Perspectives toward the Development of Advanced Materials Based on Bacterial Polysaccharides

Page: [1963 - 1970] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Bacteria and their enzymatic machinery, also called bacterial cell factories, produce a diverse variety of biopolymers, such as polynucleotides, polypeptides and polysaccharides, with different and fundamental cellular functions. Polysaccharides are the most widely used biopolymers, especially in biotechnology. This type of biopolymer, thanks to its physical and chemical properties, can be used to create a wide range of advanced bio-based materials, hybrid materials and nanocomposites for a variety of exciting biomedical applications. In contrast to synthetic polymers, bacterial polysaccharides have several advantages, such as biocompatibility, biodegradability, low immunogenicity, and non-toxicity, among others. On the other hand, the main advantage of bacterial polysaccharides compared to polymers extracted from other natural sources is that their physicochemical properties, such as purity, porosity, and malleability, among others, can be adapted to a specific application with the use of biotechnological tools and/or chemical modifications. Another great reason for using bacterial polysaccharides is due to the possibility of developing advanced materials from them using bacterial factories that can metabolize raw materials (recycling of industrial and agricultural wastes) that are readily available and in large quantities. Moreover, through this strategy, it is possible to curb environmental pollution. In this article, we project the desire to move towards large-scale production of bacterial polysaccharides taking into account the benefits, weaknesses and prospects in the near future for the development of advanced biological materials for medical and pharmaceutical purposes.

Keywords: Bacterial polysaccharides, advanced bio-based materials, bacterial cell factories, hydrogels, films, nanoparticles, waste materials.

[1]
Varma, K.; Gopi, S. Biopolymers and their role in medicinal and pharmaceutical applications. Biopolym. Industrial Appl., 2021, 2021, 175-175.
[http://dx.doi.org/10.1016/B978-0-12-819240-5.00007-9]
[2]
Ivanov, V.; Stabnikov, V. 2-Basic concepts on biopolymers and biotechnological admixtures for eco-efficient construction materials. In: Biopolymers and biotech admixtures for eco-efficient construction materials; Pacheco-Torgal, F.; Ivanov, V.; Karak, N.; Jonkers, H., Eds.; Elsevier: Amsterdam, 2016; pp. 13-35.
[http://dx.doi.org/10.1016/B978-0-08-100214-8.00002-6]
[3]
Yadav, P.; Yadav, H.; Shah, V.G.; Shah, G.; Dhaka, G. Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. J. Clin. Diagn. Res., 2015, 9(9), ZE21-ZE25.
[http://dx.doi.org/10.7860/JCDR/2015/13907.6565] [PMID: 26501034]
[4]
Lee, K.S.; Kwon, T.H.; Park, T.; Jeong, M.S. Microbiology and microbial products for enhanced oil recovery. In: Theory and practice in microbial enhanced oil recovery; Lee, K.S.; Kwon, T.H.; Park, T.; Jeong, M.S., Eds.; Gulf Professional Publishing: Cambridge, MA, USA, 2020; pp. 27-65.
[http://dx.doi.org/10.1016/B978-0-12-819983-1.00002-8]
[5]
Schmid, J.; Sieber, V.; Rehm, B. Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Front. Microbiol., 2015, 6, 496.
[http://dx.doi.org/10.3389/fmicb.2015.00496] [PMID: 26074894]
[6]
Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; Classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J. Polym. Environ., 2021, 29(8), 2359-2371.
[http://dx.doi.org/10.1007/s10924-021-02052-2] [PMID: 33526994]
[7]
Mahmoud, Y.A.G.; El-Naggar, M.E.; Abdel-Megeed, A.; El-Newehy, M. Recent advancements in microbial polysaccharides: Synthesis and applications. Polymers (Basel), 2021, 13(23), 4136.
[http://dx.doi.org/10.3390/polym13234136] [PMID: 34883639]
[8]
Barclay, T.G.; Day, C.M.; Petrovsky, N.; Garg, S. Review of polysaccharide particle-based functional drug delivery. Carbohydr. Polym., 2019, 221, 94-112.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.067] [PMID: 31227171]
[9]
Moradali, M.F.; Rehm, B.H.A. Bacterial biopolymers: From pathogenesis to advanced materials. Nat. Rev. Microbiol., 2020, 18(4), 195-210.
