Current Medicinal Chemistry

Author(s): Xinjie Lu*

DOI: 10.2174/0929867329666220629140540

Structure and Function of Ligand CX3CL1 and its Receptor CX3CR1 in Cancer

Page: [6228 - 6246] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

The C-X3-C motif chemokine ligand (CX3CL)1 (also known as Fractalkine) and its receptor CX3CR1 (also known as G-protein coupled receptor 13) are expressed on the membranes of many different cells such as epithelial cells, dendritic cells, smooth muscle cells, and neurons. CX3CR1 is primarily expressed on monocytes, macrophages, dendritic cells, T cells, and natural killer cells. The binding of CX3CL1 to CX3CR1 induces the activation of heterotrimeric G proteins associated with this receptor. In addition, it triggers the signal pathways of MAPK and AKT, which play essential roles in tumour biology. Mechanistically, the CX3CL1-CX3CR1 axis has an antitumour role by recruiting antitumoural immune cells such as NK cells and T cells into the tumour microenvironment to control tumour growth. On the other hand, accumulated evidence indicates that the CX3CL1-CX3CR1 axis also activates a pro-tumoral response. This review will focus on the unique structural biology features of CX3CL1 and CX3CR1, their interactions in tumour inflammatory response, and antitumour effects, which highlights possible potential therapeutic targets.

Keywords: CX3CL1, CX3CR1, angiogenesis, chemoattractant, remodelling, tumour.

[1]
Finishing the euchromatic sequence of the human genome. Nature, 2004, 431(7011), 931-945.
[http://dx.doi.org/10.1038/nature03001] [PMID: 15496913]
[2]
Pan, Y.; Lloyd, C.; Zhou, H.; Dolich, S.; Deeds, J.; Gonzalo, J.A.; Vath, J.; Gosselin, M.; Ma, J.; Dussault, B.; Woolf, E.; Alperin, G.; Culpepper, J.; Gutierrez-Ramos, J.C.; Gearing, D. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature, 1997, 387(6633), 611-617.
[http://dx.doi.org/10.1038/42491] [PMID: 9177350]
[3]
Bazan, J.F.; Bacon, K.B.; Hardiman, G.; Wang, W.; Soo, K.; Rossi, D.; Greaves, D.R.; Zlotnik, A.; Schall, T.J. A new class of membrane-bound chemokine with a CX3C motif. Nature, 1997, 385(6617), 640-644.
[http://dx.doi.org/10.1038/385640a0] [PMID: 9024663]
[4]
Zlotnik, A.; Yoshie, O. The chemokine superfamily revisited. Immunity, 2012, 36(5), 705-716.
[http://dx.doi.org/10.1016/j.immuni.2012.05.008] [PMID: 22633458]
[5]
Moser, B.; Wolf, M.; Walz, A.; Loetscher, P. Chemokines: Multiple levels of leukocyte migration control. Trends Immunol., 2004, 25(2), 75-84.
[http://dx.doi.org/10.1016/j.it.2003.12.005] [PMID: 15102366]
[6]
Strieter, R.M.; Polverini, P.J.; Kunkel, S.L.; Arenberg, D.A.; Burdick, M.D.; Kasper, J.; Dzuiba, J.; Van Damme, J.; Walz, A.; Marriott, D.; Chan, S-Y.; Roczniak, S.; Shanafelt, A.B. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem., 1995, 270(45), 27348-27357.
[http://dx.doi.org/10.1074/jbc.270.45.27348] [PMID: 7592998]
[7]
Heidemann, J.; Ogawa, H.; Dwinell, M.B.; Rafiee, P.; Maaser, C.; Gockel, H.R.; Otterson, M.F.; Ota, D.M.; Lügering, N.; Domschke, W.; Binion, D.G. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J. Biol. Chem., 2003, 278(10), 8508-8515.
[http://dx.doi.org/10.1074/jbc.M208231200] [PMID: 12496258]
[8]
Kumaravel, S.; Singh, S.; Roy, S.; Venkatasamy, L.; White, T.K.; Sinha, S.; Glaser, S.S.; Safe, S.H.; Chakraborty, S. CXCL11-CXCR3 axis mediates tumor lymphatic cross talk and inflammation-induced tumor, promoting pathways in head and neck cancers. Am. J. Pathol., 2020, 190(4), 900-915.
[http://dx.doi.org/10.1016/j.ajpath.2019.12.004] [PMID: 32035061]
[9]
Romagnani, P.; Annunziato, F.; Lasagni, L.; Lazzeri, E.; Beltrame, C.; Francalanci, M.; Uguccioni, M.; Galli, G.; Cosmi, L.; Maurenzig, L.; Baggiolini, M.; Maggi, E.; Romagnani, S.; Serio, M. Cell cycle–dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J. Clin. Invest., 2001, 107(1), 53-63.
[http://dx.doi.org/10.1172/JCI9775] [PMID: 11134180]
[10]
Yang, J.; Richmond, A. The angiostatic activity of interferon-inducible protein-10/CXCL10 in human melanoma depends on binding to CXCR3 but not to glycosaminoglycan. Mol. Ther., 2004, 9(6), 846-855.
[http://dx.doi.org/10.1016/j.ymthe.2004.01.010] [PMID: 15194051]
[11]
Van Raemdonck, K.; Gouwy, M.; Lepers, S.A.; Van Damme, J.; Struyf, S. CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: Involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase. Angiogenesis, 2014, 17(3), 631-640.
[http://dx.doi.org/10.1007/s10456-014-9417-6] [PMID: 24469069]
[12]
Rollins, B.J. Chemokines. Blood, 1997, 90(3), 909-928.
