MTA1: A Vital Modulator in Prostate Cancer

Page: [456 - 464] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Prostate cancer (PCa) is the most frequent cancer of the male genitourinary system and the second most common cancer in men worldwide. PCa has become one of the leading diseases endangering men's health in Asia in recent years, with a large increase in morbidity and mortality. MTA1 (metastasis-associated antigen-1), a transcriptional coregulator involved in histone deacetylation and nucleosome remodeling, is a member of the MTA family. MTA1 is involved in cell signaling, chromosomal remodeling, and transcriptional activities, all of which are important for epithelial cell progression, invasion, and growth. MTA1 has been demonstrated to play a significant role in the formation, progression, and metastasis of PCa, and MTA1 expression is specifically linked to PCa bone metastases. Therefore, MTA1 may be a potential target for PCa prevention and treatment. Here, we reviewed the structure, function, and expression of MTA1 in PCa as well as drugs that target MTA1 to highlight a potential new treatment for PCa.

Keywords: MTA1, prostate cancer, metastasis, treatment, transcriptional regulation, modulator.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent global patterns in prostate cancer incidence and mortality rates. Eur. Urol., 2020, 77(1), 38-52.
[http://dx.doi.org/10.1016/j.eururo.2019.08.005] [PMID: 31493960]
[3]
Bekelman, J.E.; Rumble, R.B.; Chen, R.C.; Pisansky, T.M.; Finelli, A.; Feifer, A.; Nguyen, P.L.; Loblaw, D.A.; Tagawa, S.T.; Gillessen, S.; Morgan, T.M.; Liu, G.; Vapiwala, N.; Haluschak, J.J.; Stephenson, A.; Touijer, K.; Kungel, T.; Freedland, S.J. Clinically localized prostate cancer: ASCO clinical practice guideline endorsement of an american urological association/american society for radiation oncolo-gy/society of urologic oncology guideline. J. Clin. Oncol., 2018, 36(32), 3251-3258.
[http://dx.doi.org/10.1200/JCO.18.00606] [PMID: 30183466]
[4]
Rice, M.A.; Malhotra, S.V.; Stoyanova, T. Second-generation antiandrogens: From discovery to standard of care in castration resistant prostate cancer. Front. Oncol., 2019, 9, 801.
[http://dx.doi.org/10.3389/fonc.2019.00801] [PMID: 31555580]
[5]
Ryan, C.J.; Smith, M.R.; Fizazi, K.; Saad, F.; Mulders, P.F.; Sternberg, C.N.; Miller, K.; Logothetis, C.J.; Shore, N.D.; Small, E.J.; Carles, J.; Flaig, T.W.; Taplin, M.E.; Higano, C.S.; de Souza, P.; de Bono, J.S.; Griffin, T.W.; De Porre, P.; Yu, M.K.; Park, Y.C.; Li, J.; Kheoh, T.; Naini, V.; Molina, A.; Rathkopf, D.E. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): Final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol., 2015, 16(2), 152-160.
[http://dx.doi.org/10.1016/S1470-2045(14)71205-7] [PMID: 25601341]
[6]
Kyriakopoulos, C.E.; Chen, Y.H.; Carducci, M.A.; Liu, G.; Jarrard, D.F.; Hahn, N.M.; Shevrin, D.H.; Dreicer, R.; Hussain, M.; Eisen-berger, M.; Kohli, M.; Plimack, E.R.; Vogelzang, N.J.; Picus, J.; Cooney, M.M.; Garcia, J.A.; DiPaola, R.S.; Sweeney, C.J. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: Long-term survival analysis of the randomized phase III E3805 CHAARTED tri-al. J. Clin. Oncol., 2018, 36(11), 1080-1087.
[http://dx.doi.org/10.1200/JCO.2017.75.3657] [PMID: 29384722]
[7]
de Wit, R.; de Bono, J.; Sternberg, C.N.; Fizazi, K.; Tombal, B.; Wülfing, C.; Kramer, G.; Eymard, J.C.; Bamias, A.; Carles, J.; Iacovelli, R.; Melichar, B.; Sverrisdóttir, Á.; Theodore, C.; Feyerabend, S.; Helissey, C.; Ozatilgan, A.; Geffriaud-Ricouard, C.; Castellano, D. Cabazitax-el versus abiraterone or enzalutamide in metastatic prostate cancer. N. Engl. J. Med., 2019, 381(26), 2506-2518.
