A Review on Nanofluids: Synthesis, Stability, and Uses in the Manufacturing Industry

Page: [303 - 318] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Nanofluids are a new class of nanomaterials suspended in a base liquid. Nanofluids have shown extremely distinctive properties that give tremendous opportunities for a wide range of applications. Nanofluids are a novel group of heat transfer fluids that have attracted the attention of researchers from various fields due to their intensive thermal properties. This systematic review highlights the synthesis, stability, physical treatment, and applications of nanofluids in various sectors. Nanofluids are used in different sectors as the coolant in machinery, cooling of electronics, in chillers, cooling of diesel electronics generators, in a boiler cool gas reductions, and the manufacturing industry. The manufacturing process is one of the most fundamental and well-proven industrial processes in product- based industries. Cutting fluids play a critical function in lowering manufacturing cycle time as well as cutting costs during the machining process. A review of the importance of the machining process, as well as the use of nanofluids as cutting fluids, has been investigated in this work. To achieve these goals, cutting force, surface quality, tool and workpiece interface temperature, tool geometry, and the impacts of environmental situations were studied. Various vital specifications, such as the type of nanoparticle, a cutting tool used, work material type, and machining processes like turning, milling, drilling, and grinding were studied and thoroughly summarised in this work. If the machining parameters were used correctly, a greater heat transfer rate would be observed due to changes in lubricating characteristics and physical parameters.

Keywords: nanofluid, machinery, turning, milling, drilling, grinding

Graphical Abstract

[1]
Ilyas SU, Pendyala R, Marneni N. Stability of nanofluids. In: Engineering applications of nanotechnology. Cham: Springer 2017; pp. 1-31.
[http://dx.doi.org/10.1007/978-3-319-29761-3_1]
[2]
Rohit SK, Sonawane SS, Wasewar KL. Study on concentric tube heat exchanger heat transfer performance using Al2O3-water based nanofluids. Int Commun Heat Mass Transf 2013; 49.
[3]
Malika M, Sonawane SS. Review on application of nanofluid/nano particle as water disinfectant. J Indian Assoc Environ Manage 2019; 39(1-4): 21-4.
[4]
Sajid MU, Ali HM. Recent advances in the application of nanofluids in heat transfer devices: A critical review. Renew Sustain Energy Rev 2019; 103: 556-92.
[http://dx.doi.org/10.1016/j.rser.2018.12.057]
[5]
Thakur P, Sonawane SS. Application of nanofluids in CO2 capture and extraction from waste water. J Indian Assoc Environ Manag 2019; 39(1-4): 4-8.
[6]
Hakke V, Sonawane S, Anandan S, Sonawane S, Ashokkumar M. Process intensification approach using microreactors for synthesizing nanomaterials—A critical review. Nanomaterials 2021; 11(1): 98.
[http://dx.doi.org/10.3390/nano11010098].] [PMID: 33406661]
[7]
Sheikhpour M, Arabi M, Kasaeian A, Rokn Rabei A, Taherian Z. Role of nanofluids in drug delivery and biomedical technology: Methods and applications. Nanotechnol Sci Appl 2020; 13: 47-59.
[http://dx.doi.org/10.2147/NSA.S260374].] [PMID: 32801669]
[8]
Coco-Enríquez L, Muñoz-Antón J, Martínez-Val JM. New text comparison between CO2 and other supercritical working fluids (ethane, Xe, CH4, and N2) in line- focusing solar power plants coupled to supercritical Brayton power cycles. Int J Hydrogen Energy 2017; 42(28): 17611-31.
[http://dx.doi.org/10.1016/j.ijhydene.2017.02.071]
[9]
Memon AG, Memon RA. Thermodynamic analysis of a trigeneration system proposed for residential application. Energy Convers Manage 2017; 145: 182-203.
[http://dx.doi.org/10.1016/j.enconman.2017.04.081]
[10]
Yue C, Han D, Pu W, He W. Parametric analysis of a vehicle power and cooling/heating cogeneration system. Energy 2016; 115: 800-10.