[http://dx.doi.org/10.1182/blood.V90.3.909] [PMID: 9242519]
[13]
Fernandez, E.J.; Lolis, E. Structure, function, and inhibition of chemokines. Annu. Rev. Pharmacol. Toxicol., 2002, 42(1), 469-499.
[http://dx.doi.org/10.1146/annurev.pharmtox.42.091901.115838] [PMID: 11807180]
[14]
Matsumiya, T.; Ota, K.; Imaizumi, T.; Yoshida, H.; Kimura, H.; Satoh, K. Characterization of synergistic induction of CX3CL1/fractalkine by TNF-alpha and IFN-gamma in vascular endothelial cells: An essential role for TNF-alpha in post-transcriptional regulation of CX3CL1. J. Immunol., 2010, 184(8), 4205-4214.
[http://dx.doi.org/10.4049/jimmunol.0903212] [PMID: 20231691]
[15]
Kasama, T.; Kasama, T.; Takahashi, R.; Odai, T.; Wakabayashi, K.; Kanemitsu, H.; Nohtomi, K.; Takeuchi, H.T.; Matsukura, S.; Tezuka, M. Synergistic induction of CX3CL1 by TNF alpha and IFN gamma in osteoblasts from rheumatoid arthritis: Involvement of NF-kappa B and STAT-1 signaling pathways. J. Inflamm. Res., 2008, 1, 19-28.
[http://dx.doi.org/10.2147/JIR.S4019] [PMID: 22096344]
[16]
Isozaki, T.; Otsuka, K.; Sato, M.; Takahashi, R.; Wakabayashi, K.; Yajima, N.; Miwa, Y.; Kasama, T. Synergistic induction of CX3CL1 by interleukin-1β and interferon-γ in human lung fibroblasts: Involvement of signal transducer and activator of transcription 1 signaling pathways. Transl. Res., 2011, 157(2), 64-70.
[http://dx.doi.org/10.1016/j.trsl.2010.11.007] [PMID: 21256458]
[17]
Nomiyama, H.; Imai, T.; Kusuda, J.; Miura, R.; Callen, D.F.; Yoshie, O. Human chemokines fractalkine (SCYD1), MDC (SCYA22) and TARC (SCYA17) are clustered on chromosome 16q13. Cytogenet. Cell Genet., 1998, 81(1), 10-11.
[http://dx.doi.org/10.1159/000015000] [PMID: 9691168]
[18]
Murphy, P.M. International union of pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol. Rev., 2002, 54(2), 227-229.
[http://dx.doi.org/10.1124/pr.54.2.227] [PMID: 12037138]
[19]
Liu, L.B.; Xie, F.; Chang, K.K.; Li, M.Q.; Meng, Y.H.; Wang, X.H.; Li, H.; Li, D.J.; Yu, J.J. Hypoxia promotes the proliferation of cervical carcinoma cells through stimulating the secretion of IL-8. Int. J. Clin. Exp. Pathol., 2014, 7(2), 575-583.
[PMID: 24551277]
[20]
Maxwell, P.J.; Gallagher, R.; Seaton, A.; Wilson, C.; Scullin, P.; Pettigrew, J.; Stratford, I.J.; Williams, K.J.; Johnston, P.G.; Waugh, D.J.J. HIF-1 and NF-κB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene, 2007, 26(52), 7333-7345.
[http://dx.doi.org/10.1038/sj.onc.1210536] [PMID: 17533374]
[21]
Gunderson, A.J.; Yamazaki, T.; McCarty, K.; Fox, N.; Phillips, M.; Alice, A.; Blair, T.; Whiteford, M.; O’Brien, D.; Ahmad, R.; Kiely, M.X.; Hayman, A.; Crocenzi, T.; Gough, M.J.; Crittenden, M.R.; Young, K.H. TGFβ suppresses CD8+ T cell expression of CXCR3 and tumor trafficking. Nat. Commun., 2020, 11(1), 1749.
[http://dx.doi.org/10.1038/s41467-020-15404-8] [PMID: 32273499]
[22]
Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; Gawrońska-Szklarz, B.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors-A review of literature. Int. J. Mol. Sci., 2021, 22(2), 843.
[http://dx.doi.org/10.3390/ijms22020843] [PMID: 33467722]
[23]
Amerio, P.; Frezzolini, A.; Feliciani, C.; Verdolini, R.; Teofoli, P.; Pità, O.; Puddu, P. Eotaxins and CCR3 receptor in inflammatory and allergic skin diseases: Therapeutical implications. Curr. Drug Targets Inflamm. Allergy, 2003, 2(1), 81-94.
[http://dx.doi.org/10.2174/1568010033344480] [PMID: 14561178]
[24]
Chen, B.; Zhang, D.; Zhou, J.; Li, Q.; Zhou, L.; Li, S.M.; Zhu, L.; Chou, K.Y.; Zhou, L.; Tao, L.; Lu, L.M. High CCR6/CCR7 expression and Foxp3+ Treg cell number are positively related to the progression of laryngeal squamous cell carcinoma. Oncol. Rep., 2013, 30(3), 1380-1390.
[http://dx.doi.org/10.3892/or.2013.2603] [PMID: 23835793]
[25]
Xiong, T.; Pan, F.; Liang, Q.; Luo, R.; Li, D.; Mo, H.; Zhou, X. Prognostic value of the expression of chemokines and their receptors in regional lymph nodes of melanoma patients. J. Cell. Mol. Med., 2020, 24(6), 3407-3418.
[http://dx.doi.org/10.1111/jcmm.15015] [PMID: 31983065]
[26]
Stievano, L.; Piovan, E.; Amadori, A. C and CX3C chemokines: Cell sources and physiopathological implications. Crit. Rev. Immunol., 2004, 24(3), 205-288.