[http://dx.doi.org/10.1056/NEJMoa1911206] [PMID: 31566937]
[8]
Lai, A.Y.; Wade, P.A. Cancer biology and NuRD: A multifaceted chromatin remodelling complex. Nat. Rev. Cancer, 2011, 11(8), 588-596.
[http://dx.doi.org/10.1038/nrc3091] [PMID: 21734722]
[9]
Toh, Y.; Nicolson, G.L. The role of the MTA family and their encoded proteins in human cancers: Molecular functions and clinical impli-cations. Clin. Exp. Metastasis, 2009, 26(3), 215-227.
[http://dx.doi.org/10.1007/s10585-008-9233-8] [PMID: 19116762]
[10]
Kumar, A.; Dhar, S.; Campanelli, G.; Butt, N.A.; Schallheim, J.M.; Gomez, C.R.; Levenson, A.S. MTA1 drives malignant progression and bone metastasis in prostate cancer. Mol. Oncol., 2018, 12(9), 1596-1607.
[http://dx.doi.org/10.1002/1878-0261.12360] [PMID: 30027683]
[11]
Bowen, N.J.; Fujita, N.; Kajita, M.; Wade, P.A. Mi-2/NuRD: Multiple complexes for many purposes. Biochim. Biophys. Acta, 2004, 1677(1-3), 52-57.
[http://dx.doi.org/10.1016/j.bbaexp.2003.10.010] [PMID: 15020045]
[12]
Covington, K.R.; Brusco, L.; Barone, I.; Tsimelzon, A.; Selever, J.; Corona-Rodriguez, A.; Brown, P.; Kumar, R.; Hilsenbeck, S.G.; Fuqua, S.A. Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Res. Treat., 2013, 141(3), 375-384.
[http://dx.doi.org/10.1007/s10549-013-2709-5] [PMID: 24077732]
[13]
Dong, H.; Guo, H.; Xie, L.; Wang, G.; Zhong, X.; Khoury, T.; Tan, D.; Zhang, H. The metastasis-associated gene MTA3, a component of the Mi-2/NuRD transcriptional repression complex, predicts prognosis of gastroesophageal junction adenocarcinoma. PLoS One, 2013, 8(5), e62986.
[http://dx.doi.org/10.1371/journal.pone.0062986] [PMID: 23671646]
[14]
Bilban, M.; Heintel, D.; Scharl, T.; Woelfel, T.; Auer, M.M.; Porpaczy, E.; Kainz, B.; Kröber, A.; Carey, V.J.; Shehata, M.; Zielinski, C.; Pickl, W.; Stilgenbauer, S.; Gaiger, A.; Wagner, O.; Jäger, U. Deregulated expression of fat and muscle genes in B-cell chronic lymphocytic leukemia with high lipoprotein lipase expression. Leukemia, 2006, 20(6), 1080-1088.
[http://dx.doi.org/10.1038/sj.leu.2404220] [PMID: 16617321]
[15]
Parekh, S.; Polo, J.M.; Shaknovich, R.; Juszczynski, P.; Lev, P.; Ranuncolo, S.M.; Yin, Y.; Klein, U.; Cattoretti, G.; Dalla Favera, R.; Shipp, M.A.; Melnick, A. BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood, 2007, 110(6), 2067-2074.
[http://dx.doi.org/10.1182/blood-2007-01-069575] [PMID: 17545502]
[16]
Dannenmann, C.; Shabani, N.; Friese, K.; Jeschke, U.; Mylonas, I.; Brüning, A. The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. Cancer Biol. Ther., 2008, 7(9), 1460-1467.