[http://dx.doi.org/10.1016/j.energy.2016.09.072]
[11]
Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab 1995.
[12]
Kumar N, Shriram S. Sonawane, Experimental study of thermal conductivity and convective heat transfer enhancement using CuO and TiO2 nanoparticles. Int Commun Heat Mass Transf 2016; 76: 98-107.
[13]
Malika M, Sonawane SS. A Comprehensive review on the effect of various ultrasonication parameters on the stability of nanofluid. J Indian Assoc Environ Manage 2021; 41(4): 19-25.
[14]
Thakur P, Sonawane SS, Bhaisare S, Pandey N. Enhancement of pool boiling performance using SWCNT based nanofluids: A sustainable method for the wastewater heat recovery. J Indian Assoc Environ Manage 2021; 41(4): 7-18.
[15]
Kumar N, Sonawane SH, Shriram S. Sonawane. Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluids. Int Commun Heat Mass Transf 2018; 90: 1-10.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.10.001]
[16]
Kumar N, Urkude N, Sonawane SS, Sonawane SH. Experimental study on pool boiling and critical heat flux enhancement of metal oxides based nanofluids. Int Commun Heat Mass Transf 2018; 96: 37-42.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.05.018]
[17]
Islam T. Ali Imran, Naz Iffat, Kayshar Md Shahidullah Appraisal of nanotechnology for sustainable environmental remediation, sustainable nanotechnology for environmental remediation. Micro Nano Technologies 2022; pp. 3-31.
[18]
Liu Y, Chen H, Zhu N. et al.Detection and remediation of mercury contaminated environment by nanotechnology: Progress and challenges. Environ Pollut 2022; 293: 118557.
[http://dx.doi.org/10.1016/j.envpol.2021.118557].] [PMID: 34813883]
[19]
Anjos de Jesus R, Assis GC, Oliveira RJ, Jose ASC. et al.Environmental remediation potentialities of metal and metal oxide nanoparticles: Mechanistic biosynthesis, influencing factors, and application standpoint. Environ Technol Innov 2021; 24: 101851.
[http://dx.doi.org/10.1016/j.eti.2021.101851]
[20]
Alshareeda AT, Khatijah MN, Al-Sowayan BS. Nanotechnology: A revolutionary approach to prevent breast cancer recurrence. Asian J Surg 2022; 1-5.
[21]
Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular diseases. Innovation 2022; 3(2): 100214.
[http://dx.doi.org/10.1016/j.xinn.2022.100214].] [PMID: 35243468]
[22]
Elsaid K, Olabi AG, Wilberforce T, Abdelkareem MA, Sayed ET. Environmental impacts of nanofluids: A review. Sci Total Environ 2021; 763: 144202.
[http://dx.doi.org/10.1016/j.scitotenv.2020.144202].] [PMID: 33385840]
[23]
Ali Hafiz Muhammad, Babar Hamza, Shah Tayyab Raza, Sajid Muhammad Usman, Qasim Muhammad Arslan, Javed Samina. Preparation techniques of TiO2 nanofluids and challenges: A Review. Appl Sci 2018; 8(4): 587.
[http://dx.doi.org/10.3390/app8040587]
[24]
Sonawane S S, Malika M. Review on CNT based hybrid nanofluids performance in the nano lubricant application. J Indian Assoc Environ Manage 2021; 41(3): 01-16.
[25]
Sonawane SS, Khedkar RS, Wasewar KL. Effect of Sonication time on enhancement of effective thermal conductivity of nano TiO2-Water, ethylene glycol and paraffin oil nanofluids and models comparisons. J Exp Nanosci 2015; 10(4): 310-22.
[http://dx.doi.org/10.1080/17458080.2013.832421]
[26]
Abbasi SM, Rashidi A, Nemati A, Arzani K. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram Int 2013; 39(4): 3885-91.
