CNS & Neurological Disorders - Drug Targets

Author(s): A. Khatun, T. Tamilanban* and V. Chitra

DOI: 10.2174/1871527321666220701152821

Psychiatric Manifestations of COVID-19: A Literature Review

Page: [892 - 905] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: COVID-19 (coronavirus disease of 2019) occurs due to the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It uses angiotensin-converting enzyme- 2 (ACE-2) as its primary receptor to enter the host cell. Recent reports suggest that this pathogen also has a large impact on the CNS alongside other organs. Various inflammatory mediators, such as cytokines, chemokines, and numerous metabolites, are poorly regulated during infection as well as in several psychiatric diseases, which leads to conditions of hypoxia and cytokine storm. The persistence of COVID-19 infection may also result in aggravation of the already present neuro-psychiatric symptoms in patients.

Methods: We systematically searched various sources of journals and assessed the varied neurological routes of propagation and pathogenesis of SARS-CoV-2 neurotoxicity, like ACE2-mediated neuroinvasion induced hypoxia and the cytokine storm syndrome. Several case studies were also referred to obtain a better idea of the current mental health scenario as a consequence of infection and inflammation due to SARS-CoV-2.

Conclusion: Several risk factors for the causation of mental health issues during as well as after the infection include female gender, presence of necrosis, and pain in avascular regions. Most psychiatric disorders are directly associated with the socioeconomic and psychosocial changes that have occurred as a consequence of the pandemic. These psychiatric manifestations have only started to unravel, which calls for the development of faster means of diagnosis and integrated pharmacological and epidemiological studies to curb the growing rate of neuronal complications as well as mortality.

Keywords: COVID-19, SARS-CoV-2, diagnostic tools, inflammation, psychiatric disorders, depression, anxiety, biomarkers.

Graphical Abstract

[1]
Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020; 87: 18-22.
[2]
Escandón K, Rasmussen AL, Bogoch II, et al. COVID-19 false dichotomies and a comprehensive review of the evidence regarding public health, COVID-19 symptomatology, SARS-CoV-2 transmission, mask wearing, and reinfection. BMC Infect Dis 2021; 21(1): 710.
[http://dx.doi.org/10.1186/s12879-021-06357-4] [PMID: 34315427]
[3]
Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimers Dis 2020; 76(1): 3-19.
[http://dx.doi.org/10.3233/JAD-200581] [PMID: 32538857]
[4]
Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med 2021; 27(4): 601-15.
[http://dx.doi.org/10.1038/s41591-021-01283-z] [PMID: 33753937]
[5]
Liu CH, Zhang E, Wong GTF, Hyun S, Hahm HC. Factors associated with depression, anxiety, and PTSD symptomatology during the COVID-19 pandemic: Clinical implications for U.S. young adult mental health. Psychiatry Res 2020; 290: 113172.
[http://dx.doi.org/10.1016/j.psychres.2020.113172] [PMID: 32512357]
[6]
Perlis RH, Santillana M, Ognyanova K, et al. Comparison of post-COVID depression and major depressive disorder. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.03.26.21254425]
[7]
Steardo L Jr, Steardo L, Verkhratsky A. Psychiatric face of COVID-19. Transl Psychiatry 2020; 10(1): 261.
[http://dx.doi.org/10.1038/s41398-020-00949-5] [PMID: 32732883]
[8]
Kong X, Zheng K, Tang M, et al. Prevalence and factors associated with depression and anxiety of hospitalized patients with COVID-19. MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.24.20043075]
[9]
Ritchie K, Chan D. The emergence of cognitive COVID. World Psychiatry 2021; 20(1): 52-3.
[http://dx.doi.org/10.1002/wps.20837] [PMID: 33432769]
[10]
Raman B, Cassar MP, Tunnicliffe EM, et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine 2021; 31: 100683.