[http://dx.doi.org/10.1038/s41579-019-0313-3] [PMID: 31992873]
[10]
Pandit, A.; Kumar, R. A review on production, characterization and application of bacterial cellulose and its biocomposites. J. Polym. Environ., 2021, 29(9), 2738-2755.
[http://dx.doi.org/10.1007/s10924-021-02079-5]
[11]
Sharma, C.; Bhardwaj, N.K. Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Mater. Sci. Eng. C, 2019, 104, 109963.
[http://dx.doi.org/10.1016/j.msec.2019.109963] [PMID: 31499992]
[12]
Mokhtarzadeh, A.; Alibakhshi, A.; Hejazi, M.; Omidi, Y.; Ezzati Nazhad Dolatabadi, J. Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering. Trends Analyt. Chem., 2016, 82, 367-384.
[http://dx.doi.org/10.1016/j.trac.2016.06.013]
[13]
Vandezande, P. Next-generation pervaporation membranes: Recent trends, challenges and perspectives. In: Pervaporation, Vapour Permeation and Membrane Distillation; Elsevier, 2015; pp. 107-141.
[http://dx.doi.org/10.1016/B978-1-78242-246-4.00005-2]
[14]
Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel), 2021, 13(7), 1105.
[http://dx.doi.org/10.3390/polym13071105] [PMID: 33808492]
[15]
Garrison, T.; Murawski, A.; Quirino, R. Bio-based polymers with potential for biodegradability. Polymers (Basel), 2016, 8(7), 262.
[http://dx.doi.org/10.3390/polym8070262] [PMID: 30974537]
[16]
Amini, S.; Salehi, H.; Setayeshmehr, M.; Ghorbani, M. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. Polym. Adv. Technol., 2021, 32(6), 2267-2289.
[http://dx.doi.org/10.1002/pat.5263]
[17]
Baranov, N.; Popa, M.; Atanase, L.I.; Ichim, D.L. Polysaccharide-based drug delivery systems for the treatment of periodontitis. Molecules, 2021, 26(9), 2735.
[http://dx.doi.org/10.3390/molecules26092735] [PMID: 34066568]
[18]
Laubach, J.; Joseph, M.; Brenza, T.; Gadhamshetty, V.; Sani, R.K. Exopolysaccharide and biopolymer-derived films as tools for transdermal drug delivery. J. Control. Release, 2021, 329, 971-987.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.027] [PMID: 33091530]
[19]
Blanco, F.G.; Hernández, N.; Rivero-Buceta, V.; Maestro, B.; Sanz, J.M.; Mato, A.; Hernández-Arriaga, A.M.; Prieto, M.A. From residues to added-value bacterial biopolymers as nanomaterials for biomedical applications. Nanomaterials (Basel), 2021, 11(6), 1492.
[http://dx.doi.org/10.3390/nano11061492] [PMID: 34200068]
[20]
Możejko-Ciesielska, J.; Kiewisz, R. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res., 2016, 192, 271-282.
[http://dx.doi.org/10.1016/j.micres.2016.07.010] [PMID: 27664746]
[21]
Anton-Sales, I.; Beekmann, U.; Laromaine, A.; Roig, A.; Kralisch, D. Opportunities of bacterial cellulose to treat epithelial tissues. Curr. Drug Targets, 2019, 20(8), 808-822.
[http://dx.doi.org/10.2174/1389450120666181129092144] [PMID: 30488795]
[22]
Hernández-Arriaga, A.M.; Campano, C.; Rivero-Buceta, V.; Prieto, M.A. When microbial biotechnology meets material engineering. Microb. Biotechnol., 2022, 15(1), 149-163.
[http://dx.doi.org/10.1111/1751-7915.13975] [PMID: 34818460]
[23]
Kalyani, P.; Khandelwal, M. Modulation of morphology, water uptake/retention, and rheological properties by in situ modification of bacterial cellulose with the addition of biopolymers. Cellulose, 2021, 28(17), 11025-11036.