[http://dx.doi.org/10.1016/j.ceramint.2012.10.232]
[27]
Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3– Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A Physicochem Eng Asp 2011; 388(1): 41-8.
[http://dx.doi.org/10.1016/j.colsurfa.2011.08.005]
[28]
Yu W, Xie H. A review on nanofluids: Preparation, stability mechanisms, and applications. J Nanomater 2012; 1-17.
[http://dx.doi.org/10.1155/2012/435873]
[29]
Ali N, Bahman AM, Aljuwayhel NF, Ebrahim SA, Mukherjee S, Alsayegh A. Carbon-based nanofluids and their advances towards heat transfer applications - A review; Nanomaterials 2021; 11: 1628.
[http://dx.doi.org/10.3390/nano11061628]
[30]
Khedkar RS, Kiran SA, Sonawane SS, Wasewar KL, Umare SS. Thermo-physical characterization of paraffin based Fe3O4 nanofluids.Procedia Engineering Carbon-Sci In: Technol. 2013; 51: pp. 342-6.
[31]
Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: A critical review. Int J Heat Mass Transf 2018; 126: 211-34.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.05.021]
[32]
Babar H, Ali HM. Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. J Mol Liq 2019; 281: 598-633.
[http://dx.doi.org/10.1016/j.molliq.2019.02.102]
[33]
Gupta M, Singh V, Kumar S, Kumar S, Dilbaghi N, Said Z. Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. J Clean Prod 2018; 190: 169-92.
[http://dx.doi.org/10.1016/j.jclepro.2018.04.146]
[34]
Mukherjee S, Paria S. Preparation and stability of nanofluids-a review. IOSR J Mech Civ Eng 2013; 9(2): 63-9.
[http://dx.doi.org/10.9790/1684-0926369]
[35]
Babita, Sharma SK, Gupta SM. Preparation and evaluation of stable nanofluids for heat transfer application: A review. Exp Therm Fluid Sci 2016; 79: 202-12.
[http://dx.doi.org/10.1016/j.expthermflusci.2016.06.029]
[36]
Zawrah MF, Khatta RM, Girgis LG, El Daidamony H, Abdel Aziz RE. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J 2016; 12(3): 227-34.
[37]
Li Y, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol 2009; 196(2): 89-101.
[http://dx.doi.org/10.1016/j.powtec.2009.07.025]
[38]
Sadri R, Ahmadi G, Togun H. et al.An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett 2014; 9(1): 151.
[http://dx.doi.org/10.1186/1556-276X-9-151].] [PMID: 24678607]
[39]
Amrollahi A, Hamidi AA, Rashidi AM. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology 2008; 19(31): 315701.
[http://dx.doi.org/10.1088/0957-4484/19/31/315701].] [PMID: 21828793]
[40]
Bobbo S, Buonomo B, Manca O, Vigna S, Fedele L. Analysis of the parameters required to properly define nanofluids for heat transfer applications. Fluids 2021; 6(2): 65.
[http://dx.doi.org/10.3390/fluids6020065]
[41]
Mustafa Rifat, Rahman Md Habibor, Debashis. A review on application of nanofluid MQL in machining. AIP Conf Proc. 2017; 1919: p. 020015.
[http://dx.doi.org/10.1063/1.5018533]
[42]
Sharma AK, Tiwari AK, Dixit AR, Singh RK. Nanofluids and Their Engineering Applications. (1st Edition.), CRC Press 2019.
[43]
Krishna PV, Srikant RR, Rao DN. Experimental investigation on the performance of nanoboric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel. Int J Mach Tools Manuf 2010; 50(10): 911-6.
[http://dx.doi.org/10.1016/j.ijmachtools.2010.06.001]
[44]
Rao SN, Satyanarayana B. Experimental estimation of tool wear and cutting temperatures in MQL using cutting fluids with CNT inclusion. Int J Eng Sci Technol 2011; 3(4): 928-31.