[http://dx.doi.org/10.1016/j.eclinm.2020.100683] [PMID: 33490928]
[11]
Deng J, Zhou F, Hou W, et al. The prevalence of depression, anxiety, and sleep disturbances in COVID‐19 patients: A meta‐analysis. Ann N Y Acad Sci 2021; 1486(1): 90-111.
[PMID: 33009668]
[12]
James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1789-858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[13]
Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 2021; 218(3): e20202135.
[http://dx.doi.org/10.1084/jem.20202135] [PMID: 33433624]
[14]
Jellinger KA. Neurotropic virus infections. Eur J Neurol 2009; 16(3): e69.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02495.x]
[15]
Payne S. Family coronaviridae. In: Payne S. Ed. Viruses 2017; pp. 149-58.
[16]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[17]
Ng Kee Kwong KC, Mehta PR, Shukla G, Mehta AR. COVID-19, SARS and MERS: A neurological perspective. J Clin Neurosci 2020; 77: 13-6.
[http://dx.doi.org/10.1016/j.jocn.2020.04.124] [PMID: 32417124]
[18]
Yoshimoto FK. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J 2020; 39(3): 198-216.
[http://dx.doi.org/10.1007/s10930-020-09901-4] [PMID: 32447571]
[19]
Keni R, Alexander A, Nayak PG, Mudgal J, Nandakumar K. COVID-19: emergence, spread, possible treatments, and global burden. Front Public Health 2020; 8: 216.
[http://dx.doi.org/10.3389/fpubh.2020.00216] [PMID: 32574299]
[20]
Liu Y, Rocklöv J. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J Travel Med 2021; 28(7): taab124.
[http://dx.doi.org/10.1093/jtm/taab124] [PMID: 34369565]
[21]
Maleki M, Mahmoudi MR, Wraith D, Pho KH. Time series modelling to forecast the confirmed and recovered cases of COVID-19. Travel Med Infect Dis 2020; 37: 101742.
[http://dx.doi.org/10.1016/j.tmaid.2020.101742]
[22]
Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med 2020; 172(9): 577-82.
[http://dx.doi.org/10.7326/M20-0504] [PMID: 32150748]
[23]
McAloon C, Collins Á, Hunt K, et al. Incubation period of COVID-19: A rapid systematic review and meta-analysis of observational research. BMJ Open 2020; 10(8): e039652.
[http://dx.doi.org/10.1136/bmjopen-2020-039652] [PMID: 32801208]
[24]
Lu CW, Liu XF, Jia ZF. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet 2020; 395(10224): e39.
[http://dx.doi.org/10.1016/S0140-6736(20)30313-5] [PMID: 32035510]
[25]
Zhou G, Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int J Biol Sci 2020; 16(10): 1718-23.
[http://dx.doi.org/10.7150/ijbs.45123] [PMID: 32226289]
[26]
Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci 2020; 12(1): 9.
[http://dx.doi.org/10.1038/s41368-020-0075-9] [PMID: 32127517]
[27]
Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci 2020; 16(10): 1686-97.
[http://dx.doi.org/10.7150/ijbs.45472] [PMID: 32226286]
[28]
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol 2020; 92(5): 479-90.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[29]
Luan J, Lu Y, Jin X, Zhang L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem Biophys Res Commun 2020; 526(1): 165-9.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.047] [PMID: 32201080]
[30]
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GV, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631-7.
[31]
Hofman P, Puchois P, Brest P, Lahlou H, Simeon-Dubach D. Possible consequences of the COVID-19 pandemic on the use of biospecimens from cancer biobanks for research in academia and bioindustry. Nat Med 2020; 26(6): 809-10.
[http://dx.doi.org/10.1038/s41591-020-0890-8] [PMID: 32382152]
[32]
Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat Biotechnol 2020; 38(5): 515-8.
[http://dx.doi.org/10.1038/d41587-020-00010-2] [PMID: 32203294]
[33]
Yeh EC, Fu CC, Hu L, Thakur R, Feng J, Lee LP. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci Adv 2017; 3(3): e1501645.