[http://dx.doi.org/10.1007/s10570-021-04256-0]
[24]
Naomi, R.; Bt Hj Idrus, R.; Fauzi, M.B. Plant vs. bacterial-derived cellulose for wound healing: A review. Int. J. Environ. Res. Public Health, 2020, 17(18), 6803.
[http://dx.doi.org/10.3390/ijerph17186803] [PMID: 32961877]
[25]
de Amorim, J.D.P.; de Souza, K.C.; Duarte, C.R.; da Silva Duarte, I.; de Assis Sales Ribeiro, F.; Silva, G.S.; de Farias, P.M.A.; Stingl, A.; Costa, A.F.S.; Vinhas, G.M.; Sarubbo, L.A. Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett., 2020, 18(3), 851-869.
[http://dx.doi.org/10.1007/s10311-020-00989-9]
[26]
Shroff, P.; Parikh, S. Production and characterization of alginate extracted from Paenibacillus riograndensis. RJLBPCS, 2018, 4(6), 560-575.
[http://dx.doi.org/10.1026479/20180406]
[27]
Öner, E.T.; Hernández, L.; Combie, J. Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnol. Adv., 2016, 34(5), 827-844.
[http://dx.doi.org/10.1016/j.biotechadv.2016.05.002] [PMID: 27178733]
[28]
Lahiri, D.; Nag, M.; Dutta, B.; Dey, A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Abdul Kari, Z.; Mohd Noor, N.H.; Ray, R.R. Bacterial cellulose: Production, characterization, and application as antimicrobial agent. Int. J. Mol. Sci., 2021, 22(23), 12984.
[http://dx.doi.org/10.3390/ijms222312984] [PMID: 34884787]
[29]
Kaur, R.; Panwar, D.; Panesar, P.S. Biotechnological approach for valorization of whey for value-added products. In: Food Industry Wastes; Academic Press: Massachusetts, USA, 2020; pp. 275-302.
[http://dx.doi.org/10.1016/B978-0-12-817121-9.00013-9]
[30]
Roy, A.; Shrivastava, S.L.; Mandal, S.M. Self-assembled carbohydrate nanostructures: Synthesis strategies to functional application in food. In: Novel Approaches of Nanotechnology in Food; Academic Press: Massachusetts, USA, 2016; pp. 133-164.
[http://dx.doi.org/10.1016/B978-0-12-804308-0.00005-4]
[31]
Castro-Muñoz, R.; González-Valdez, J. New trends in biopolymer-based membranes for pervaporation. Molecules, 2019, 24(19), 3584.
[http://dx.doi.org/10.3390/molecules24193584] [PMID: 31590357]
[32]
Gonzalez-Miro, M.; Chen, S.; Gonzaga, Z.J.; Evert, B.; Wibowo, D.; Rehm, B.H.A. Polyester as antigen carrier toward particulate vaccines. Biomacromolecules, 2019, 20(9), 3213-3232.
[http://dx.doi.org/10.1021/acs.biomac.9b00509] [PMID: 31122016]
[33]
Horue, M.; Rivero Berti, I.; Cacicedo, M.L.; Castro, G.R. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review. Bioresour. Technol., 2021, 340, 125671.
[http://dx.doi.org/10.1016/j.biortech.2021.125671] [PMID: 34333348]
[34]
Mallakpour, S.; Azadi, E.; Hussain, C.M. Chitosan, alginate, hyaluronic acid, gums, and β-glucan as potent adjuvants and vaccine delivery systems for viral threats including SARS-CoV-2: A review. Int. J. Biol. Macromol., 2021, 182, 1931-1940.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.155] [PMID: 34048834]
[35]
Sukan, A.; Roy, I.; Keshavarz, T. Dual production of biopolymers from bacteria. Carbohydr. Polym., 2015, 126, 47-51.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.001] [PMID: 25933521]
[36]
Forero-Doria, O.; Polo, E.; Marican, A.; Guzmán, L.; Venegas, B.; Vijayakumar, S.; Wehinger, S.; Guerrero, M.; Gallego, J.; Durán-Lara, E.F. Supramolecular hydrogels based on cellulose for sustained release of therapeutic substances with antimicrobial and wound healing properties. Carbohydr. Polym., 2020, 242, 116383.