[45]
Yan J, Zhang Z, Kuriyagawa T. Effect of nanoparticle lubrication in diamond turning of reaction-bonded SiC. Int J Automot Technol 2011; 5(3): 307-12.
[http://dx.doi.org/10.20965/ijat.2011.p0307]
[46]
Khandekar S, Sankar MR, Agnihotri V, Ramkumar J. Nano-cutting fluid for enhancement of metal cutting performance. Mater Manuf Process 2012; 27(9): 963-7.
[http://dx.doi.org/10.1080/10426914.2011.610078]
[47]
Nam JS, Kim DH, Chung H, Lee SW. Optimization of environmentally benign micro-drilling process with nanofluid minimum quantity lubrication using response surface methodology and genetic algorithm. J Clean Prod 2015; 102: 428-36.
[http://dx.doi.org/10.1016/j.jclepro.2015.04.057]
[48]
Shriram S. Sonawane, Juwar Vijay. Optimization of conditions for an enhancement of thermal conductivity and minimization of viscosity of ethylene glycol based Fe3O4 nanofluid. Appl Therm Eng 2016; 109: 121-9.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.08.066]
[49]
Prasad MMS, Srikant RR. Performance evaluation of nano graphite inclusion in cutting fluids with MQL technique in turning of AISI 1040 steel. Int J Res Eng Technol 2013; 2(11): 381-93.
[http://dx.doi.org/10.15623/ijret.2013.0211058]
[50]
Sayuti M, Sarhan AAD, Salem F. Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J Clean Prod 2014; 67: 265-76.
[http://dx.doi.org/10.1016/j.jclepro.2013.12.052]
[51]
Nam JS, Lee PH, Lee SW. Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication. Int J Mach Tools Manuf 2011; 51(7-8): 649-52.
[http://dx.doi.org/10.1016/j.ijmachtools.2011.04.005]
[52]
Park KH, Ewald B, Kwon PY. Effect of nano-Enhanced Lubricant in Minimum Quantity Lubrication Balling Milling. J Tribol 2011; 133/031803(3): 1-8.
[http://dx.doi.org/10.1115/1.4004339]
[53]
Sarhan AAD, Sayuti M, Hamidi M. Reduction of power and lubricant oil consumption in milling process using a new SiO2 nano lubrication system. Int J Adv Manuf Technol 2012; 63(5-8): 505-12.
[http://dx.doi.org/10.1007/s00170-012-3940-7]
[54]
Sayuti M, Sarhan AAD, Tanaka T, Hamdi M, Saito Y. Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL2017-T4 using carbon onion nanolubrication system. Int J Adv Manuf Technol 2013; 65(9-12): 1493-500.
[http://dx.doi.org/10.1007/s00170-012-4273-2]
[55]
Rahmati B, Sarhan AAD, Sayuti M. Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining. J Clean Prod 2013; 66: 685-91.
[http://dx.doi.org/10.1016/j.jclepro.2013.10.048]
[56]
Sayuti M, Erh OM, Sarhan AAD, Hamdi M. Investigation on the morphology of the machined surface in end milling of aerospace AL6061- T6 for novel uses of SiO2 nanolubrication system. J Clean Prod 2013; 66: 655-63.
[http://dx.doi.org/10.1016/j.jclepro.2013.11.058]
[57]
Sayuti M, Sarhan AAD, Hamdi M. An investigation of optimum SiO2 nanolubrication parameters in end milling of aerospace Al6061-T6 alloy. Int J Adv Manuf Technol 2013; 67(1-4): 833-49.
[http://dx.doi.org/10.1007/s00170-012-4527-z]
[58]
Rahmati B, Sarhan AAD, Sayuti M. Investigating the optimum molybdenum disulfide (MoS2) nanolubrication parameters in CNC milling of AL6061-T6 alloy. Int J Adv Manuf Technol 2014; 70(5-8): 1143-55.