[http://dx.doi.org/10.1126/sciadv.1501645] [PMID: 28345028]
[34]
Chu H, Chan JF, Yuen TT, et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe 2020; 1(1): e14-23.
[http://dx.doi.org/10.1016/S2666-5247(20)30004-5] [PMID: 32835326]
[35]
Pellegrini L, Albecka A, Mallery DL, et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell 2020; 27(6): 951-961.e5.
[http://dx.doi.org/10.1016/j.stem.2020.10.001] [PMID: 33113348]
[36]
Wang C, Zhang M, Garcia G Jr, et al. ApoE-isoform-dependent SARS-CoV-2 neurotropism and cellular response. Cell Stem Cell 2021; 28(2): 331-342.e5.
[http://dx.doi.org/10.1016/j.stem.2020.12.018] [PMID: 33450186]
[37]
Yang L, Han Y, Nilsson-Payant BE, et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell 2020; 27(1): 125-136.e7.
[http://dx.doi.org/10.1016/j.stem.2020.06.015] [PMID: 32579880]
[38]
Bullen CK, Hogberg HT, Bahadirli-Talbott A, et al. Infectability of human brainsphere neurons suggests neurotropism of SARS-CoV-2. Altern Anim Exp 2020; 37(4): 665-71.
[PMID: 32591839]
[39]
Bilbul M, Paparone P, Kim AM, Mutalik S, Ernst CL. Psychopharmacology of COVID-19. Psychosomatics 2020; 61(5): 411-27.
[http://dx.doi.org/10.1016/j.psym.2020.05.006] [PMID: 32425246]
[40]
Zhou Z, Kang H, Li S, Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: From neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol 2020; 267(8): 2179-84.
[http://dx.doi.org/10.1007/s00415-020-09929-7] [PMID: 32458193]
[41]
Pezzini A, Padovani A. Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol 2020; 16(11): 636-44.
[http://dx.doi.org/10.1038/s41582-020-0398-3] [PMID: 32839585]
[42]
Astuti I. Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr 2020; 14(4): 407-12.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[43]
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[44]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[45]
Li H, Xue Q, Xu X. Involvement of the nervous system in SARS-CoV-2 infection. Neurotox Res 2020; 38(1): 1-7.
[http://dx.doi.org/10.1007/s12640-020-00219-8] [PMID: 32399719]
[46]
Serrano-Castro PJ, Estivill-Torrús G, Cabezudo-García P, et al. Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: a delayed pandemic? Neurologia 2020; 35(4): 245-51.
[http://dx.doi.org/10.1016/j.nrleng.2020.04.002] [PMID: 32364119]
[47]
da Costa VG, Moreli ML, Saivish MV. The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century. Arch Virol 2020; 165(7): 1517-26.
[http://dx.doi.org/10.1007/s00705-020-04628-0] [PMID: 32322993]
[48]
Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 2018; 23(2): 130-7.
[http://dx.doi.org/10.1111/resp.13196] [PMID: 29052924]
[49]
Li Z, Liu T, Yang N, et al. Neurological manifestations of patients with COVID-19: Potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med 2020; 14(5): 533-41.
[http://dx.doi.org/10.1007/s11684-020-0786-5] [PMID: 32367431]
[50]
Radnis C, Qiu S, Jhaveri M, Da Silva I, Szewka A, Koffman L. Radiographic and clinical neurologic manifestations of COVID-19 related hypoxemia. J Neurol Sci 2020; 418: 117119.
[http://dx.doi.org/10.1016/j.jns.2020.117119] [PMID: 32957036]
[51]
Battaglini D, Brunetti I, Anania P, et al. Neurological manifestations of severe SARS-CoV-2 infection: Potential mechanisms and implications of individualized mechanical ventilation settings. Front Neurol 2020; 11: 845.
