Child Neurol., 2002, 17(Suppl. 1), S4-S17.
[http://dx.doi.org/10.1177/08830738020170010201] [PMID: 11918462]
[184]
Dallas, J.; Englot, D.J.; Naftel, R.P. Neurosurgical approaches to pediatric epilepsy: Indications, techniques, and outcomes of common surgical procedures. Seizure: Eur. J. Epilepsy, 2020, 77, 76-85.
[http://dx.doi.org/10.1016/j.seizure.2018.11.007] [PMID: 30473268]
[185]
González, H.F.J.; Yengo-Kahn, A.; Englot, D.J. Vagus nerve stimulation for the treatment of epilepsy. Neurosurg. Clin. N. Am., 2019, 30(2), 219-230.
[http://dx.doi.org/10.1016/j.nec.2018.12.005] [PMID: 30898273]
[186]
Mezjan, I.; Gourfinkel-An, I.; Degos, V.; Clemenceau, S.; Navarro, V.; Masson, V.; Carpentier, A.; Mathon, B. Outpatient vagus nerve stimulation surgery in patients with drug-resistant epilepsy with severe intellectual disability. Epilepsy Behav., 2021, 118, 107931.
[http://dx.doi.org/10.1016/j.yebeh.2021.107931] [PMID: 33770612]
[187]
Rolston, J.D.; Englot, D.J.; Wang, D.D.; Garcia, P.A.; Chang, E.F. Corpus callosotomy versus vagus nerve stimulation for atonic seizures and drop attacks: A systematic review. Epilepsy Behav., 2015, 51, 13-17.
[http://dx.doi.org/10.1016/j.yebeh.2015.06.001] [PMID: 26247311]
[188]
Cooper, I.S.; Amin, I.; Riklan, M.; Waltz, J.M.; Poon, T.P. Chronic cerebellar stimulation in epilepsy. Clinical and anatomical studies. Arch. Neurol., 1976, 33(8), 559-570.
[http://dx.doi.org/10.1001/archneur.1976.00500080037006] [PMID: 821458]
[189]
Velasco, F.; Velasco, A.L.; Velasco, M.; Jiménez, F.; Carrillo-Ruiz, J.D.; Castro, G. Deep brain stimulation for treatment of the epilepsies: The centromedian thalamic target. Acta Neurochir. Suppl. (Wien), 2007, 97(Pt 2), 337-342.
[http://dx.doi.org/10.1007/978-3-211-33081-4_38] [PMID: 17691321]
[190]
Tröster, A.I.; Meador, K.J.; Irwin, C.P.; Fisher, R.S. Memory and mood outcomes after anterior thalamic stimulation for refractory partial epilepsy. Seizure, 2017, 45, 133-141.
[http://dx.doi.org/10.1016/j.seizure.2016.12.014] [PMID: 28061418]
[191]
Katz, G.; Lazcano-Ponce, E. Intellectual disability: Definition, etiological factors, classification, diagnosis, treatment and prognosis. Salud Publica Mex., 2008, 50(Suppl. 2), s132-s141.
[http://dx.doi.org/10.1590/S0036-36342008000800005] [PMID: 18470340]
[192]
Operto, F.F.; Pastorino, G.M.G.; Mazza, R.; Di Bonaventura, C.; Marotta, R.; Pastorino, N.; Matricardi, S.; Verrotti, A.; Carotenuto, M.; Roccella, M. Social cognition and executive functions in children and adolescents with focal epilepsy. Eur. J. Paediatr. Neurol., 2020, 28, 167-175.
[http://dx.doi.org/10.1016/j.ejpn.2020.06.019] [PMID: 32718867]
[193]
Pastorino, G.M.G.; Operto, F.F.; Padovano, C.; Vivenzio, V.; Scuoppo, C.; Pastorino, N.; Roccella, M.; Vetri, L.; Carotenuto, M.; Coppola, G. Social cognition in neurodevelopmental disorders and epilepsy. Front. Neurol., 2021, 12, 658823.