[http://dx.doi.org/10.1007/s00170-013-5334-x]
[59]
Shen B, Malshe AP, Kalita P, Shih AJ. Performance of novel MoS2 nanoparticles based grinding fluids in minimum quantity lubrication grinding. Trans North Am Manuf Res Inst SME 2008; 36: 357-64.
[60]
Shen B, Shih AJ, Tung SC. Application of nanofluids in minimum quantity lubrication grinding. Tribol Trans 2008; 51(6): 730-7.
[http://dx.doi.org/10.1080/10402000802071277]
[61]
Alberts M, Kalaitzidou K, Melkote S. An investigation of graphite nanoplatelets as lubricant in grinding. Int J Mach Tools Manuf 2009; 49(12-13): 966-70.
[http://dx.doi.org/10.1016/j.ijmachtools.2009.06.005]
[62]
Lee PH, Nam TS, Li C, Lee SW. Environmentally-friendly nano-fluid Minimum Quantity Lubrication (MQL) meso-scale grinding process using nanodiamond particles. In 2010 IEEE International Conference on Manufacturing Automation. 2010 Dec 13-15; Hong Kong, China. 2010; pp. 44-9.
[63]
Prabhu S, Vinayagam BK. Nano surface generation of grinding process using carbon nano tubes. Sadhana 2010; 35(6): 747-60.
[http://dx.doi.org/10.1007/s12046-010-0048-3]
[64]
Lee PH, Nam JS, Li C, Lee SW. An experimental study on microgrinding process with nanofluid Minimum Quantity Lubrication (MQL). Int J Precis Eng Manuf 2012; 13(3): 331-8.
[http://dx.doi.org/10.1007/s12541-012-0042-2]
[65]
Setti D, Ghosh S, Rao PV. Application of Nano Cutting Fluid under Minimum Quantity Lubrication (MQL) Technique to Improve Grinding of Ti – 6Al – 4V alloy. World Acad Sci Eng Technol Int J Mechanical Mechatronics Eng 2012; 6: 10.
[66]
Kalita P, Malshe AP, Kumar SA, Yoganath VG, Gurumurthy T. Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. J Manuf Process 2012; 14(2): 160-6.
[http://dx.doi.org/10.1016/j.jmapro.2012.01.001]
[67]
Kalita P, Malshe AP, Rajurkar KP. Study of tribo-chemical lubricant film formation during application of nanolubricants in minimum quantity lubrication (MQL) grinding. CIRP Ann 2012; 61(1): 327-30.
[http://dx.doi.org/10.1016/j.cirp.2012.03.031]
[68]
Prabhu S, Vinayagam BK. AFM investigation in grinding process with nanofluids using Taguchi analysis. Int J Adv Manuf Technol 2012; 60(1-4): 149-60.
[http://dx.doi.org/10.1007/s00170-011-3599-5]
[69]
Mao C, Tang X, Zou H, Huang X, Zhou Z. Investigation of grinding characteristic using nanofluid minimum quantity lubrication. Int J Precis Eng Manuf 2012; 13(10): 1745-52.
[http://dx.doi.org/10.1007/s12541-012-0229-6]
[70]
Mao C, Zou H, Huang X, Zhang J, Zhou Z. The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication. Int J Adv Manuf Technol 2013; 64(9-12): 1791-9.
[http://dx.doi.org/10.1007/s00170-012-4143-y]
[71]
Mao C, Zhang J, Huang Y, Zou H, Huang X, Zhou Z. Investigation on the effect of nanofluid parameters on MQL grinding. Mater Manuf Process 2013; 28(4): 436-42.
[http://dx.doi.org/10.1080/10426914.2013.763970]
[72]
Roy S, Ghosh A. High speed turning of AISI 4140 steel using nanofluid through twin jet SQL system. In International Manufacturing Science and Engineering Conference. June 10-14; Madison, Wisconsin, USA. 2013; p. 55461: 6..
[http://dx.doi.org/10.1115/MSEC2013-1067]
[73]
Shokoohi Y, Shekarian E. Application of nanofluids in machining processes- a review. J Nanosci Technol 2016; 2(1): 59-63.