[http://dx.doi.org/10.3389/fneur.2020.00845] [PMID: 32903391]
[52]
Chafekar A, Fielding BC. MERS-CoV: Understanding the latest human coronavirus threat. Viruses 2018; 10(2): 93.
[http://dx.doi.org/10.3390/v10020093] [PMID: 29495250]
[53]
Yang Y, Zhang L, Geng H, et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of middle east respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 2013; 4(12): 951-61.
[http://dx.doi.org/10.1007/s13238-013-3096-8] [PMID: 24318862]
[54]
Flint SJ, Racaniello VR, Rall GF, Hatziioannou T, Skalka AM. 2020.
[55]
Chen X, Zhao B, Qu Y, et al. Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically ill patients with coronavirus disease 2019. Clin Infect Dis 2020; 71(8): 1937-42.
[http://dx.doi.org/10.1093/cid/ciaa449] [PMID: 32301997]
[56]
Chi Y, Ge Y, Wu B, et al. Serum cytokine and chemokine profile in relation to the severity of coronavirus disease 2019 in China. J Infect Dis 2020; 222(5): 746-54.
[http://dx.doi.org/10.1093/infdis/jiaa363] [PMID: 32563194]
[57]
Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020; 55: 102763.
[http://dx.doi.org/10.1016/j.ebiom.2020.102763] [PMID: 32361250]
[58]
Del Valle DM, Kim-Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 2020; 26(10): 1636-43.
[http://dx.doi.org/10.1038/s41591-020-1051-9] [PMID: 32839624]
[59]
Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000; 342(18): 1334-49.
[http://dx.doi.org/10.1056/NEJM200005043421806] [PMID: 10793167]
[60]
Wang H, Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med 2008; 26(6): 711-5.
[http://dx.doi.org/10.1016/j.ajem.2007.10.031] [PMID: 18606328]
[61]
Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020; 11: 827.
[http://dx.doi.org/10.3389/fimmu.2020.00827] [PMID: 32425950]
[62]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[63]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[64]
Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; What we know so far. Front Immunol 2020; 11: 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446] [PMID: 32612617]
[65]
Wen W, Su W, Tang H, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov 2020; 6(1): 1-8.
[66]
Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun 2020; 87: 34-9.
[http://dx.doi.org/10.1016/j.bbi.2020.04.027] [PMID: 32298803]
[67]
Yuan B, Li W, Liu H, et al. Correlation between immune response and self-reported depression during convalescence from COVID-19. Brain Behav Immun 2020; 88: 39-43.
[http://dx.doi.org/10.1016/j.bbi.2020.05.062] [PMID: 32464158]
[68]
Guo Q, Zheng Y, Shi J, et al. Immediate psychological distress in quarantined patients with COVID-19 and its association with peripheral inflammation: A mixed-method study. Brain Behav Immun 2020; 88: 17-27.
[http://dx.doi.org/10.1016/j.bbi.2020.05.038] [PMID: 32416290]
[69]
Garcia P, Revet A, Yrondi A, Rousseau V, Degboe Y, Montastruc F. Psychiatric disorders and hydroxychloroquine for coronavirus disease 2019 (COVID-19): A VigiBase study. Drug Saf 2020; 43(12): 1315-22.
[http://dx.doi.org/10.1007/s40264-020-01013-3] [PMID: 33078372]
[70]
Mazza MG, De Lorenzo R, Conte C, et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 2020; 89: 594-600.
[http://dx.doi.org/10.1016/j.bbi.2020.07.037] [PMID: 32738287]
[71]
Huang Y, Zhao N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: A web-based cross-sectional survey. Psychiatry Res 2020; 288: 112954.
[http://dx.doi.org/10.1016/j.psychres.2020.112954] [PMID: 32325383]
[72]
Hao F, Tan W, Jiang L, et al. Do psychiatric patients experience more psychiatric symptoms during COVID-19 pandemic and lockdown? A case-control study with service and research implications for immunopsychiatry. Brain Behav Immun 2020; 87: 100-6.
