Benzoxazine: A Privileged Scaffold in Medicinal Chemistry

Page: [372 - 389] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: Benzoxazine is one of the most important privileged scaffolds in medicinal chemistry. Compounds bearing benzoxazine moiety usually have a variety of biological activities, such as anti-inflammatory, anti-microbial, anti-tuberculosis, anti- oxidant and anti-cancer activities. The fascinating bioactivity profile of benzoxazine scaffold in various fields has prompted medicinal chemists to design and discover novel benzoxazine derivatives as potential therapeutic candidates with the desired biological properties.

Objective: This review aimed to provide a comprehensive elucidation on the recent advances of benzoxazine derivatives in medicinal chemistry.

Methods: We have searched the recent literature about benzoxazine derivatives from the online resources and databases, such as PubMed, SciFinder and Google Scholar.

Results: Many benzoxazine derivatives with a wide range of bioactivities, such as anti- microbial, anti-cancer, anti-tuberculosis, anti-oxidant and anti-inflammatory, were summed up. Many compounds displayed good biological activities.

Conclusion: Benzoxazine is a versatile structure and building block in medicinal chemistry. Benzoxazine derivatives have gained considerable attention from medicinal chemists due to their various pharmacological properties and multiple modification sites. This review might help medicinal chemists to seek new drug candidates with better bioactivities and pharmacokinetics properties.

Keywords: Benzoxazines, heterocyclic compounds, bioactivities, privileged scaffolds, drug design, structure-activity relationship.

[1]
Venepally, V.; Reddy Jala, R.C. An insight into the biological activities of heterocyclic-fatty acid hybrid molecules. Eur. J. Med. Chem., 2017, 141, 113-137.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.069] [PMID: 29031060]
[2]
Agag, T.; Takeichi, T. Synthesis and characterization of benzoxazine resin-SiO2 hybrids by sol-gel process: The role of benzoxazine-functional silane coupling agent. Polymer (Guildf.), 2011, 52(13), 2757-2763.
[http://dx.doi.org/10.1016/j.polymer.2011.04.044]
[3]
Semerci, E.; Kiskan, B.; Yagci, Y. Thiol reactive polybenzoxazine precursors: A novel route to functional polymers by thiol-oxazine chemistry. Eur. Polym. J., 2015, 69, 636-641.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.02.030]
[4]
Kobzar, Y.L.; Tkachenko, I.M.; Lobko, E.V.; Shekera, O.V.; Syrovets, A.P.; Shevchenko, V.V. Low dielectric material from novel core-fluorinated polybenzoxazine. Mendeleev Commun., 2017, 27(1), 41-43.
[http://dx.doi.org/10.1016/j.mencom.2017.01.012]
[5]
Mendgen, T.; Steuer, C.; Klein, C.D. Privileged scaffolds or promiscuous binders: A comparative study on rhodanines and related heterocycles in medicinal chemistry. J. Med. Chem., 2012, 55(2), 743-753.
[http://dx.doi.org/10.1021/jm201243p] [PMID: 22077389]
[6]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[7]
Wang, S.; Li, Y.; Liu, Y.; Lu, A.; You, Q. Novel hexacyclic camptothecin derivatives. Part 1: Synthesis and cytotoxicity of camptothecins with an A-ring fused 1,3-oxazine ring. Bioorg. Med. Chem. Lett., 2008, 18(14), 4095-4097.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.103] [PMID: 18554906]
[8]
Chen, S.; Li, X.; Wan, S.; Jiang, T. Synthesis of novel benzoxazinone compounds as Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors. Synth. Commun., 2012, 42(19), 2937-2946.
[http://dx.doi.org/10.1080/00397911.2011.573169]
[9]
Ujjinamatada, R.K.; Appala, R.S.; Agasimundin, Y.S. Synthesis and antimicrobial activity of new benzofuranyl-1,3-benzoxazines and 1,3-benzoxazin-2-ones. J. Heterocycl. Chem., 2006, 43(2), 437-441.