[http://dx.doi.org/10.4161/cbt.7.9.6427] [PMID: 18719363]
[17]
Shan, S.; Hui, G.; Hou, F.; Shi, H.; Zhou, G.; Yan, H.; Wang, L.; Liu, J. Expression of metastasis-associated protein 3 in human brain glioma related to tumor prognosis. Neurol. Sci., 2015, 36(10), 1799-1804.
[http://dx.doi.org/10.1007/s10072-015-2252-8] [PMID: 26002011]
[18]
Fujita, N.; Jaye, D.L.; Kajita, M.; Geigerman, C.; Moreno, C.S.; Wade, P.A. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 2003, 113(2), 207-219.
[http://dx.doi.org/10.1016/S0092-8674(03)00234-4] [PMID: 12705869]
[19]
Wang, Y.; Zhang, H.; Chen, Y.; Sun, Y.; Yang, F.; Yu, W.; Liang, J.; Sun, L.; Yang, X.; Shi, L.; Li, R.; Li, Y.; Zhang, Y.; Li, Q.; Yi, X.; Shang, Y. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell, 2009, 138(4), 660-672.
[http://dx.doi.org/10.1016/j.cell.2009.05.050] [PMID: 19703393]
[20]
Zheng, S.; Du, Y.; Chu, H.; Chen, X.; Li, P.; Wang, Y.; Ma, Y.; Wang, H.; Zang, W.; Zhang, G.; Zhao, G. Analysis of MAT3 gene expres-sion in NSCLC. Diagn. Pathol., 2013, 8(1), 166.
[http://dx.doi.org/10.1186/1746-1596-8-166] [PMID: 24107548]
[21]
Brüning, A.; Makovitzky, J.; Gingelmaier, A.; Friese, K.; Mylonas, I. The metastasis-associated genes MTA1 and MTA3 are abundantly expressed in human placenta and chorionic carcinoma cells. Histochem. Cell Biol., 2009, 132(1), 33-38.
[http://dx.doi.org/10.1007/s00418-009-0595-z] [PMID: 19363681]
[22]
Toh, Y.; Pencil, S.D.; Nicolson, G.L. A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. J. Biol. Chem., 1994, 269(37), 22958-22963.
[http://dx.doi.org/10.1016/S0021-9258(17)31603-4] [PMID: 8083195]
[23]
Toh, Y.; Pencil, S.D.; Nicolson, G.L. Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differen-tially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene, 1995, 159(1), 97-104.
[http://dx.doi.org/10.1016/0378-1119(94)00410-T] [PMID: 7607577]
[24]
Toh, Y.; Oki, E.; Oda, S.; Tokunaga, E.; Ohno, S.; Maehara, Y.; Nicolson, G.L.; Sugimachi, K. Overexpression of the MTA1 gene in gas-trointestinal carcinomas: Correlation with invasion and metastasis. Int. J. Cancer, 1997, 74(4), 459-463.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970822)74:4<459:AID-IJC18>3.0.CO;2-4] [PMID: 9291440]
[25]
Xue, Y.; Wong, J.; Moreno, G.T.; Young, M.K.; Côté, J.; Wang, W. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell, 1998, 2(6), 851-861.
[http://dx.doi.org/10.1016/S1097-2765(00)80299-3] [PMID: 9885572]
[26]
Toh, Y.; Kuwano, H.; Mori, M.; Nicolson, G.L.; Sugimachi, K. Overexpression of metastasis-associated MTA1 mRNA in invasive oe-sophageal carcinomas. Br. J. Cancer, 1999, 79(11-12), 1723-1726.
[http://dx.doi.org/10.1038/sj.bjc.6690274] [PMID: 10206283]
[27]
Lin, C.; Chen, H.; Wu, M.; Yang, G.; Dai, J.; Hu, S. Expression of tumor metastasis gene MTA 1 in hepatocellular carcinoma: Clinical implications. Zhonghua Wai Ke Za Zhi, 2000, 38(12), 915-917.
[PMID: 11832196]
[28]
Lin, K.Y.; Su, T.C.; Yeh, C.M.; Chao, W.R.; Sung, W.W. High expression of MTA1 predicts unfavorable survival in patients with oral squamous cell carcinoma. In Vivo, 2021, 35(4), 2363-2368.