[http://dx.doi.org/10.1615/CritRevImmunol.v24.i3.40] [PMID: 15482255]
[27]
Umehara, H.; Bloom, E.T.; Okazaki, T.; Nagano, Y.; Yoshie, O.; Imai, T. Fractalkine in vascular biology: From basic research to clinical disease. Arterioscler. Thromb. Vasc. Biol., 2004, 24(1), 34-40.
[http://dx.doi.org/10.1161/01.ATV.0000095360.62479.1F] [PMID: 12969992]
[28]
Mizoue, L.S.; Bazan, J.F.; Johnson, E.C.; Handel, T.M. Solution structure and dynamics of the CX3C chemokine domain of fractalkine and its interaction with an N-terminal fragment of CX3CR1. Biochemistry, 1999, 38(5), 1402-1414.
[http://dx.doi.org/10.1021/bi9820614] [PMID: 9931005]
[29]
Fong, A.M.; Erickson, H.P.; Zachariah, J.P.; Poon, S.; Schamberg, N.J.; Imai, T.; Patel, D.D. Ultrastructure and function of the fractalkine mucin domain in CX(3)C chemokine domain presentation. J. Biol. Chem., 2000, 275(6), 3781-3786.
[http://dx.doi.org/10.1074/jbc.275.6.3781] [PMID: 10660527]
[30]
Imai, T.; Hieshima, K.; Haskell, C.; Baba, M.; Nagira, M.; Nishimura, M.; Kakizaki, M.; Takagi, S.; Nomiyama, H.; Schall, T.J.; Yoshie, O. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell, 1997, 91(4), 521-530.
[http://dx.doi.org/10.1016/S0092-8674(00)80438-9] [PMID: 9390561]
[31]
White, G.E.; Greaves, D.R. Fractalkine: A survivor’s guide: Chemokines as antiapoptotic mediators. Arterioscler. Thromb. Vasc. Biol., 2012, 32(3), 589-594.
[http://dx.doi.org/10.1161/ATVBAHA.111.237412] [PMID: 22247260]
[32]
Winter, A.N.; Subbarayan, M.S.; Grimmig, B.; Weesner, J.A.; Moss, L.; Peters, M.; Weeber, E.; Nash, K.; Bickford, P.C. Two forms of CX3CL1 display differential activity and rescue cognitive deficits in CX3CL1 knockout mice. J. Neuroinflammation, 2020, 17(1), 157.
[http://dx.doi.org/10.1186/s12974-020-01828-y] [PMID: 32410624]
[33]
Hundhausen, C.; Misztela, D.; Berkhout, T.A.; Broadway, N.; Saftig, P.; Reiss, K.; Hartmann, D.; Fahrenholz, F.; Postina, R.; Matthews, V.; Kallen, K.J.; Rose-John, S.; Ludwig, A. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood, 2003, 102(4), 1186-1195.
[http://dx.doi.org/10.1182/blood-2002-12-3775] [PMID: 12714508]
[34]
Garton, K.J.; Gough, P.J.; Blobel, C.P.; Murphy, G.; Greaves, D.R.; Dempsey, P.J.; Raines, E.W. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem., 2001, 276(41), 37993-38001.
[http://dx.doi.org/10.1074/jbc.M106434200] [PMID: 11495925]
[35]
Hoover, D.M.; Mizoue, L.S.; Handel, T.M.; Lubkowski, J. The crystal structure of the chemokine domain of fractalkine shows a novel quaternary arrangement. J. Biol. Chem., 2000, 275(30), 23187-23193.
[http://dx.doi.org/10.1074/jbc.M002584200] [PMID: 10770945]
[36]
Ostuni, M.A.; Guellec, J.; Hermand, P.; Durand, P.; Combadière, C.; Pincet, F.; Deterre, P. CX3CL1, a chemokine finely tuned to adhesion: Critical roles of the stalk glycosylation and the membrane domain. Biol. Open, 2014, 3(12), 1173-1182.
[http://dx.doi.org/10.1242/bio.20149845] [PMID: 25395671]
[37]
Imaizumi, T.; Yoshida, H.; Satoh, K. Regulation of CX3CL1/fractalkine expression in endothelial cells. J. Atheroscler. Thromb., 2004, 11(1), 15-21.
[http://dx.doi.org/10.5551/jat.11.15] [PMID: 15067194]
[38]
Chapman, G.A.; Moores, K.E.; Gohil, J.; Berkhout, T.A.; Patel, L.; Green, P.; Macphee, C.H.; Stewart, B.R. The role of fractalkine in the recruitment of monocytes to the endothelium. Eur. J. Pharmacol., 2000, 392(3), 189-195.
[http://dx.doi.org/10.1016/S0014-2999(00)00117-5] [PMID: 10762673]
[39]
Patel, S.; Mukovozov, I.; Robinson, L.A. Assessment of the recycling of the membrane-bound chemokine, CX3CL1. Methods Mol. Biol., 2011, 748, 143-153.
[http://dx.doi.org/10.1007/978-1-61779-139-0_10] [PMID: 21701972]
[40]
Liu, G.Y.; Kulasingam, V.; Alexander, R.T.; Touret, N.; Fong, A.M.; Patel, D.D.; Robinson, L.A. Recycling of the membrane-anchored chemokine, CX3CL1. J. Biol. Chem., 2005, 280(20), 19858-19866.
[http://dx.doi.org/10.1074/jbc.M413073200] [PMID: 15774461]
[41]
Maciejewski-Lenoir, D.; Chen, S.; Feng, L.; Maki, R.; Bacon, K.B. Characterization of fractalkine in rat brain cells: Migratory and activation signals for CX3CR-1-expressing microglia. J. Immunol., 1999, 163(3), 1628-1635.