[http://dx.doi.org/10.1002/jhet.5570430226]
[10]
Waisser, K.; Petrlíková, E.; Perina, M.; Klimesová, V.; Kunes, J.; Palát, K., Jr; Kaustová, J.; Dahse, H.M.; Möllmann, U. A note to the biological activity of benzoxazine derivatives containing the thioxo group. Eur. J. Med. Chem., 2010, 45(7), 2719-2725.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.037] [PMID: 20226572]
[11]
Tang, Z.; Chen, W.; Zhu, Z.; Liu, H. Synthesis of 2,3- diaryl-3,4-dihydro-2H-1,3-benzoxazines and their fungicidal activities. J. Heterocycl. Chem., 2011, 48(33), 255-260.
[http://dx.doi.org/10.1002/jhet.533]
[12]
Nemeček, P.; Mocák, J.; Lehotay, J.; Waisser, K. Prediction of anti-tuberculosis activity of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dione derivatives. Chem. Pap., 2013, 67(3), 305-312.
[http://dx.doi.org/10.2478/s11696-012-0278-4]
[13]
Zhang, J.; Ba, Y.; Wang, S.; Yang, H.; Hou, X.; Xu, Z. Nitroimidazole-containing compounds and their antibacterial and antitubercular activities. Eur. J. Med. Chem., 2019, 179, 376-388.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.068] [PMID: 31260891]
[14]
Gao, C.; Fan, Y.L.; Zhao, F.; Ren, Q.C.; Wu, X.; Chang, L.; Gao, F. Quinolone derivatives and their activities against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2018, 157, 1081-1095.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.061] [PMID: 30179746]
[15]
Gao, F.; Wang, P.; Yang, H.; Miao, Q.; Ma, L.; Lu, G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur. J. Med. Chem., 2018, 157, 1223-1248.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.095] [PMID: 30193220]
[16]
Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem., 2019, 164, 678-688.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.017] [PMID: 30654239]
[17]
Xu, Z.; Zhao, S.J.; Lv, Z.S.; Gao, F.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J.L. Fluoroquinolone-isatin hybrids and their biological activities. Eur. J. Med. Chem., 2019, 162, 396-406.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.032] [PMID: 30453247]
[18]
Chen, L.; Zhu, Y.J.; Fan, Z.J.; Guo, X.F.; Zhang, Z.M.; Xu, J.H.; Song, Y.Q.; Yurievich, M.Y.; Belskaya, N.P.; Bakulev, V.A. Synthesis of 1,2,3-thiadiazole and thiazole-based strobilurins as potent fungicide candidates. J. Agric. Food Chem., 2017, 65(4), 745-751.
[http://dx.doi.org/10.1021/acs.jafc.6b05128] [PMID: 28055187]
[19]
Vibhute, A.Y.; Sayyad, M.A.; Mokle, S.S.; Khansole, S.V.V. Y.B Synthesis and antibacterial evaluation of some new 1,3-benzoxazines. Pharma Chem., 2009, 1(2), 86-91.
[20]
Shakil, N.A.; Pandey, A.; Singh, M.K.; Kumar, J.; Awasthi, S.K.; Srivastava, C.; Singh, M.K.; Pandey, R.P. Synthesis and bioefficacy evaluation of new 3-substituted-3,4-dihydro-1,3-benzoxazines. J. Environ. Sci. Health B, 2010, 45(2), 108-115.
[http://dx.doi.org/10.1080/03601230903471852] [PMID: 20390939]
[21]
Mathew, B.P.; Kumar, A.; Sharma, S.; Shukla, P.K.; Nath, M. An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives. Eur. J. Med. Chem., 2010, 45(4), 1502-1507.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.058] [PMID: 20116901]
[22]
Borgaonkar, V.V.; Patil, B.R. Synthesis of new 1,3-benzoxazines from ketimines and their bioevaluation. J. Heterocycl. Chem., 2016, 53(6), 1897-1901.