[http://dx.doi.org/10.21873/invivo.12513] [PMID: 34182519]
[29]
Huang, G.; Song, Y.; He, G. mRNA expression and mutation of MTA1 and nm23H1 genes in ovarian carcinoma in relation to lymph node metastasis. Zhonghua Zhong Liu Za Zhi, 2001, 23(1), 31-34.
[PMID: 11783065]
[30]
Sasaki, H.; Moriyama, S.; Nakashima, Y.; Kobayashi, Y.; Yukiue, H.; Kaji, M.; Fukai, I.; Kiriyama, M.; Yamakawa, Y.; Fujii, Y. Expres-sion of the MTA1 mRNA in advanced lung cancer. Lung Cancer, 2002, 35(2), 149-154.
[http://dx.doi.org/10.1016/S0169-5002(01)00329-4] [PMID: 11804687]
[31]
Wang, H.; Fan, L.; Wei, J.; Weng, Y.; Zhou, L.; Shi, Y.; Zhou, W.; Ma, D.; Wang, C. Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of E-cadherin and promoting the invasiveness of prostate cancer cells. PLoS One, 2012, 7(12), e46888.
[http://dx.doi.org/10.1371/journal.pone.0046888] [PMID: 23227138]
[32]
Kumar, R.; Wang, R.A.; Mazumdar, A.; Talukder, A.H.; Mandal, M.; Yang, Z.; Bagheri-Yarmand, R.; Sahin, A.; Hortobagyi, G.; Adam, L.; Barnes, C.J.; Vadlamudi, R.K. A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 2002, 418(6898), 654-657.
[http://dx.doi.org/10.1038/nature00889] [PMID: 12167865]
[33]
Cui, Q.; Takiguchi, S.; Matsusue, K.; Toh, Y.; Yoshida, M.A. Assignment of the human metastasis-associated gene 1 (MTA1) to human chromosome band 14q32.3 by fluorescence in situ hybridization. Cytogenet. Cell Genet., 2001, 93(1-2), 139-140.
[http://dx.doi.org/10.1159/000056969] [PMID: 11474200]
[34]
Martin, M.D.; Fischbach, K.; Osborne, C.K.; Mohsin, S.K.; Allred, D.C.; O’Connell, P. Loss of heterozygosity events impeding breast cancer metastasis contain the MTA1 gene. Cancer Res., 2001, 61(9), 3578-3580.
[PMID: 11325822]
[35]
Yang, N.; Xu, R.M. Structure and function of the BAH domain in chromatin biology. Crit. Rev. Biochem. Mol. Biol., 2013, 48(3), 211-221.
[http://dx.doi.org/10.3109/10409238.2012.742035] [PMID: 23181513]
[36]
Ding, Z.; Gillespie, L.L.; Paterno, G.D. Human MI-ER1 alpha and beta function as transcriptional repressors by recruitment of histone deacetylase 1 to their conserved ELM2 domain. Mol. Cell. Biol., 2003, 23(1), 250-258.
[http://dx.doi.org/10.1128/MCB.23.1.250-258.2003] [PMID: 12482978]
[37]
Wang, L.; Charroux, B.; Kerridge, S.; Tsai, C.C. Atrophin recruits HDAC1/2 and G9a to modify histone H3K9 and to determine cell fates. EMBO Rep., 2008, 9(6), 555-562.
[http://dx.doi.org/10.1038/embor.2008.67] [PMID: 18451879]
[38]
Singh, R.R.; Kumar, R. MTA family of transcriptional metaregulators in mammary gland morphogenesis and breast cancer. J. Mammary Gland Biol. Neoplasia, 2007, 12(2-3), 115-125.
[http://dx.doi.org/10.1007/s10911-007-9043-7] [PMID: 17549610]
[39]
Liu, J.; Wang, H.; Ma, F.; Xu, D.; Chang, Y.; Zhang, J.; Wang, J.; Zhao, M.; Lin, C.; Huang, C.; Qian, H.; Zhan, Q. MTA1 regulates higher-order chromatin structure and histone H1-chromatin interaction in-vivo. Mol. Oncol., 2015, 9(1), 218-235.