[http://dx.doi.org/10.3389/fneur.2021.658823] [PMID: 33935956]
[194]
Operto, F.F.; Scuoppo, C.; Padovano, C.; Vivenzio, V.; Belfiore, G.; de Simone, V.; Pistola, I.; Rinaldi, R.; Diaspro, G.; Mazza, R.; Pastorino, G.M.G. Migraine and epilepsy: Social cognition skills in pediatric population. Eur. J. Paediatr. Neurol., 2022, 37, 68-74.
[http://dx.doi.org/10.1016/j.ejpn.2022.01.011] [PMID: 35134658]
[195]
Germanò, E.; Gagliano, A.; Arena, C.; Cedro, C.; Vetri, L.; Operto, F.F.; Pastorino, G.M.G.; Marotta, R.; Roccella, M. Reading-writing disorder in children with idiopathic epilepsy. Epilepsy Behav., 2020, 111, 107118.
[http://dx.doi.org/10.1016/j.yebeh.2020.107118] [PMID: 32563891]
[196]
Johnston, M.V.; Ishida, A.; Ishida, W.N.; Matsushita, H.B.; Nishimura, A.; Tsuji, M. Plasticity and injury in the developing brain. Brain Dev., 2009, 31(1), 1-10.
[http://dx.doi.org/10.1016/j.braindev.2008.03.014] [PMID: 18490122]
[197]
Jóźwiak, S.; Kotulska, K.; Domańska-Pakieła, D.; Lojszczyk, B.; Syczewska, M.; Chmielewski, D.; Dunin-Wąsowicz, D.; Kmieć, T.; Szymkiewicz-Dangel, J.; Kornacka, M.; Kawalec, W.; Kuczyński, D.; Borkowska, J.; Tomaszek, K.; Jurkiewicz, E.; Respondek-Liberska, M. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur. J. Paediatr. Neurol., 2011, 15(5), 424-431.
[http://dx.doi.org/10.1016/j.ejpn.2011.03.010] [PMID: 21507691]
[198]
Wolf, N.I.; García-Cazorla, A.; Hoffmann, G.F. Epilepsy and inborn errors of metabolism in children. J. Inherit. Metab. Dis., 2009, 32(5), 609.
[http://dx.doi.org/10.1007/s10545-009-1171-3] [PMID: 19642011]
[199]
Mastrangelo, M. Actual insights into treatable inborn errors of metabolism causing epilepsy. J. Pediatr. Neurosci., 2018, 13(1), 13-23.
[http://dx.doi.org/10.4103/JPN.JPN_160_16] [PMID: 29899766]
[200]
Coughlin, C.R., II; Tseng, L.A.; Abdenur, J.E.; Ashmore, C.; Boemer, F.; Bok, L.A.; Boyer, M.; Buhas, D.; Clayton, P.T.; Das, A.; Dekker, H.; Evangeliou, A.; Feillet, F.; Footitt, E.J.; Gospe, S.M., Jr; Hartmann, H.; Kara, M.; Kristensen, E.; Lee, J.; Lilje, R.; Longo, N.; Lunsing, R.J.; Mills, P.; Papadopoulou, M.T.; Pearl, P.L.; Piazzon, F.; Plecko, B.; Saini, A.G.; Santra, S.; Sjarif, D.R.; Stockler-Ipsiroglu, S.; Striano, P.; Van Hove, J.L.K.; Verhoeven-Duif, N.M.; Wijburg, F.A.; Zuberi, S.M.; van Karnebeek, C.D.M. Consensus guidelines for the diagnosis and management of pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency. J. Inherit. Metab. Dis., 2021, 44(1), 178-192.