[http://dx.doi.org/10.1002/jhet.2504]
[23]
Zhang, M.Z.; Zhang, R.R.; Yin, W.Z.; Yu, X.; Zhang, Y.L.; Liu, P.; Gu, Y.C.; Zhang, W.H. Microwave-assisted synthesis and antifungal activity of coumarin[8,7-e][1,3]oxazine derivatives. Mol. Divers., 2016, 20(3), 611-618.
[http://dx.doi.org/10.1007/s11030-016-9662-2] [PMID: 26880591]
[24]
Bollu, R.; Banu, S.; Bantu, R.; Reddy, A.G.; Nagarapu, L.; Sirisha, K.; Kumar, C.G.; Gunda, S.K.; Shaik, K. Potential antimicrobial agents from triazole-functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones. Bioorg. Med. Chem. Lett., 2017, 27(23), 5158-5162.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.061] [PMID: 29103973]
[25]
Desai, N.C.; Bhatt, N.B.; Joshi, S.B.; Vaja, D.V. Synthesis and characterization of oxazine bearing pyridine scaffold as potential antimicrobial agents. Synth. Commun., 2017, 47(24), 2360-2368.
[http://dx.doi.org/10.1080/00397911.2017.1377734]
[26]
Tang, Z.; Zhu, Z.; Xia, Z.; Liu, H.; Chen, J.; Xiao, W.; Ou, X. Synthesis and fungicidal activity of novel 2,3-disubstituted-1,3-benzoxazines. Molecules, 2012, 17(7), 8174-8185.
[http://dx.doi.org/10.3390/molecules17078174] [PMID: 22772812]
[27]
Tang, Z.; Chang, S.; Yan, L.; Cui, M.; Liu, H. Synthesis and fungicidal activity of novel 3-(1,3,4-thiadiazolyl)-1,3-bezoxazines. Youji Huaxue, 2012, 32(7), 1241-1246.
[http://dx.doi.org/10.6023/cjoc201203011]
[28]
Tang, Z.L.; Wang, L.; Tan, J.Z.; Wan, Y.C.; Jiao, Y.C. Synthesis and fungicidal activity of 1-(carbamoylmethyl)-2-aryl-3,1-benzoxazines. Molecules, 2017, 22(7), 1103.
[http://dx.doi.org/10.3390/molecules22071103] [PMID: 28684698]
[29]
Huang, F.; Jiao, W.; Wan, Y. Synthesis and anti-fungal activity of new 3-aryl-1,3-benzoxazine-2-ketone derivatives. Russ. J. Gen. Chem., 2021, 91(6), 1112-1116.
[http://dx.doi.org/10.1134/S1070363221060190]
[30]
Fringuelli, R.; Pietrella, D.; Schiaffella, F.; Guarraci, A.; Perito, S.; Bistoni, F.; Vecchiarelli, A. Anti-Candida albicans properties of novel benzoxazine analogues. Bioorg. Med. Chem., 2002, 10(6), 1681-1686.
[http://dx.doi.org/10.1016/S0968-0896(02)00038-X] [PMID: 11937326]
[31]
Fang, L.; Zuo, H.; Li, Z.; He, X.; Wang, L.; Tian, X.; Zhao, B.; Miao, J.; Shin, D. Synthesis of benzo[b][1,4]oxazin-3(4H)-ones via smiles rearrangement for antimicrobial activity. Med. Chem. Res., 2011, 20(6), 670-677.
[http://dx.doi.org/10.1007/s00044-010-9360-z]
[32]
Iloni, G.; Vasam, S.; Guguloth, V.; Vadde, R. One-pot multi-component synthesis of [1,4] benzoxazineisoxazole hybrids and their antibacterial activity. IJPCBS, 2018, 8(1), 118-124.
[33]
Elseginy, S.A.; Anwar, M.M. Pharmacophore-based virtual screening and molecular dynamics simulation for identification of a novel DNA Gyrase B inhibitor with benzoxazine acetamide scaffold. ACS Omega, 2021, 7(1), 1150-1164.
[http://dx.doi.org/10.1021/acsomega.1c05732] [PMID: 35036778]
[34]
Wan, Y.; Fang, G.; Chen, H.; Deng, X.; Tang, Z. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur. J. Med. Chem., 2021, 226, 113837.