[http://dx.doi.org/10.1016/j.molonc.2014.08.007] [PMID: 25205035]
[40]
Liu, J.; Wang, H.; Huang, C.; Qian, H. Subcellular localization of MTA proteins in normal and cancer cells. Cancer Metastasis Rev., 2014, 33(4), 843-856.
[http://dx.doi.org/10.1007/s10555-014-9511-7] [PMID: 25398252]
[41]
Zhang, X.Y.; DeSalle, L.M.; Patel, J.H.; Capobianco, A.J.; Yu, D.; Thomas-Tikhonenko, A.; McMahon, S.B. Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proc. Natl. Acad. Sci. USA, 2005, 102(39), 13968-13973.
[http://dx.doi.org/10.1073/pnas.0502330102] [PMID: 16172399]
[42]
Pakala, S.B.; Singh, K.; Reddy, S.D.; Ohshiro, K.; Li, D.Q.; Mishra, L.; Kumar, R. TGF-β1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. Oncogene, 2011, 30(19), 2230-2241.
[http://dx.doi.org/10.1038/onc.2010.608] [PMID: 21258411]
[43]
Li, D.Q.; Pakala, S.B.; Reddy, S.D.; Ohshiro, K.; Zhang, J.X.; Wang, L.; Zhang, Y.; Moreno de Alborán, I.; Pillai, M.R.; Eswaran, J.; Ku-mar, R. Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis. Proc. Natl. Acad. Sci. USA, 2011, 108(21), 8791-8796.
[http://dx.doi.org/10.1073/pnas.1018389108] [PMID: 21555589]
[44]
Lee, M.H.; Na, H.; Kim, E.J.; Lee, H.W.; Lee, M.O. Poly(ADP-ribosyl)ation of p53 induces gene-specific transcriptional repression of MTA1. Oncogene, 2012, 31(49), 5099-5107.
[http://dx.doi.org/10.1038/onc.2012.2] [PMID: 22286760]
[45]
Ohshiro, K.; Rayala, S.K.; Wigerup, C.; Pakala, S.B.; Natha, R.S.; Gururaj, A.E.; Molli, P.R.; Månsson, S.S.; Ramezani, A.; Hawley, R.G.; Landberg, G.; Lee, N.H.; Kumar, R. Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. EMBO Rep., 2010, 11(9), 691-697.
[http://dx.doi.org/10.1038/embor.2010.99] [PMID: 20651739]
[46]
Nair, S.S.; Li, D.Q.; Kumar, R. A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Mol. Cell, 2013, 49(4), 704-718.
[http://dx.doi.org/10.1016/j.molcel.2012.12.016] [PMID: 23352453]
[47]
Li, D.Q.; Ohshiro, K.; Reddy, S.D.; Pakala, S.B.; Lee, M.H.; Zhang, Y.; Rayala, S.K.; Kumar, R. E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proc. Natl. Acad. Sci. USA, 2009, 106(41), 17493-17498.
[http://dx.doi.org/10.1073/pnas.0908027106] [PMID: 19805145]
[48]
Cong, L.; Pakala, S.B.; Ohshiro, K.; Li, D.Q.; Kumar, R. SUMOylation and SUMO-interacting motif (SIM) of metastasis tumor antigen 1 (MTA1) synergistically regulate its transcriptional repressor function. J. Biol. Chem., 2011, 286(51), 43793-43808.
[http://dx.doi.org/10.1074/jbc.M111.267237] [PMID: 21965678]
[49]
Hofer, M.D.; Kuefer, R.; Varambally, S.; Li, H.; Ma, J.; Shapiro, G.I.; Gschwend, J.E.; Hautmann, R.E.; Sanda, M.G.; Giehl, K.; Menke, A.; Chinnaiyan, A.M.; Rubin, M.A. The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Res., 2004, 64(3), 825-829.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2755] [PMID: 14871807]
[50]
Geng, L.; Deepak, P. A.; Aija, L.; Fuming, C.; Amanda, M.; Robert C, R.; Stephanie E B, M. Identification of Metastasis Associated Antigen 1 (MTA1) by serological screening of prostate cancer cDNA libraries. Open Biochem. J., 2008, 2, 100-107.