[http://dx.doi.org/10.1016/j.bbi.2020.04.069] [PMID: 32353518]
[73]
Liu N, Zhang F, Wei C, et al. Prevalence and predictors of PTSS during COVID-19 outbreak in China hardest-hit areas: Gender differences matter. Psychiatry Res 2020; 287: 112921.
[http://dx.doi.org/10.1016/j.psychres.2020.112921] [PMID: 32240896]
[74]
Sun L, Sun Z, Wu L, et al. Prevalence and risk factors of acute posttraumatic stress symptoms during the COVID-19 outbreak in Wuhan, China. MedRxiv 2020.
[75]
Poyraz BÇ, Poyraz CA, Olgun Y, et al. Psychiatric morbidity and protracted symptoms after COVID-19. Psychiatry Res 2021; 295: 113604.
[http://dx.doi.org/10.1016/j.psychres.2020.113604] [PMID: 33296818]
[76]
Rajkumar RP. COVID-19 and mental health: A review of the existing literature. Asian J Psychiatr 2020; 52: 102066.
[http://dx.doi.org/10.1016/j.ajp.2020.102066] [PMID: 32302935]
[77]
Parra A, Juanes A, Losada CP, et al. Psychotic symptoms in COVID-19 patients. A retrospective descriptive study. Psychiatry Res 2020; 291: 113254.
[http://dx.doi.org/10.1016/j.psychres.2020.113254] [PMID: 32603930]
[78]
Yang L, Wu D, Hou Y, et al. Analysis of psychological state and clinical psychological intervention model of patients with COVID-19. MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.22.20040899]
[79]
Hao F, Tam W, Hu X, et al. A quantitative and qualitative study on the neuropsychiatric sequelae of acutely ill COVID-19 inpatients in isolation facilities. Transl Psychiatry 2020; 10(1): 355.
[http://dx.doi.org/10.1038/s41398-020-01039-2] [PMID: 33077738]
[80]
Iqbal Y, Al Abdulla MA, Albrahim S, Latoo J, Kumar R, Haddad PM. Psychiatric presentation of patients with acute SARS-CoV-2 infection: A retrospective review of 50 consecutive patients seen by a consultation-liaison psychiatry team. BJPsych Open 2020; 6(5): e109.
[http://dx.doi.org/10.1192/bjo.2020.85] [PMID: 32907692]
[81]
Carmassi C, Bertelloni CA, Dell’Oste V, et al. Tele-psychiatry assessment of post-traumatic stress symptoms in 100 patients with bipolar disorder during the COVID-19 pandemic social-distancing measures in Italy. Front Psychiatry 2020; 11: 580736.
[http://dx.doi.org/10.3389/fpsyt.2020.580736] [PMID: 33343419]
[82]
Okusaga O, Yolken RH, Langenberg P, et al. Association of seropositivity for influenza and coronaviruses with history of mood disorders and suicide attempts. J Affect Disord 2011; 130(1-2): 220-5.
[http://dx.doi.org/10.1016/j.jad.2010.09.029] [PMID: 21030090]
[83]
Pietruczuk K, Lisowska KA, Grabowski K, Landowski J, Witkowski JM. Proliferation and apoptosis of T lymphocytes in patients with bipolar disorder. Sci Rep 2018; 8(1): 3327.
[http://dx.doi.org/10.1038/s41598-018-21769-0] [PMID: 29463875]
[84]
Liguori C, Pierantozzi M, Spanetta M, et al. Subjective neurological symptoms frequently occur in patients with SARS-CoV2 infection. Brain Behav Immun 2020; 88: 11-6.
[http://dx.doi.org/10.1016/j.bbi.2020.05.037] [PMID: 32416289]
[85]
Altena E, Baglioni C, Espie CA, et al. Dealing with sleep problems during home confinement due to the COVID-19 outbreak: Practical recommendations from a task force of the European CBT-I Academy. J Sleep Res 2020; 29(4): e13052.