[http://dx.doi.org/10.1016/j.ejmech.2021.113837] [PMID: 34530384]
[35]
Wan, Y.; Long, J.; Gao, H.; Tang, Z. 2-Aminothiazole: A privileged scaffold for the discovery of anti-cancer agents. Eur. J. Med. Chem., 2021, 210, 112953.
[http://dx.doi.org/10.1016/j.ejmech.2020.112953] [PMID: 33148490]
[36]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183, 111691.
[http://dx.doi.org/10.1016/j.ejmech.2019.111691] [PMID: 31536895]
[37]
Garg, V.; Kumar, A.; Chaudhary, A.; Agrawal, S.; Tomar, P.; Sreenivasan, K.K. Synthesis, biological evaluation and molecular docking studies of 1,3-benzoxazine derivatives as potential anticancer agents. Med. Chem. Res., 2013, 22(11), 5256-5266.
[http://dx.doi.org/10.1007/s00044-013-0534-3]
[38]
Botla, V.; Pilli, N.; Koude, D.; Misra, S.; Malapaka, C. Molecular engineering of tetracyclic 2,3-dihydro-1H-benzo[2,3]-benzofuro[4,5-e][1,3]oxazine derivatives: Evaluation for potential anticancer agents. Arch. Pharm. (Weinheim), 2017, 350(10), 1700169-1700179.
[http://dx.doi.org/10.1002/ardp.201700169] [PMID: 28834614]
[39]
Mbaba, M.; Dingle, L.M.K.; Cash, D.; Mare, J.A.; Laming, D.; Taylor, D.; Hoppe, H.C.; Edkins, A.L.; Khanye, S.D. Repurposing a polymer precursor: Synthesis and in vitro medicinal potential of ferrocenyl 1,3-benzoxazine derivatives. Eur. J. Med. Chem., 2020, 187, 111924.
[http://dx.doi.org/10.1016/j.ejmech.2019.111924] [PMID: 31855792]
[40]
Zhang, P.; Terefenko, E.A.; Fensome, A.; Wrobel, J.; Winneker, R.; Lundeen, S.; Marschke, K.B.; Zhang, Z. 6-Aryl-1,4-dihydro-benzo[d][1,3]oxazin- 2-ones: A novel class of potent, selective, and orally active nonsteroidal progesterone receptor antagonists. J. Med. Chem., 2002, 45(20), 4379-4382.
[http://dx.doi.org/10.1021/jm025555e] [PMID: 12238914]
[41]
Carmeliet, P. Angiogenesis in health and disease. Nat. Med., 2003, 9(6), 653-660.
[http://dx.doi.org/10.1038/nm0603-653] [PMID: 12778163]
[42]
Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 2003, 9(6), 669-676.
[http://dx.doi.org/10.1038/nm0603-669] [PMID: 12778165]
[43]
La, D.S.; Belzile, J.; Bready, J.V.; Coxon, A.; DeMelfi, T.; Doerr, N.; Estrada, J.; Flynn, J.C.; Flynn, S.R.; Graceffa, R.F.; Harriman, S.P.; Larrow, J.F.; Long, A.M.; Martin, M.W.; Morrison, M.J.; Patel, V.F.; Roveto, P.M.; Wang, L.; Weiss, M.M.; Whittington, D.A.; Teffera, Y.; Zhao, Z.; Polverino, A.J.; Harmange, J.C. Novel 2,3-dihydro-1,4-benzoxazines as potent and orally bioavailable inhibitors of tumor-driven angiogenesis. J. Med. Chem., 2008, 51(6), 1695-1705.