[http://dx.doi.org/10.2174/1874091X00802010100] [PMID: 18949081]
[51]
Hemani, R.; Patel, I.; Inamdar, N.; Campanelli, G.; Donovan, V. Kumar, A Dietary pterostilbene for MTA1-targeted interception in high-risk premalignant prostate cancer. Cancer Prev. Res. (Phila.), 2022, 15(22), 87-100.
[52]
Jang, K.S.; Paik, S.S.; Chung, H.; Oh, Y.H.; Kong, G. MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Sci., 2006, 97(5), 374-379.
[http://dx.doi.org/10.1111/j.1349-7006.2006.00186.x] [PMID: 16630134]
[53]
Ishikawa, M.; Osaki, M.; Uno, N.; Ohira, T.; Kugoh, H.; Okada, F. MTA1, a metastasis associated protein, in endothelial cells is an essen-tial molecule for angiogenesis. Mol. Med. Rep., 2022, 25(1), 11.
[http://dx.doi.org/10.3892/mmr.2021.12527] [PMID: 34779499]
[54]
Yoo, Y.G.; Kong, G.; Lee, M.O. Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruit-ing histone deacetylase 1. EMBO J., 2006, 25(6), 1231-1241.
[http://dx.doi.org/10.1038/sj.emboj.7601025] [PMID: 16511565]
[55]
Kai, L.; Wang, J.; Ivanovic, M.; Chung, Y.T.; Laskin, W.B.; Schulze-Hoepfner, F.; Mirochnik, Y.; Satcher, R.L., Jr; Levenson, A.S. Target-ing prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). Prostate, 2011, 71(3), 268-280.
[http://dx.doi.org/10.1002/pros.21240] [PMID: 20717904]
[56]
Ishikawa, M.; Osaki, M.; Yamagishi, M.; Onuma, K.; Ito, H.; Okada, F.; Endo, H. Correlation of two distinct metastasis-associated pro-teins, MTA1 and S100A4, in angiogenesis for promoting tumor growth. Oncogene, 2019, 38(24), 4715-4728.
[http://dx.doi.org/10.1038/s41388-019-0748-z] [PMID: 30745574]
[57]
Fan, L.; Wang, H.; Xia, X.; Rao, Y.; Ma, X.; Ma, D.; Wu, P.; Chen, G. Erratum: Loss of E-cadherin promotes prostate cancer metastasis via upregulation of metastasis-associated gene 1 expression. Oncol. Lett., 2020, 19(4), 3359.
[PMID: 32256830]
[58]
Dhar, S.; Kumar, A.; Gomez, C.R.; Akhtar, I.; Hancock, J.C.; Lage, J.M.; Pound, C.R.; Levenson, A.S. MTA1-activated Epi-microRNA-22 regulates E-cadherin and prostate cancer invasiveness. FEBS Lett., 2017, 591(6), 924-933.
[http://dx.doi.org/10.1002/1873-3468.12603] [PMID: 28231399]
[59]
Guo, N.; Shen, G.; Zhang, Y.; Moustafa, A.A.; Ge, D.; You, Z. Interleukin-17 promotes migration and invasion of human cancer cells through upregulation of MTA1 expression. Front. Oncol., 2019, 9, 546.
[http://dx.doi.org/10.3389/fonc.2019.00546] [PMID: 31281798]
[60]
Ganju, A.; Chauhan, S.C.; Hafeez, B.B.; Doxtater, K.; Tripathi, M.K.; Zafar, N.; Yallapu, M.M.; Kumar, R.; Jaggi, M. Protein kinase D1 regulates subcellular localisation and metastatic function of metastasis-associated protein 1. Br. J. Cancer, 2018, 118(4), 587-599.