[PMID: 10415068]
[42]
Sheridan, G.K.; Wdowicz, A.; Pickering, M.; Watters, O.; Halley, P.; O’Sullivan, N.C.; Mooney, C.; O’Connell, D.J.; O’Connor, J.J.; Murphy, K.J. CX3CL1 is up-regulated in the rat hippocampus during memory-associated synaptic plasticity. Front. Cell. Neurosci., 2014, 8, 233.
[http://dx.doi.org/10.3389/fncel.2014.00233] [PMID: 25161610]
[43]
Marchica, V.; Toscani, D.; Corcione, A.; Bolzoni, M.; Storti, P.; Vescovini, R.; Ferretti, E.; Dalla Accardi, B.; Vicario, E.; Accardi, F.; Mancini, C.; Martella, E.; Ribatti, D.; Vacca, A.; Pistoia, V.; Giuliani, N. Bone Marrow CX3CL1/Fractalkine is a New Player of the Pro-Angiogenic Microenvironment in Multiple Myeloma Patients. Cancers (Basel), 2019, 11(3), 321.
[http://dx.doi.org/10.3390/cancers11030321] [PMID: 30845779]
[44]
Combadiere, C.; Salzwedel, K.; Smith, E.D.; Tiffany, H.L.; Berger, E.A.; Murphy, P.M. Identification of CX 3CR1. J. Biol. Chem., 1998, 273(37), 23799-23804.
[http://dx.doi.org/10.1074/jbc.273.37.23799] [PMID: 9726990]
[45]
Garin, A.; Pellet, P.; Deterre, P.; Debré, P.; Combadière, C. Cloning and functional characterization of the human fractalkine receptor promoter regions. Biochem. J., 2002, 368(3), 753-760.
[http://dx.doi.org/10.1042/bj20020951] [PMID: 12234253]
[46]
Tan, Q.; Zhu, Y.; Li, J.; Chen, Z.; Han, G.W.; Kufareva, I.; Li, T.; Ma, L.; Fenalti, G.; Li, J.; Zhang, W.; Xie, X.; Yang, H.; Jiang, H.; Cherezov, V.; Liu, H.; Stevens, R.C.; Zhao, Q.; Wu, B. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science, 2013, 341(6152), 1387-1390.
[http://dx.doi.org/10.1126/science.1241475] [PMID: 24030490]
[47]
Meucci, O.; Fatatis, A.; Simen, A.A.; Miller, R.J. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc. Natl. Acad. Sci., , 2000, 97(14), 8075-8080.
[http://dx.doi.org/10.1073/pnas.090017497] [PMID: 10869418]
[48]
Cambien, B.; Pomeranz, M.; Schmid-Antomarchi, H.; Millet, M.A.; Breittmayer, V.; Rossi, B.; Schmid-Alliana, A. Signal transduction pathways involved in soluble fractalkine–induced monocytic cell adhesion. Blood, 2001, 97(7), 2031-2037.
[http://dx.doi.org/10.1182/blood.V97.7.2031] [PMID: 11264168]
[49]
Kansra, V.; Groves, C.; Gutierrez-Ramos, J.C.; Polakiewicz, R.D. Phosphatidylinositol 3-kinase-dependent extracellular calcium influx is essential for CX(3)CR1-mediated activation of the mitogen-activated protein kinase cascade. J. Biol. Chem., 2001, 276(34), 31831-31838.
[http://dx.doi.org/10.1074/jbc.M009374200] [PMID: 11432847]
[50]
Deiva, K.; Geeraerts, T.; Salim, H.; Leclerc, P.; Héry, C.; Hugel, B.; Freyssinet, J.M.; Tardieu, M. Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation. Eur. J. Neurosci., 2004, 20(12), 3222-3232.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03800.x] [PMID: 15610155]
[51]
Volin, M.V.; Huynh, N.; Klosowska, K.; Chong, K.K.; Woods, J.M. Fractalkine is a novel chemoattractant for rheumatoid arthritis fibroblast-like synoviocyte signaling through MAP kinases and Akt. Arthritis Rheum., 2007, 56(8), 2512-2522.
[http://dx.doi.org/10.1002/art.22806] [PMID: 17665439]
[52]
Lee, S.J.; Namkoong, S.; Kim, Y.M.; Kim, C.K.; Lee, H.; Ha, K.S.; Chung, H.T.; Kwon, Y.G.; Kim, Y.M. Fractalkine stimulates angiogenesis by activating the Raf-1/MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(6), H2836-H2846.
[http://dx.doi.org/10.1152/ajpheart.00113.2006] [PMID: 16877565]
[53]
Fong, A.M.; Robinson, L.A.; Steeber, D.A.; Tedder, T.F.; Yoshie, O.; Imai, T.; Patel, D.D. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J. Exp. Med., 1998, 188(8), 1413-1419.
[http://dx.doi.org/10.1084/jem.188.8.1413] [PMID: 9782118]
[54]
Fujita, M.; Takada, Y.K.; Takada, Y. Integrins αvβ3 and α4β1 act as coreceptors for fractalkine, and the integrin-binding defective mutant of fractalkine is an antagonist of CX3CR1. J. Immunol., 2012, 189(12), 5809-5819.
[http://dx.doi.org/10.4049/jimmunol.1200889] [PMID: 23125415]
[55]
Li, L.; Wang, X.; Zhao, Q.; Wang, E.; Wang, L.; Cheng, J.; Zhang, L.; Wang, B. CX3CR1 polymorphisms associated with an increased risk of developmental dysplasia of the hip in human. J. Orthop. Res., 2017, 35(2), 377-380.