[http://dx.doi.org/10.1021/jm701129j] [PMID: 18311900]
[44]
Bollu, R.; Palem, J.D.; Bantu, R.; Guguloth, V.; Nagarapu, L.; Polepalli, S.; Jain, N. Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids. Eur. J. Med. Chem., 2015, 89, 138-146.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.051] [PMID: 25462234]
[45]
Bollu, R.; Banu, S.; Kasaboina, S.; Bantu, R.; Nagarapu, L.; Polepalli, S.; Jain, N. Potential anti-proliferative agents from 1,4-benzoxazinone-quinazolin-4(3H)-one templates. Bioorg. Med. Chem. Lett., 2017, 27(24), 5481-5484.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.044] [PMID: 29089233]
[46]
Sulistyowaty, M.I.; Widyowati, R.; Putra, G.S.; Budiati, T.; Matsunami, K. Synthesis, ADMET predictions, molecular docking studies, and in vitro anticancer activity of some benzoxazines against A549 human lung cancer cells. J. Basic Clin. Physiol. Pharmacol., 2021, 32(4), 385-392.
[http://dx.doi.org/10.1515/jbcpp-2020-0433] [PMID: 34214332]
[47]
Jana, A.K.; Singh, J.; Ganesher, A.; Kumar, A.; Banerjee, A.; Kumar, D.; Verma, S.K.; Sharma, A.K.; Bhatta, R.S.; Konwar, R.; Panda, G. Tyrosine-derived novel benzoxazine active in a rat syngenic mammary tumor model of breast cancer. J. Med. Chem., 2021, 64(21), 16293-16316.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01624] [PMID: 34726897]
[48]
Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.C.; Chang, L.; Lv, Z.S.; Feng, L.S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 138, 501-513.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.051] [PMID: 28692915]
[49]
Fan, Y.L.; Jin, X.H.; Huang, Z.P.; Yu, H.F.; Zeng, Z.G.; Gao, T.; Feng, L.S. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2018, 150, 347-365.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.016] [PMID: 29544148]
[50]
Gao, C.; Chang, L.; Xu, Z.; Yan, X.F.; Ding, C.; Zhao, F.; Wu, X.; Feng, L.S. Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur. J. Med. Chem., 2019, 163, 404-412.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.001] [PMID: 30530192]
[51]
Shu, Y.; Deng, Z.; Wang, H.; Chen, Y.; Yuan, L.; Deng, Y.; Tu, X.; Zhao, X.; Shi, Z.; Huang, M.; Qiu, C. Integrase inhibitors versus efavirenz combination antiretroviral therapies for TB/HIV coinfection: A meta-analysis of randomized controlled trials. AIDS Res. Ther., 2021, 18(1), 25.
[http://dx.doi.org/10.1186/s12981-021-00348-w] [PMID: 33933131]
[52]
Xu, Z.; Zhang, S.; Gao, C.; Fan, J.; Zhao, F.; Lv, Z.S.; Feng, L.S. Isatin hybrids and their anti-tuberculosis activity. Chin. Chem. Lett., 2017, 28(2), 159-167.
[http://dx.doi.org/10.1016/j.cclet.2016.07.032]
[53]
Li, X.; Liu, N.; Zhang, H.; Knudson, S.E.; Slayden, R.A.; Tonge, P.J. Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: Novel antibacterial agents against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2010, 20(21), 6306-6309.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.076] [PMID: 20850304]
[54]
Petrlíková, E.; Waisser, K.; Doležal, R.; Holý, P.; Gregor, J.; Kuneš, J.; Kaustová, J. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6. Chem. Pap., 2011, 65(3), 352-366.
[http://dx.doi.org/10.2478/s11696-011-0020-7]
[55]
Zampieri, D.; Mamolo, M.G.; Filingeri, J.; Fortuna, S.; De Logu, A.; Sanna, A.; Zanon, D. Design, synthesis and antimycobacterial activity of benzoxazinone derivatives and open-ring analogues: Preliminary data and computational analysis. Bioorg. Med. Chem. Lett., 2019, 29(17), 2468-2474.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.025] [PMID: 31350124]
[56]
Rengarajan, J.; Bloom, B.R.; Rubin, E.J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl. Acad. Sci. USA, 2005, 102(23), 8327-8332.
[http://dx.doi.org/10.1073/pnas.0503272102] [PMID: 15928073]
[57]
Fivian-Hughes, A.S.; Houghton, J.; Davis, E.O. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid. Microbiology, 2012, 158(Pt 2), 308-318.