[http://dx.doi.org/10.1038/bjc.2017.431] [PMID: 29465084]
[61]
Lee, M.H.; Koh, D.; Na, H.; Ka, N.L.; Kim, S.; Kim, H.J.; Hong, S.; Shin, Y.K.; Seong, J.K.; Lee, M.O. MTA1 is a novel regulator of au-tophagy that induces tamoxifen resistance in breast cancer cells. Autophagy, 2018, 14(5), 812-824.
[http://dx.doi.org/10.1080/15548627.2017.1388476] [PMID: 29130361]
[62]
Feng, X.; Zhang, Q.; Xia, S.; Xia, B.; Zhang, Y.; Deng, X.; Su, W.; Huang, J. MTA1 overexpression induces cisplatin resistance in naso-pharyngeal carcinoma by promoting cancer stem cells properties. Mol. Cells, 2014, 37(9), 699-704.
[http://dx.doi.org/10.14348/molcells.2014.0029] [PMID: 25245523]
[63]
Xu, C.; Hu, Y.; Chen, B.; Li, D.; Liang, R.; Shen, M.; Wu, M.; Tao, M. Metastasis-associated gene 1 (MTA1) enhances cisplatin resistance of malignant pleural mesothelioma by ATR-Chk1-mediated DNA repair. Ann. Transl. Med., 2021, 9(8), 670.
[http://dx.doi.org/10.21037/atm-21-941] [PMID: 33987368]
[64]
Yu, L.; Su, Y.S.; Zhao, J.; Wang, H.; Li, W. Repression of NR4A1 by a chromatin modifier promotes docetaxel resistance in PC-3 human prostate cancer cells. FEBS Lett., 2013, 587(16), 2542-2551.
[http://dx.doi.org/10.1016/j.febslet.2013.06.029] [PMID: 23831020]
[65]
Liu, JZ; Yin, FY; Yan, CY; Wang, H; Luo, XH Regulation of docetaxel sensitivity in prostate cancer cells by hsa-miR-125a-3p via modula-tion of metastasis-associated protein 1 signaling. Urology, 2017, 105, 208 e11-e17.
[66]
Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res., 2004, 24(5A), 2783-2840.
[PMID: 15517885]
[67]
Kai, L.; Samuel, S.K.; Levenson, A.S. Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int. J. Cancer, 2010, 126(7), 1538-1548.
[http://dx.doi.org/10.1002/ijc.24928] [PMID: 19810103]
[68]
Dhar, S.; Kumar, A.; Li, K.; Tzivion, G.; Levenson, A.S. Resveratrol regulates PTEN/Akt pathway through inhibition of MTA1/HDAC unit of the NuRD complex in prostate cancer. Biochim. Biophys. Acta, 2015, 1853(2), 265-275.
[http://dx.doi.org/10.1016/j.bbamcr.2014.11.004] [PMID: 25447541]
[69]
Li, K.; Dias, S.J.; Rimando, A.M.; Dhar, S.; Mizuno, C.S.; Penman, A.D.; Lewin, J.R.; Levenson, A.S. Pterostilbene acts through metasta-sis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. PLoS One, 2013, 8(3), e57542.
[http://dx.doi.org/10.1371/journal.pone.0057542] [PMID: 23469203]
[70]
Butt, N.A.; Kumar, A.; Dhar, S.; Rimando, A.M.; Akhtar, I.; Hancock, J.C.; Lage, J.M.; Pound, C.R.; Lewin, J.R.; Gomez, C.R.; Levenson, A.S. Targeting MTA1/HIF-1α signaling by pterostilbene in combination with histone deacetylase inhibitor attenuates prostate cancer pro-gression. Cancer Med., 2017, 6(11), 2673-2685.
[http://dx.doi.org/10.1002/cam4.1209] [PMID: 29024573]
[71]
Kumar, A.; Dholakia, K.; Sikorska, G.; Martinez, L.A.; Levenson, A.S. MTA1-dependent anticancer activity of gnetin C in prostate cancer. Nutrients, 2019, 11(9), E2096.
[http://dx.doi.org/10.3390/nu11092096] [PMID: 31487842]
[72]
Gadkari, K.; Kolhatkar, U.; Hemani, R.; Campanelli, G.; Cai, Q.; Kumar, A.; Levenson, A.S. Therapeutic potential of gnetin C in prostate cancer: A pre-clinical study. Nutrients, 2020, 12(12), E3631.