[http://dx.doi.org/10.1002/jor.23294] [PMID: 27176135]
[56]
Collar, A.L.; Swamydas, M.; O’Hayre, M.; Sajib, M.S.; Hoffman, K.W.; Singh, S.P.; Mourad, A.; Johnson, M.D.; Ferre, E.M.N.; Farber, J.M.; Lim, J.K.; Mikelis, C.M.; Gutkind, J.S.; Lionakis, M.S. The homozygous CX3CR1-M280 mutation impairs human monocyte survival. JCI Insight, 2018, 3(3), e95417.
[http://dx.doi.org/10.1172/jci.insight.95417] [PMID: 29415879]
[57]
Nakayama, T.; Watanabe, Y.; Oiso, N.; Higuchi, T.; Shigeta, A.; Mizuguchi, N.; Katou, F.; Hashimoto, K.; Kawada, A.; Yoshie, O. Eotaxin-3/CC chemokine ligand 26 is a functional ligand for CX3CR1. J. Immunol., 2010, 185(11), 6472-6479.
[http://dx.doi.org/10.4049/jimmunol.0904126]
[58]
Nishimura, M.; Umehara, H.; Nakayama, T.; Yoneda, O.; Hieshima, K.; Kakizaki, M.; Dohmae, N.; Yoshie, O.; Imai, T. Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J. Immunol., 2002, 168(12), 6173-6180.
[http://dx.doi.org/10.4049/jimmunol.168.12.6173] [PMID: 12055230]
[59]
Vitale, S.; Cambien, B.; Karimdjee, B.F.; Barthel, R.; Staccini, P.; Luci, C.; Breittmayer, V.; Anjuère, F.; Schmid-Alliana, A.; Schmid-Antomarchi, H. Tissue-specific differential antitumour effect of molecular forms of fractalkine in a mouse model of metastatic colon cancer. Gut, 2007, 56(3), 365-372.
[http://dx.doi.org/10.1136/gut.2005.088989] [PMID: 16870716]
[60]
Dichmann, S.; Herouy, Y.; Purlis, D.; Rheinen, H.; Gebicke-Härter, P.; Norgauer, J. Fractalkine induces chemotaxis and actin polymerization in human dendritic cells. Inflamm. Res., 2001, 50(11), 529-533.
[http://dx.doi.org/10.1007/PL00000230] [PMID: 11766992]
[61]
Umehara, H.; Goda, S.; Imai, T.; Nagano, Y.; Minami, Y.; Tanaka, Y.; Okazaki, T.; Bloom, E.T.; Domae, N. Fractalkine, a CX 3 C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol. Cell Biol., 2001, 79(3), 298-302.
[http://dx.doi.org/10.1046/j.1440-1711.2001.01004.x] [PMID: 11380684]
[62]
Guo, J.; Wang, B.; Zhang, M.; Chen, T.; Yu, Y.; Regulier, E.; Homann, H.E.; Qin, Z.; Ju, D.W.; Cao, X. Macrophage-derived chemokine gene transfer results in tumor regression in murine lung carcinoma model through efficient induction of antitumor immunity. Gene Ther., 2002, 9(12), 793-803.
[http://dx.doi.org/10.1038/sj.gt.3301688] [PMID: 12040461]
[63]
Guo, J.; Zhang, M.; Wang, B.; Yuan, Z.; Guo, Z.; Chen, T.; Yu, Y.; Qin, Z.; Cao, X. Fractalkine transgene induces T-cell-dependent antitumor immunity through chemoattraction and activation of dendritic cells. Int. J. Cancer, 2003, 103(2), 212-220.
[http://dx.doi.org/10.1002/ijc.10816] [PMID: 12455035]
[64]
Kim, M.; Rooper, L.; Xie, J.; Kajdacsy-Balla, A.A.; Barbolina, M.V. Fractalkine receptor CX(3)CR1 is expressed in epithelial ovarian carcinoma cells and required for motility and adhesion to peritoneal mesothelial cells. Mol. Cancer Res., 2012, 10(1), 11-24.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0256] [PMID: 22064656]
[65]
Tardáguila, M.; Mira, E.; García-Cabezas, M.A.; Feijoo, A.M.; Quintela-Fandino, M.; Azcoitia, I.; Lira, S.A.; Mañes, S. CX3CL1 promotes breast cancer via transactivation of the EGF pathway. Cancer Res., 2013, 73(14), 4461-4473.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3828] [PMID: 23720051]
[66]
Rivas-Fuentes, S.; Salgado-Aguayo, A.; Arratia-Quijada, J.; Gorocica-Rosete, P. Regulation and biological functions of the CX3CL1-CX3CR1 axis and its relevance in solid cancer: A mini-review. J. Cancer, 2021, 12(2), 571-583.
[http://dx.doi.org/10.7150/jca.47022] [PMID: 33391453]
[67]
Ryu, J.; Lee, C.W.; Hong, K.H.; Shin, J.A.; Lim, S.H.; Park, C.S.; Shim, J.; Nam, K.B.; Choi, K.J.; Kim, Y.H.; Han, K.H. Activation of fractalkine/CX3CR1 by vascular endothelial cells induces angiogenesis through VEGF-A/KDR and reverses hindlimb ischaemia. Cardiovasc. Res., 2008, 78(2), 333-340.
[http://dx.doi.org/10.1093/cvr/cvm067] [PMID: 18006432]
[68]
Volin, M.V.; Huynh, N.; Klosowska, K.; Reyes, R.D.; Woods, J.M. Fractalkine-induced endothelial cell migration requires MAP kinase signaling. Pathobiology, 2010, 77(1), 7-16.