[http://dx.doi.org/10.1111/jsr.13052] [PMID: 32246787]
[86]
Amodeo G, Trusso MA, Fagiolini A. Depression and inflammation: Disentangling a clear yet complex and multifaceted link. Neuropsychiatry (London) 2017; 7(4): 448-57.
[87]
Pedersen SF, Ho YC. SARS-CoV-2: A storm is raging. J Clin Invest 2020; 130(5): 2202-5.
[http://dx.doi.org/10.1172/JCI137647] [PMID: 32217834]
[88]
Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 1996; 9(4): 532-62.
[http://dx.doi.org/10.1128/CMR.9.4.532] [PMID: 8894351]
[89]
Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 2012; 87(1): 10-20.
[http://dx.doi.org/10.1016/j.brainresbull.2011.10.004] [PMID: 22024597]
[90]
Choi SS, Lee HJ, Lim I, Satoh J, Kim SU. Human astrocytes: Secretome profiles of cytokines and chemokines. PLoS One 2014; 9(4): e92325.
[http://dx.doi.org/10.1371/journal.pone.0092325] [PMID: 24691121]
[91]
Watkins LR, Goehler LE, Relton JK, et al. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: Evidence for vagal mediation of immune-brain communication. Neurosci Lett 1995; 183(1-2): 27-31.
[http://dx.doi.org/10.1016/0304-3940(94)11105-R] [PMID: 7746479]
[92]
Plotkin SR, Banks WA, Kastin AJ. Comparison of saturable transport and extracellular pathways in the passage of interleukin-1 α across the blood-brain barrier. J Neuroimmunol 1996; 67(1): 41-7.
[PMID: 8707929]
[93]
Mastorakos G, Chrousos GP, Weber JS. Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J Clin Endocrinol Metab 1993; 77(6): 1690-4.
[PMID: 8263159]
[94]
Raison CL, Miller AH. When not enough is too much: The role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry 2003; 160(9): 1554-65.
[http://dx.doi.org/10.1176/appi.ajp.160.9.1554] [PMID: 12944327]
[95]
Morikawa O, Sakai N, Obara H, Saito N. Effects of interferon-α interferon-γ and cAMP on the transcriptional regulation of the serotonin transporter. Eur J Pharmacol 1998; 349(2-3): 317-24.
[http://dx.doi.org/10.1016/S0014-2999(98)00187-3] [PMID: 9671113]
[96]
Wichers MC, Maes M. The role of indoleamine 2,3-dioxygenase (IDO) in the pathophysiology of interferon-α-induced depression. J Psychiatry Neurosci 2004; 29(1): 11-7.
[PMID: 14719046]
[97]
Fuchs E, Czéh B, Kole MH, Michaelis T, Lucassen PJ. Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 2004; 14 (Suppl. 5): S481-90.
[http://dx.doi.org/10.1016/j.euroneuro.2004.09.002] [PMID: 15550346]
[98]
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6(10): a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[99]
Hodes GE, Ménard C, Russo SJ. Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiol Stress 2016; 4: 15-22.
[http://dx.doi.org/10.1016/j.ynstr.2016.03.003] [PMID: 27981186]
[100]
Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J 1990; 265(3): 621-36.
[http://dx.doi.org/10.1042/bj2650621] [PMID: 1689567]
[101]
Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012; 8(9): 1254-66.
[http://dx.doi.org/10.7150/ijbs.4679] [PMID: 23136554]
[102]
Moshage HJ, Roelofs HM, van Pelt JF, et al. The effect of interleukin-1, interleukin-6 and its interrelationship on the synthesis of serum amyloid A and C-reactive protein in primary cultures of adult human hepatocytes. Biochem Biophys Res Commun 1988; 155(1): 112-7.
[http://dx.doi.org/10.1016/S0006-291X(88)81056-8] [PMID: 3261980]
[103]
Eklund KK, Niemi K, Kovanen PT. Immune functions of serum amyloid A. Crit Rev Immunol 2012; 32(4): 335-48.