[http://dx.doi.org/10.3390/nu12123631] [PMID: 33255879]
[73]
Park, S.Y.; Lee, Y.H.; Choi, K.C.; Seong, A.R.; Choi, H.K.; Lee, O.H.; Hwang, H.J.; Yoon, H.G. Grape seed extract regulates androgen receptor-mediated transcription in prostate cancer cells through potent anti-histone acetyltransferase activity. J. Med. Food, 2011, 14(1-2), 9-16.
[http://dx.doi.org/10.1089/jmf.2010.1264] [PMID: 21244239]
[74]
Agarwal, C.; Sharma, Y.; Agarwal, R. Anticarcinogenic effect of a polyphenolic fraction isolated from grape seeds in human prostate carci-noma DU145 cells: Modulation of mitogenic signaling and cell-cycle regulators and induction of G1 arrest and apoptosis. Mol. Carcinog., 2000, 28(3), 129-138.
[http://dx.doi.org/10.1002/1098-2744(200007)28:3<129:AID-MC1>3.0.CO;2-0] [PMID: 10942529]
[75]
Kumar, A.; D’silva, M.; Dholakia, K.; Levenson, A.S. In vitro anticancer properties of table Grape Powder Extract (GPE) in prostate can-cer. Nutrients, 2018, 10(11), E1804.
[http://dx.doi.org/10.3390/nu10111804] [PMID: 30463302]
[76]
Liu, J.; Li, C.; Wang, J.; Xu, D.; Wang, H.; Wang, T.; Li, L.; Li, H.; Nan, P.; Zhang, J.; Wang, Y.; Huang, C.; Chen, D.; Zhang, Y.; Wen, T.; Zhan, Q.; Ma, F.; Qian, H. Chromatin modifier MTA1 regulates mitotic transition and tumorigenesis by orchestrating mitotic mRNA pro-cessing. Nat. Commun., 2020, 11(1), 4455.
[http://dx.doi.org/10.1038/s41467-020-18259-1] [PMID: 32901005]
[77]
Tasoulas, J.; Giaginis, C.; Patsouris, E.; Manolis, E.; Theocharis, S. Histone deacetylase inhibitors in oral squamous cell carcinoma treat-ment. Expert Opin. Investig. Drugs, 2015, 24(1), 69-78.
[http://dx.doi.org/10.1517/13543784.2014.952368] [PMID: 25216628]
[78]
Garmpis, N.; Damaskos, C.; Garmpi, A.; Spartalis, E.; Kalampokas, E.; Kalampokas, T.; Margonis, G.A.; Schizas, D.; Andreatos, N.; An-gelou, A.; Lavaris, A.; Athanasiou, A.; Apostolou, K.G.; Spartalis, M.; Damaskou, Z.; Daskalopoulou, A.; Diamantis, E.; Tsivelekas, K.; Alavanos, A.; Valsami, S.; Moschos, M.M.; Sampani, A.; Nonni, A.; Antoniou, E.A.; Mantas, D.; Tsourouflis, G.; Markatos, K.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Kostakis, A.; Dimitroulis, D. Targeting histone deacetylases in endometrial cancer: A paradigm-shifting therapeutic strategy? Eur. Rev. Med. Pharmacol. Sci., 2018, 22(4), 950-960.
[PMID: 29509243]
[79]
Chen, Z.; Wang, X.; Yang, X.; Xu, Y.; Yang, Y.; Wang, H.; Li, T.; Bai, P.; Yuan, G.; Chen, H.; Yang, J.; Fiedler, S.A.; Striar, R.; Bernales, D.R.; Koegel, R.E.; Cao, Q.; Ran, C.; Xiang, B.; Li, H.; Wang, C. Imaging assisted evaluation of antitumor efficacy of a new histone deacetylase inhibitor in the castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(1), 53-66.
[http://dx.doi.org/10.1007/s00259-020-04896-7] [PMID: 32592040]