[http://dx.doi.org/10.1016/j.carbpol.2020.116383] [PMID: 32564841]
[37]
Ghosh, S.; Lahiri, D.; Nag, M.; Dey, A.; Sarkar, T.; Pathak, S.K.; Atan Edinur, H.; Pati, S.; Ray, R.R. Bacterial biopolymer: Its role in pathogenesis to effective biomaterials. Polymers (Basel), 2021, 13(8), 1242.
[http://dx.doi.org/10.3390/polym13081242] [PMID: 33921239]
[38]
De Vuyst, L.; De Vin, F. Exopolysaccharides from lactic acid bacteria. In: Comprehensive Glycoscience. From Chemistry to Systems Biology; Elsevier Ltd, 2007; pp. 477-519.
[http://dx.doi.org/10.1016/B978-044451967-2/00129-X]
[39]
Rodríguez-Carmona, E.; Villaverde, A. Nanostructured bacterial materials for innovative medicines. Trends Microbiol., 2010, 18(9), 423-430.
[http://dx.doi.org/10.1016/j.tim.2010.06.007] [PMID: 20674365]
[40]
de Siqueira, E.C.; Rebouças, J.S.; Pinheiro, I.O.; Formiga, F.R. Levan-based nanostructured systems: An overview. Int. J. Pharm., 2020, 580, 119242.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119242] [PMID: 32199961]
[41]
Demirci, T.; Hasköylü, M.E.; Eroğlu, M.S.; Hemberger, J.; Toksoy Öner, E. Levan-based hydrogels for controlled release of Amphotericin B for dermal local antifungal therapy of Candidiasis. Eur. J. Pharm. Sci., 2020, 145, 105255.
[http://dx.doi.org/10.1016/j.ejps.2020.105255] [PMID: 32032777]
[42]
Ahmad Raus, R.; Wan Nawawi, W.M.F.; Nasaruddin, R.R. Alginate and alginate composites for biomedical applications. Asian J. Pharm. Sci., 2021, 16(3), 280-306.
[http://dx.doi.org/10.1016/j.ajps.2020.10.001] [PMID: 34276819]
[43]
Kumar, A.; Rao, K.M.; Han, S.S. Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydr. Polym., 2018, 180, 128-144.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.009] [PMID: 29103488]
[44]
Spera, R.; Nobile, S.; Trapani, L. Gellan gum for tissue engineering applications: A mini review. Biomed. J. Sci. Tech. Res., 2018, 7(2), 5785-5786.
[http://dx.doi.org/10.26717/BJSTR.2018.07.001474]
[45]
Carvalho, L.T.; Vieira, T.A.; Zhao, Y.; Celli, A.; Medeiros, S.F.; Lacerda, T.M. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int. J. Biol. Macromol., 2021, 183, 1514-1539.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.025] [PMID: 33989687]
[46]
de Oliveira, J.D.; Carvalho, L.S.; Gomes, A.M.V.; Queiroz, L.R.; Magalhães, B.S.; Parachin, N.S. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb. Cell Fact., 2016, 15(1), 119.
[http://dx.doi.org/10.1186/s12934-016-0517-4] [PMID: 27370777]
[47]
Kim, H.; Jeong, H.; Han, S.; Beack, S.; Hwang, B.W.; Shin, M.; Oh, S.S.; Hahn, S.K. Hyaluronate and its derivatives for customized biomedical applications. Biomaterials, 2017, 123, 155-171.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.029] [PMID: 28171824]
[48]
Pacheco-Leyva, I.; Guevara Pezoa, F.; Díaz-Barrera, A. Alginate biosynthesis in Azotobacter vinelandii: Overview of molecular mechanisms in connection with the oxygen availability. Int. J. Polym. Sci., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/2062360]