[104]
Bryleva EY, Keaton SA, Grit J, et al. The acute-phase mediator serum amyloid A is associated with symptoms of depression and fatigue. Acta Psychiatr Scand 2017; 135(5): 409-18.
[http://dx.doi.org/10.1111/acps.12730] [PMID: 28374419]
[105]
Wang Q, Su X, Jiang X, et al. iTRAQ technology-based identification of human peripheral serum proteins associated with depression. Neuroscience 2016; 330: 291-325.
[http://dx.doi.org/10.1016/j.neuroscience.2016.05.055] [PMID: 27268281]
[106]
van Dooren FE, Schram MT, Schalkwijk CG, et al. Associations of low grade inflammation and endothelial dysfunction with depression-The Maastricht study. Brain Behav Immun 2016; 56: 390-6.
[http://dx.doi.org/10.1016/j.bbi.2016.03.004] [PMID: 26970354]
[107]
Zinellu A, Paliogiannis P, Carru C, Mangoni AA. Serum amyloid A concentrations, COVID-19 severity and mortality: An updated systematic review and meta-analysis. Int J Infect Dis 2021; 105: 668-74.
[http://dx.doi.org/10.1016/j.ijid.2021.03.025] [PMID: 33737133]
[108]
Lang FM, Lee KM, Teijaro JR, Becher B, Hamilton JA. GM-CSF-based treatments in COVID-19: Reconciling opposing therapeutic approaches. Nat Rev Immunol 2020; 20(8): 507-14.
[http://dx.doi.org/10.1038/s41577-020-0357-7] [PMID: 32576980]
[109]
Temesgen Z, Assi M, Shweta FN, et al. GM-CSF neutralization with lenzilumab in severe COVID-19 pneumonia: A case-cohort study. Mayo Clin Proc 2020; 95(11): 2382-94.
[110]
Neumann J, Prezzemolo T, Vanderbeke L, et al. Increased IL-10-producing regulatory T cells are characteristic of severe cases of COVID-19. Clin Transl Immunology 2020; 9(11): e1204.
[http://dx.doi.org/10.1002/cti2.1204] [PMID: 33209300]
[111]
Huang F, Liu X, Sun X, Li Z. IL‐10 served as an indicator in severe COVID‐19 patients. J Med Virol 2021; 93(3): 1233-5.
[PMID: 33022800]
[112]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[113]
Yang Y, Shen C, Li J, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol 2020; 146(1): 119-127.e4.
[http://dx.doi.org/10.1016/j.jaci.2020.04.027] [PMID: 32360286]
[114]
Tai W, He L, Zhang X, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 2020; 17(6): 613-20.
[http://dx.doi.org/10.1038/s41423-020-0400-4] [PMID: 32203189]
[115]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[116]
Kandikattu HK, Upparahalli Venkateshaiah S, Mishra A. Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev 2019; 47: 83-98.
[http://dx.doi.org/10.1016/j.cytogfr.2019.05.003] [PMID: 31126874]
[117]
Ball HJ, Sanchez-Perez A, Weiser S, et al. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 2007; 396(1): 203-13.
[http://dx.doi.org/10.1016/j.gene.2007.04.010] [PMID: 17499941]
[118]
Braidy N, Guillemin GJ, Grant R. Effects of kynurenine pathway inhibition on NAD metabolism and cell viability in human primary astrocytes and neurons. Int J Tryptophan Res 2011; 4: 29-37.
[119]
Wu H, Gong J, Liu Y. Indoleamine 2, 3-dioxygenase regulation of immune response.(Review). Mol Med Rep 2018; 17(4): 4867-73.
[http://dx.doi.org/10.3892/mmr.2018.8537] [PMID: 29393500]
[120]
Maddison DC, Giorgini F. The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 2015; 40: 134-41.
[http://dx.doi.org/10.1016/j.semcdb.2015.03.002]
[121]
Kunugi H, Hori H, Ogawa S. Biochemical markers subtyping major depressive disorder. Psychiatry Clin Neurosci 2015; 69(10): 597-608.