[http://dx.doi.org/10.1159/000272949] [PMID: 20185962]
[69]
Marchesi, F.; Piemonti, L.; Fedele, G.; Destro, A.; Roncalli, M.; Albarello, L.; Doglioni, C.; Anselmo, A.; Doni, A.; Bianchi, P.; Laghi, L.; Malesci, A.; Cervo, L.; Malosio, M.; Reni, M.; Zerbi, A.; Di Carlo, V.; Mantovani, A.; Allavena, P. The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res., 2008, 68(21), 9060-9069.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1810] [PMID: 18974152]
[70]
Liang, Y.; Yi, L.; Liu, P.; Jiang, L.; Wang, H.; Hu, A.; Sun, C.; Dong, J. CX3CL1 involves in breast cancer metastasizing to the spine via the Src/FAK signaling pathway. J. Cancer, 2018, 9(19), 3603-3612.
[http://dx.doi.org/10.7150/jca.26497] [PMID: 30310518]
[71]
Liu, P.; Liang, Y.; Jiang, L.; Wang, H.; Wang, S.; Dong, J. CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway. Int. J. Oncol., 2018, 53(4), 1544-1556.
[http://dx.doi.org/10.3892/ijo.2018.4487] [PMID: 30066854]
[72]
Liu, W.; Liang, Y.; Chan, Q.; Jiang, L.; Dong, J. CX3CL1 promotes lung cancer cell migration and invasion via the Src/focal adhesion kinase signaling pathway. Oncol. Rep., 2019, 41(3), 1911-1917.
[http://dx.doi.org/10.3892/or.2019.6957] [PMID: 30628679]
[73]
Okuma, A.; Hanyu, A.; Watanabe, S.; Hara, E. p16Ink4a and p21Cip1/Waf1 promote tumour growth by enhancing myeloid-derived suppressor cells chemotaxis. Nat. Commun., 2017, 8(1), 2050.
[http://dx.doi.org/10.1038/s41467-017-02281-x] [PMID: 29234059]
[74]
Sidibe, A.; Ropraz, P.; Jemelin, S.; Emre, Y.; Poittevin, M.; Pocard, M.; Bradfield, P.F.; Imhof, B.A. Angiogenic factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours. Nat. Commun., 2018, 9(1), 355.
[http://dx.doi.org/10.1038/s41467-017-02610-0] [PMID: 29367702]
[75]
Jamieson, W.L.; Shimizu, S.; D’Ambrosio, J.A.; Meucci, O.; Fatatis, A. CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/fractalkine in the bone marrow: Potential role in prostate cancer bone tropism. Cancer Res., 2008, 68(6), 1715-1722.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1315] [PMID: 18339851]
[76]
Celesti, G.; Di Caro, G.; Bianchi, P.; Grizzi, F.; Marchesi, F.; Basso, G.; Rahal, D.; Delconte, G.; Catalano, M.; Cappello, P.; Roncalli, M.; Zerbi, A.; Montorsi, M.; Novelli, F.; Mantovani, A.; Allavena, P.; Malesci, A.; Laghi, L. Early expression of the fractalkine receptor CX3CR1 in pancreatic carcinogenesis. Br. J. Cancer, 2013, 109(9), 2424-2433.
[http://dx.doi.org/10.1038/bjc.2013.565] [PMID: 24084767]
[77]
Gurler Main, H.; Xie, J.; Muralidhar, G.G.; Elfituri, O.; Xu, H.; Kajdacsy-Balla, A.A.; Barbolina, M.V. Emergent role of the fractalkine axis in dissemination of peritoneal metastasis from epithelial ovarian carcinoma. Oncogene, 2017, 36(21), 3025-3036.
[http://dx.doi.org/10.1038/onc.2016.456] [PMID: 27941884]
[78]
Gurler, H.; Macias, V.; Kajdacsy-Balla, A.; Barbolina, M. Examination of the fractalkine and fractalkine receptor expression in fallopian adenocarcinoma reveals differences when compared to ovarian carcinoma. Biomolecules, 2015, 5(4), 3438-3447.
[http://dx.doi.org/10.3390/biom5043438] [PMID: 26633537]
[79]
Gaudin, F.; Nasreddine, S.; Donnadieu, A.C.; Emilie, D.; Combadière, C.; Prévot, S.; Machelon, V.; Balabanian, K. Identification of the chemokine CX3CL1 as a new regulator of malignant cell proliferation in epithelial ovarian cancer. PLoS One, 2011, 6(7), e21546.
[http://dx.doi.org/10.1371/journal.pone.0021546] [PMID: 21750716]
[80]
Singh, S.K.; Mishra, M.K.; Singh, R. Hypoxia-inducible factor-1α induces CX3CR1 expression and promotes the epithelial to mesenchymal transition (EMT) in ovarian cancer cells. J. Ovarian Res., 2019, 12(1), 42.
[http://dx.doi.org/10.1186/s13048-019-0517-1] [PMID: 31077234]
[81]
Dachs, G.U.; Patterson, A.V.; Firth, J.D.; Ratcliffe, P.J.; Townsend, K.M.S.; Stratford, I.J.; Harris, A.L. Targeting gene expression to hypoxic tumor cells. Nat. Med., 1997, 3(5), 515-520.
[http://dx.doi.org/10.1038/nm0597-515] [PMID: 9142119]
[82]
Carmeliet, P.; Dor, Y.; Herbert, J.M.; Fukumura, D.; Brusselmans, K.; Dewerchin, M.; Neeman, M.; Bono, F.; Abramovitch, R.; Maxwell, P.; Koch, C.J.; Ratcliffe, P.; Moons, L.; Jain, R.K.; Collen, D.; Keshet, E. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998, 394(6692), 485-490.
[http://dx.doi.org/10.1038/28867] [PMID: 9697772]
[83]
Zhao, T.; Gao, S.; Wang, X.; Liu, J.; Duan, Y.; Yuan, Z.; Sheng, J.; Li, S.; Wang, F.; Yu, M.; Ren, H.; Hao, J. Hypoxia-inducible factor-1α regulates chemotactic migration of pancreatic ductal adenocarcinoma cells through directly transactivating the CX3CR1 gene. PLoS One, 2012, 7(8), e43399.