[74]
Srikan RR, Rao DN, Subrahmanyam MS, Vamsi KP. Applicability of cutting fluids with nanoparticle inclusion as coolants in machining. Proc Inst Mech Eng, Part J J Eng Tribol 2009; 223(2): 221-5.
[75]
Kaufui V. Wong, Leon Omar De. Applications of nanofluids: Current and future. Adv Mech Eng 2010; 2: 1-11.
[76]
Escher W, Brunschwiler T, Shalkevich N. et al.On the cooling of electronics with nanofluids. J Heat Transfer 2011; 133(5): 051401.
[http://dx.doi.org/10.1115/1.4003283]
[77]
Ali Ijam R. Saidur. Nanofluid as a coolant for electronic devices (cooling of electronic devices). Appl Therm Eng 2012; 32: 76-82.
[http://dx.doi.org/10.1016/j.applthermaleng.2011.08.032]
[78]
Colangelo G, Favale E, Milanese M, de Risi A, Laforgia D. Cooling of electronic devices: Nanofluids contribution. Appl Therm Eng 2017; 127: 421-35.
[http://dx.doi.org/10.1016/j.applthermaleng.2017.08.042]
[79]
Bahiraei M, Heshmatian S. Electronics cooling with nanofluids: A critical review. Energy Convers Manage 2018; 172: 438-56.
[80]
Rejeb O, Ghenai C, Bettayeb M. Modeling and simulation analysis of solar absorption chiller driven by nanofluid-based Parabolic Trough Collectors (PTC) under hot climatic conditions. Case Stud Therm Eng 2020; 19: 100624.
[http://dx.doi.org/10.1016/j.csite.2020.100624]
[81]
Bhattad A, Sarkar J, Ghos P. Improving the performance of refrigeration systems by using nanofluids: A comprehensive review. Renew Sustain Energy Rev 2018; 82(3): 3656-69.
[http://dx.doi.org/10.1016/j.rser.2017.10.097]
[82]
Parag P, Thakur Tushar S. Khapane , Sonawane Shriram S. Comparative performance evaluation of fly ash-based hybrid nanofluids in microchannel-based direct absorption solar collector. 2021; 143: 1713-26.
[83]
Bhambore N, Lokhare P, Bhad R, Thakur P, Sonawane S. Numeric and experimental investigation of Fe2O3 based nanofluids in direct absorption solar collectorof. J Indian Chem Soc 2020; 97(10a): 1636-41.
[84]
Kulkarni DP, Vajjha RS, Das DK, Oliva D. Application of aluminum oxide nanofluids in a diesel-electric generator as jacket water coolant. Appl Therm Eng 2008; 28(14-15): 1774-81.
[http://dx.doi.org/10.1016/j.applthermaleng.2007.11.017]
[85]
Kuo KK, Risha GA, Evans BJ, Boyer E. Potential usage of energetic for nanosized powders for combustion and rocket propulsion. Mater Res Soc Proc 2004; 800: 3-14.
[86]
Picking A, Ulyanova P, Frolov Y, Zavyalov S, Schoonman J. Nanomaterials for heterogeneous combustion, propellants, explosives. Propellants Explos Pyrotech 2004; 29(1): 39-48.
[http://dx.doi.org/10.1002/prep.200400025]
[87]
Risha GA, Boyer E, Evans B, Kuo Kenneth K, Malek R. Characterization of nano-sized particles for propulsion applications. Mater Res Soc Proc 2004; 800: 243-54.
[88]
DeLuca LT, Galfetti L, Severni F. et al.Burning of non-aluminized composite rocket propellants. Combust Explos Shock Waves 2005; 41(6): 680-92.
[http://dx.doi.org/10.1007/s10573-005-0080-5]
[89]
Galfetti L, DeLuca LT, Severni F, Colombo G, Medab L, Marrab G. Pre and post-burning analysis of nano-aluminized rocket propellants. Aerosp Sci Technol 2007; 11(1): 26-32.