[http://dx.doi.org/10.1099/mic.0.053983-0] [PMID: 22034487]
[58]
Modranka, J.; Li, J.; Parchina, A.; Vanmeert, M.; Dumbre, S.; Salman, M.; Myllykallio, H.; Becker, H.F.; Vanhoutte, R.; Margamuljana, L.; Nguyen, H.; Abu El-Asrar, R.; Rozenski, J.; Herdewijn, P.; De Jonghe, S.; Lescrinier, E. Synthesis and structure-activity relationship studies of benzo[b][1,4]oxazin-3(4H)-one analogues as inhibitors of mycobacterial thymidylate synthase X. ChemMedChem, 2019, 14(6), 645-662.
[http://dx.doi.org/10.1002/cmdc.201800739] [PMID: 30702807]
[59]
Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87(1), 315-424.
[http://dx.doi.org/10.1152/physrev.00029.2006] [PMID: 17237348]
[60]
Karali, N.; Güzel, O.; Ozsoy, N.; Ozbey, S.; Salman, A. Synthesis of new spiroindolinones incorporating a benzothiazole moiety as antioxidant agents. Eur. J. Med. Chem., 2010, 45(3), 1068-1077.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.001] [PMID: 20045221]
[61]
Ratnam, D.V.; Ankola, D.D.; Bhardwaj, V.; Sahana, D.K.; Kumar, M.N. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release, 2006, 113(3), 189-207.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.015] [PMID: 16790290]
[62]
Buonocore, G.; Groenendaal, F. Anti-oxidant strategies. Semin. Fetal Neonatal Med., 2007, 12(4), 287-295.
[http://dx.doi.org/10.1016/j.siny.2007.01.020] [PMID: 17368122]
[63]
Pan, Y.; Zhu, J.; Wang, H.; Zhang, X.; Zhang, Y.; He, C.; Ji, X.; Li, H. Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem., 2007, 103(3), 913-918.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.044]
[64]
Pan, Y.; He, C.; Wang, H.; Ji, X.; Wang, K.; Liu, P. Antioxidant activity of microwave-assisted extract of Buddleia officinalis and its major active component. Food Chem., 2010, 121(2), 497-502.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.072]
[65]
Patil, V.P.; Markad, V.L.; Kodam, K.M.; Waghmode, S.B. Facile preparation of tetrahydro-5H-pyrido[1,2,3-de]-1,4-benzoxazines via reductive cyclization of 2-(8-quinolinyloxy)ethanones and their antioxidant activity. Bioorg. Med. Chem. Lett., 2013, 23(23), 6259-6263.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.088] [PMID: 24157368]
[66]
Matam, S.; Kaliyan, P.; Selvaraj, L.; Muthu, S.P.; Lohanathan, B.P.; Viswanadhan, V.P.; Makala, H.; Venkatasubramanian, U. Convenient method for the synthesis of some novel chiral methyl 2-(2-oxo-2H-benzo[e][1,3]oxazin-3(4H)-yl)propanoate derivatives and biological evaluation of their antioxidant, cytotoxic, and molecular docking properties. J. Heterocycl. Chem., 2021, 58, 569-579.
[http://dx.doi.org/10.1002/jhet.4196]
[67]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[68]
Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[69]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[70]
Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011, 11(11), 723-737.
[http://dx.doi.org/10.1038/nri3073] [PMID: 21997792]
[71]
Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6), 805-820.
[http://dx.doi.org/10.1016/j.cell.2010.01.022] [PMID: 20303872]
[72]
Zhou, Y.; Hong, Y.; Huang, H. Triptolide attenuates inflammatory response in membranous glomerulo-nephritis rat via downregulation of NF-κB signaling pathway. Kidney Blood Press. Res., 2016, 41(6), 901-910.
[http://dx.doi.org/10.1159/000452591] [PMID: 27871079]
[73]
Poetker, D.M.; Reh, D.D. A comprehensive review of the adverse effects of systemic corticosteroids. Otolaryngol. Clin. North Am., 2010, 43(4), 753-768.