[http://dx.doi.org/10.1111/pcn.12299] [PMID: 25825158]
[122]
Perlmutter A. Immunological Interfaces: The COVID-19 Pandemic and Depression. Front Neurol 2021; 12: 657004.
[http://dx.doi.org/10.3389/fneur.2021.657004] [PMID: 33967944]
[123]
Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry 2002; 7(5): 468-73.
[http://dx.doi.org/10.1038/sj.mp.4000995] [PMID: 12082564]
[124]
Mackay GM, Forrest CM, Christofides J, et al. Kynurenine metabolites and inflammation markers in depressed patients treated with fluoxetine or counselling. Clin Exp Pharmacol Physiol 2009; 36(4): 425-35.
[http://dx.doi.org/10.1111/j.1440-1681.2008.05077.x] [PMID: 19018805]
[125]
Ogawa S, Fujii T, Koga N, et al. Plasma L-tryptophan concentration in major depressive disorder: new data and meta-analysis. J Clin Psychiatry 2014; 75(9): e906-15.
[126]
Ogyu K, Kubo K, Noda Y, et al. Kynurenine pathway in depression: A systematic review and meta-analysis. Neurosci Biobehav Rev 2018; 90: 16-25.
[http://dx.doi.org/10.1016/j.neubiorev.2018.03.023] [PMID: 29608993]
[127]
Haroon E, Welle JR, Woolwine BJ, et al. Associations among peripheral and central kynurenine pathway metabolites and inflammation in depression. Neuropsychopharmacology 2020; 45(6): 998-1007.
[http://dx.doi.org/10.1038/s41386-020-0607-1] [PMID: 31940661]
[128]
Chirico M, Custer J, Shoyombo I, et al. Kynurenine pathway metabolites selectively associate with impaired associative memory function in depression. Immunity-Health 2020; 8: 100126.
[http://dx.doi.org/10.1016/j.bbih.2020.100126] [PMID: 34589879]
[129]
Thomas T, Stefanoni D, Reisz JA, et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight 2020; 5(14): 140327.
[http://dx.doi.org/10.1172/jci.insight.140327] [PMID: 32559180]
[130]
Danlos FX, Grajeda-Iglesias C, Durand S, et al. Metabolomic analyses of COVID-19 patients unravel stage-dependent and prognostic biomarkers. Cell Death Dis 2021; 12(3): 258.
[http://dx.doi.org/10.1038/s41419-021-03540-y] [PMID: 33707411]
[131]
Angelucci F, Brenè S, Mathé AA. BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 2005; 10(4): 345-52.
[http://dx.doi.org/10.1038/sj.mp.4001637] [PMID: 15655562]
[132]
Schmidt HD, Duman RS. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 2007; 18(5-6): 391-418.
[http://dx.doi.org/10.1097/FBP.0b013e3282ee2aa8] [PMID: 17762509]
[133]
Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59(12): 1116-27.
[http://dx.doi.org/10.1016/j.biopsych.2006.02.013] [PMID: 16631126]
[134]
Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J Affect Disord 2015; 174: 432-40.
[http://dx.doi.org/10.1016/j.jad.2014.11.044] [PMID: 25553404]
[135]
Aydemir O, Deveci A, Taneli F. The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: A preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29(2): 261-5.
[http://dx.doi.org/10.1016/j.pnpbp.2004.11.009] [PMID: 15694233]
[136]
Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 2020; 76: 14-20.
[http://dx.doi.org/10.1016/j.ejim.2020.04.037] [PMID: 32336612]
[137]
Azoulay D, Shehadeh M, Chepa S, et al. Recovery from SARS-CoV-2 infection is associated with serum BDNF restoration. J Infect 2020; 81(3): e79-81.
[http://dx.doi.org/10.1016/j.jinf.2020.06.038] [PMID: 32569603]