[http://dx.doi.org/10.1002/jimd.12332] [PMID: 33200442]
[201]
Wilson, S.J.; Baxendale, S.; Barr, W.; Hamed, S.; Langfitt, J.; Samson, S.; Watanabe, M.; Baker, G.A.; Helmstaedter, C.; Hermann, B.P.; Smith, M.L. Indications and expectations for neuropsychological assessment in routine epilepsy care: Report of the ILAE Neuropsychology Task Force, Diagnostic Methods Commission, 2013-2017. Epilepsia, 2015, 56(5), 674-681.
[http://dx.doi.org/10.1111/epi.12962] [PMID: 25779625]
[202]
Ijff, D.M.; Aldenkamp, A.P. Cognitive side-effects of antiepileptic drugs in children. Handb. Clin. Neurol., 2013, 111, 707-718.
[http://dx.doi.org/10.1016/B978-0-444-52891-9.00073-7] [PMID: 23622218]
[203]
Storebø, O.J.; Ramstad, E.; Krogh, H.B.; Nilausen, T.D.; Skoog, M.; Holmskov, M.; Rosendal, S.; Groth, C.; Magnusson, F.L.; Moreira-Maia, C.R.; Gillies, D.; Buch Rasmussen, K.; Gauci, D.; Zwi, M.; Kirubakaran, R.; Forsbøl, B.; Simonsen, E.; Gluud, C. Methylphenidate for children and adolescents with attention deficit hyperactivity disorder (ADHD). Cochrane Database Syst. Rev., 2015, 2016(11), CD009885.
[http://dx.doi.org/10.1002/14651858.CD009885.pub2] [PMID: 26599576]
[204]
Verrotti, A.; Moavero, R.; Panzarino, G.; Di Paolantonio, C.; Rizzo, R.; Curatolo, P. The challenge of pharmacotherapy in children and adolescents with epilepsy-ADHD comorbidity. Clin. Drug Investig., 2018, 38(1), 1-8.
[http://dx.doi.org/10.1007/s40261-017-0585-1] [PMID: 29071470]
[205]
Hocking, J.; McNeil, J.; Campbell, J. Physical therapy interventions for gross motor skills in people with an intellectual disability aged 6 years and over: A systematic review. Int. J. Evid.-Based Healthc., 2016, 14(4), 166-174.
[http://dx.doi.org/10.1097/XEB.0000000000000085] [PMID: 27259002]
[206]
Deon, L.L.; Kalichman, M.A.; Booth, C.L.; Slavin, K.V.; Gaebler-Spira, D.J. Pallidal deep-brain stimulation associated with complete remission of self-injurious behaviors in a patient with Lesch-Nyhan syndrome: A case report. J. Child Neurol., 2012, 27(1), 117-120.
[http://dx.doi.org/10.1177/0883073811415853] [PMID: 21940691]
[207]
Xie, T.; Goodman, R.; Browner, N.; Haberfeld, E.; Winfield, L.; Goldman, J.; Ford, B. Treatment of fragile X-associated tremor/ataxia syndrome with unilateral deep brain stimulation. Mov. Disord., 2012, 27(6), 799-800.
[http://dx.doi.org/10.1002/mds.24958] [PMID: 22344717]
[208]
Velasco, A.L.; Velasco, F.; Jiménez, F.; Velasco, M.; Castro, G.; Carrillo-Ruiz, J.D.; Fanghänel, G.; Boleaga, B. Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome. Epilepsia, 2006, 47(7), 1203-1212.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00593.x] [PMID: 16886984]
[209]
Sappok, T.; Diefenbacher, A.; Winterholler, M. The medical care of people with intellectual disability. Dtsch. Arztebl. Int., 2019, 116(48), 809-816.
[http://dx.doi.org/10.3238/arztebl.2019.0809] [PMID: 31888794]
[210]
Picker, J.D.; Walsh, C.A. New innovations: Therapeutic opportunities for intellectual disabilities. Ann. Neurol., 2013, 74(3), 382-390.
[http://dx.doi.org/10.1002/ana.24002] [PMID: 24038210]