[http://dx.doi.org/10.1016/j.otc.2010.04.003] [PMID: 20599080]
[74]
Akhter, M.; Habibullah, S.; Hasan, S.M.; Alam, M.M.; Akhter, N.; Shaquiquzzaman, M. Synthesis of some new 3,4-dihydro-2 H -1,3-benzoxazines under microwave irradiation in solvent-free conditions and their biological activity. Med. Chem. Res., 2011, 20(8), 1147-1153.
[http://dx.doi.org/10.1007/s00044-010-9451-x]
[75]
Zhang, H.J.; Li, Y.F.; Cao, Q.; Tian, Y.S.; Quan, Z.S. Pharmacological evaluation of 9,10-dihydrochromeno[8,7-e][1,3]oxazin-2(8H)-one derivatives as potent anti-inflammatory agent. Pharmacol. Rep., 2017, 69(3), 419-425.
[http://dx.doi.org/10.1016/j.pharep.2016.12.006]
[76]
Haider, S.; Alam, M.S.; Hamid, H.; Shafi, S.; Nargotra, A.; Mahajan, P.; Nazreen, S.; Kalle, A.M.; Kharbanda, C.; Ali, Y.; Alam, A.; Panda, A.K. Synthesis of novel 1,2,3-triazole based benzoxazolinones: Their TNF-α based molecular docking with in vivo anti-inflammatory, antinociceptive activities and ulcerogenic risk evaluation. Eur. J. Med. Chem., 2013, 70, 579-588.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.032] [PMID: 24211633]
[77]
Madhavan, G.R.; Chakrabarti, R.; Reddy, K.A.; Rajesh, B.M.; Balraju, V.; Rao, P.B.; Rajagopalan, R.; Iqbal, J. Dual PPAR-alpha and -gamma activators derived from novel benzoxazinone containing thiazolidinediones having antidiabetic and hypolipidemic potential. Bioorg. Med. Chem., 2006, 14(2), 584-591.
[http://dx.doi.org/10.1016/j.bmc.2005.08.043] [PMID: 16198573]
[78]
Genuth, S.M.; Przybylski, R.J.; Rosenberg, D.M. Insulin resistance in genetically obese, hyperglycemic mice. Endocrinology, 1971, 88(5), 1230-1238.
[http://dx.doi.org/10.1210/endo-88-5-1230] [PMID: 5278387]
[79]
Khan, Z.A.; Afzal, N.; Hussain, Z.; Raza Naqvi, S.A.; Bari, A.; Shahzad, S.A.; Yar, M.; Mahmood, N.; Bukhari, S.A.; Mansha, A.; Zahoor, A.F.; Khan, A.R.; Ahmad, M. Synthesis of 2-aryl-4H-3,1-benzoxazin-4-ones: A class of ±-chymotrypsin inhibitors. Asian J. Chem., 2014, 26(15), 4561-4565.
[http://dx.doi.org/10.14233/ajchem.2014.16108]
[80]
Spinck, M.; Bischoff, M.; Lampe, P.; Meyer-Almes, F.J.; Sievers, S.; Neumann, H. Discovery of dihydro-1,4-benzoxazine carboxamides as potent and highly selective inhibitors of sirtuin-1. J. Med. Chem., 2021, 64(9), 5838-5849.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00017] [PMID: 33876629]
[81]
Ward, B.A.; Gorski, J.C.; Jones, D.R.; Hall, S.D.; Flockhart, D.A.; Desta, Z. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: Implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J. Pharmacol. Exp. Ther., 2003, 306(1), 287-300.
[http://dx.doi.org/10.1124/jpet.103.049601] [PMID: 12676886]
[82]
Cox, P.M.; Bumpus, N.N. Structure-activity studies reveal the oxazinone ring is a determinant of cytochrome P450 2B6 activity toward efavirenz. ACS Med. Chem. Lett., 2014, 5(10), 1156-1161.
[http://dx.doi.org/10.1021/ml500297n] [PMID: 25309681]