[http://dx.doi.org/10.1371/journal.pone.0043399] [PMID: 22952674]
[84]
Kim, J.M.; Ko, Y.H.; Lee, S.S.; Huh, J.; Kang, C.S.; Kim, C.W.; Kang, Y.K.; Go, J.H.; Kim, M.K.; Kim, W.S.; Kim, Y.J.; Kim, H.J.; Kim, H.K.; Nam, J.H.; Moon, H.B.; Park, C.K.; Park, T.I.; Oh, Y.H.; Lee, D.W.; Lee, J.S.; Lee, J.; Lee, H.; Lim, S.C.; Jang, K.Y.; Chang, H.K.; Jeon, Y.K.; Jung, H.R.; Cho, M.S.; Cha, H.J.; Choi, S.J.; Han, J.H.; Hong, S.H.; Kim, I. WHO classification of malignant lymphomas in Korea: Report of the third nationwide study. Korean J. Pathol., 2011, 45(3), 254-260.
[http://dx.doi.org/10.4132/KoreanJPathol.2011.45.3.254]
[85]
Corcione, A.; Ferretti, E.; Bertolotto, M.; Fais, F.; Raffaghello, L.; Gregorio, A.; Tenca, C.; Ottonello, L.; Gambini, C.; Furtado, G.; Lira, S.; Pistoia, V. CX3CR1 is expressed by human B lymphocytes and mediates [corrected] CX3CL1 driven chemotaxis of tonsil centrocytes. PLoS One, 2009, 4(12), e8485.
[http://dx.doi.org/10.1371/journal.pone.0008485] [PMID: 20041188]
[86]
Ferretti, E.; Bertolotto, M.; Deaglio, S.; Tripodo, C.; Ribatti, D.; Audrito, V.; Blengio, F.; Matis, S.; Zupo, S.; Rossi, D.; Ottonello, L.; Gaidano, G.; Malavasi, F.; Pistoia, V.; Corcione, A. A novel role of the CX3CR1/CX3CL1 system in the cross-talk between chronic lymphocytic leukemia cells and tumor microenvironment. Leukemia, 2011, 25(8), 1268-1277.
[http://dx.doi.org/10.1038/leu.2011.88] [PMID: 21546901]
[87]
Yhim, H.Y.; Kim, J.A.; Ko, S.H.; Park, Y.; Yim, E.; Kim, H.S.; Kwak, J.Y. The prognostic significance of CD11b+CX3CR1+ monocytes in patients with newly diagnosed diffuse large B-cell lymphoma. Oncotarget, 2017, 8(54), 92289-92299.
[http://dx.doi.org/10.18632/oncotarget.21241] [PMID: 29190915]
[88]
Pistoia, V.; Morandi, F.; Bianchi, G.; Pezzolo, A.; Prigione, I.; Raffaghello, L. Immunosuppressive microenvironment in neuroblastoma. Front. Oncol., 2013, 3, 167.
[http://dx.doi.org/10.3389/fonc.2013.00167] [PMID: 23805414]
[89]
Nevo, I.; Sagi-Assif, O.; Meshel, T.; Ben-Baruch, A.; Jöhrer, K.; Greil, R.; Trejo, L.E.L.; Kharenko, O.; Feinmesser, M.; Yron, I.; Witz, I.P. The involvement of the fractalkine receptor in the transmigration of neuroblastoma cells through bone-marrow endothelial cells. Cancer Lett., 2009, 273(1), 127-139.
[http://dx.doi.org/10.1016/j.canlet.2008.07.029] [PMID: 18778890]
[90]
Zeng, Y.; Jiang, J.; Huebener, N.; Wenkel, J.; Gaedicke, G.; Xiang, R.; Lode, H.N. Fractalkine gene therapy for neuroblastoma is more effective in combination with targeted IL-2. Cancer Lett., 2005, 228(1-2), 187-193.
[http://dx.doi.org/10.1016/j.canlet.2005.01.057] [PMID: 15953676]
[91]
Korbecki, J.; Simińska, D.; Kojder, K.; Grochans, S.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. Fractalkine/CX3CL1 in neoplastic processes. Int. J. Mol. Sci., 2020, 21(10), 3723.
[http://dx.doi.org/10.3390/ijms21103723] [PMID: 32466280]
[92]
Lu, J.; Steeg, P.S.; Price, J.E.; Krishnamurthy, S.; Mani, S.A.; Reuben, J.; Cristofanilli, M.; Dontu, G.; Bidaut, L.; Valero, V.; Hortobagyi, G.N.; Yu, D. Breast cancer metastasis: Challenges and opportunities. Cancer Res., 2009, 69(12), 4951-4953.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0099] [PMID: 19470768]
[93]
Jamieson-Gladney, W.L.; Zhang, Y.; Fong, A.M.; Meucci, O.; Fatatis, A. The chemokine receptor CX3CR1 is directly involved in the arrest of breast cancer cells to the skeleton. Breast Cancer Res., 2011, 13(5), R91.
[http://dx.doi.org/10.1186/bcr3016] [PMID: 21933397]
[94]
Onitilo, A.A.; Engel, J.M.; Greenlee, R.T.; Mukesh, B.N. Breast cancer subtypes based on ER/PR and Her2 expression: Comparison of clinicopathologic features and survival. Clin. Med. Res., 2009, 7(1-2), 4-13.
[http://dx.doi.org/10.3121/cmr.2008.825] [PMID: 19574486]
[95]
Andre, F.; Cabioglu, N.; Assi, H.; Sabourin, J.C.; Delaloge, S.; Sahin, A.; Broglio, K.; Spano, J.P.; Combadiere, C.; Bucana, C.; Soria, J.C.; Cristofanilli, M. Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann. Oncol., 2006, 17(6), 945-951.