[http://dx.doi.org/10.1016/j.ast.2006.08.005]
[90]
Khedkar RS, Sonawane SS, Wasewar KL. Effect of sonication time on Enhancement of effective thermal conductivity nano TiO2–water, ethelene glycol and paraffin oil nanofluids. J Exp Nanosci 2015; 10(4): 310-22.
[http://dx.doi.org/10.1080/17458080.2013.832421]
[91]
Khedkar RS, Sonawane SS, Wasewar KL. Synthesis of TiO2 –water nanofluids for its viscosity and dispersion stability study. J Nano Res 2013; 24: 26-33.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.24.26]
[92]
Prasher R, Phelan PE, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 2006; 6(7): 1529-34.
[http://dx.doi.org/10.1021/nl060992s].] [PMID: 16834444]
[93]
Sharma AK, Tiwari AK, Dixit AR. Improved machining performance with nanoparticle enriched cutting fluids under minimum quantity. Mater Today Proc 2015; 2(4-5): 3545-51.
[http://dx.doi.org/10.1016/j.matpr.2015.07.066]
[94]
Khedkar RS, Shrivastava N, Sonawane SS, Wasewar KL. Experimental investigations and theoretical determination of thermal conductivity and viscosity of TiO2–ethylene glycol nanofluids. Int Commun Heat Mass Transf 2016; 73: 54-61.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.02.004]
[95]
Kumar N, Sonawane SS. Experimental study of Fe2 O3/water and Fe2 O3/ethylene glycol nanofluid heat transfer enhancement in a shell and tube heat exchanger. Int Commun Heat Mass Transf 2016; 78: 277-84.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.09.009]
[96]
Khedkar RS, Sonawane SS, Wasewar KL. Heat transfer study on concentric tube heat exchanger using TiO2–water–based nanofluid. Int Commun Heat Mass Transf 2014; 57: 163-9.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.07.011]
[97]
Bashirnerzhad K, Bazri S, Safaei MR. et al.Viscosity of nanofluids: A review of recent experimental studies. Int Commun Heat Mass Transf 2016; 73: 114-23.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.02.005]
[98]
Sharma AK, Tiwari AK, Dixit AR. Mechanism of nanoparticles functioning and effects in machining processes: A review. Mater Today 2015; 2(4-5): 3539-44.
[99]
Nehal B, Praneet L, Rahul B, Parag T, Sonawane SS. Numeric and experimental study of the car radiator performance. J Indian Chem Soc 2020; 97(10a): 1636-41.
[100]
Saidur R, Leong KY, Mohammed HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev 2011; 15(3): 1646-68.
[101]
Eggers JR, Kabelac S. Nanofluids revisited. Appl Therm Eng 2016; 106: 1114-26.
[102]
Gupta M, Singh V, Kumar R, Said Z. A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev 2017; 74: 638-70.
[http://dx.doi.org/10.1016/j.rser.2017.02.073]
[103]
Gupta NK, Tiwari AK, Ghosh SK. Heat transfer mechanisms in heat pipes using nanofluids a review. Exp Therm Fluid Sci 2018; 90: 84-100.
[http://dx.doi.org/10.1016/j.expthermflusci.2017.08.013]
[104]
Mehrpooya M, Dehqani M, Mousavi SA, Moosavian SMA. Heat transfer and economic analyses of using various nanofluids in shell and tube heat exchangers for the cogeneration and solar-driven organic Rankine cycle systems. Int J Low Carbon Technol 2021; 17: 11-22.
[http://dx.doi.org/10.1093/ijlct/ctab075]
[105]
Shamshirgaran SR, Al-Kayiem HH, Sharma KV, Ghasemi M. Review- state of the art of techno-economic of nanofluid-laden flat-plate solar collectors for sustainable accomplishment. Sustainability 2020; 12: 9119.
[http://dx.doi.org/10.3390/su12219119]