[http://dx.doi.org/10.1093/annonc/mdl053] [PMID: 16627550]
[96]
Park, M.H.; Lee, J.S.; Yoon, J.H. High expression of CX3CL1 by tumor cells correlates with a good prognosis and increased tumor-infiltrating CD8+ T cells, natural killer cells, and dendritic cells in breast carcinoma. J. Surg. Oncol., 2012, 106(4), 386-392.
[http://dx.doi.org/10.1002/jso.23095] [PMID: 22422195]
[97]
Correia, A.L.; Guimaraes, J.C.; Auf der Maur, P.; De Silva, D.; Trefny, M.P.; Okamoto, R.; Bruno, S.; Schmidt, A.; Mertz, K.; Volkmann, K.; Terracciano, L.; Zippelius, A.; Vetter, M.; Kurzeder, C.; Weber, W.P.; Bentires-Alj, M. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature, 2021, 594(7864), 566-571.
[http://dx.doi.org/10.1038/s41586-021-03614-z] [PMID: 34079127]
[98]
Shen, F.; Zhang, Y.; Jernigan, D.L.; Feng, X.; Yan, J.; Garcia, F.U.; Meucci, O.; Salvino, J.M.; Fatatis, A. Novel small-molecule CX3CR1 antagonist impairs metastatic seeding and colonization of breast cancer cells. Mol. Cancer Res., 2016, 14(6), 518-527.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0013] [PMID: 27001765]
[99]
Zha, H.; Wang, X.; Zhu, Y.; Chen, D.; Han, X.; Yang, F.; Gao, J.; Hu, C.; Shu, C.; Feng, Y.; Tan, Y.; Zhang, J.; Li, Y.; Wan, Y.Y.; Guo, B.; Zhu, B. Intracellular activation of complement C3 leads to PD-L1 antibody treatment resistance by modulating tumor-associated macrophages. Cancer Immunol. Res., 2019, 7(2), 193-207.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0272] [PMID: 30514794]
[100]
Bassez, A.; Vos, H.; Van Dyck, L.; Floris, G.; Arijs, I.; Desmedt, C.; Boeckx, B.; Vanden Bempt, M.; Nevelsteen, I.; Lambein, K.; Punie, K.; Neven, P.; Garg, A.D.; Wildiers, H.; Qian, J.; Smeets, A.; Lambrechts, D. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med., 2021, 27(5), 820-832.
[http://dx.doi.org/10.1038/s41591-021-01323-8] [PMID: 33958794]
[101]
Marchesi, F.; Locatelli, M.; Solinas, G.; Erreni, M.; Allavena, P.; Mantovani, A. Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer. J. Neuroimmunol., 2010, 224(1-2), 39-44.
[http://dx.doi.org/10.1016/j.jneuroim.2010.05.007] [PMID: 20630606]
[102]
Lv, C.Y.; Zhou, T.; Chen, W.; Yin, X.D.; Yao, J.H.; Zhang, Y.F. Preliminary study correlating CX3CL1/CX3CR1 expression with gastric carcinoma and gastric carcinoma perineural invasion. World J. Gastroenterol., 2014, 20(15), 4428-4432.
[http://dx.doi.org/10.3748/wjg.v20.i15.4428] [PMID: 24764683]
[103]
Wei, L.M.; Cao, S.; Yu, W.D.; Liu, Y.L.; Wang, J.T. Overexpression of CX3CR1 is associated with cellular metastasis, proliferation and survival in gastric cancer. Oncol. Rep., 2015, 33(2), 615-624.
[http://dx.doi.org/10.3892/or.2014.3645] [PMID: 25482732]
[104]
Tang, J.; Chen, Y.; Cui, R.; Li, D.; Xiao, L.; Lin, P.; Du, Y.; Sun, H.; Yu, X.; Zheng, X. Upregulation of fractalkine contributes to the proliferative response of prostate cancer cells to hypoxia via promoting the G1/S phase transition. Mol. Med. Rep., 2015, 12(6), 7907-7914.
[http://dx.doi.org/10.3892/mmr.2015.4438] [PMID: 26496926]
[105]
Sun, H.; He, T.; Wu, Y.; Yuan, H.; Ning, J.; Zhang, Z.; Deng, X.; Li, B.; Wu, C. Cytotoxin-associated gene a-negative Helicobacter pylori promotes gastric mucosal CX3CR1+CD4+ effector memory T cell recruitment in mice. Front. Microbiol., 2022, 13, 813774.
[http://dx.doi.org/10.3389/fmicb.2022.813774] [PMID: 35154057]
[106]
Zhu, Y.; Herndon, J.M.; Sojka, D.K.; Kim, K.W.; Knolhoff, B.L.; Zuo, C.; Cullinan, D.R.; Luo, J.; Bearden, A.R.; Lavine, K.J.; Yokoyama, W.M.; Hawkins, W.G.; Fields, R.C.; Randolph, G.J.; DeNardo, D.G. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity, 2017, 47, 323-338.
[107]
Xu, X.; Wang, Y.; Chen, J.; Ma, H.; Shao, Z.; Chen, H.; Jin, G. High expression of CX3CL1/CX3CR1 axis predicts a poor prognosis of pancreatic ductal adenocarcinoma. J. Gastrointest. Surg., 2012, 16(8), 1493-1498.
[http://dx.doi.org/10.1007/s11605-012-1921-7] [PMID: 22639377]
[108]
Ren, H.; Zhao, T.; Sun, J.; Wang, X.; Liu, J.; Gao, S.; Yu, M.; Hao, J. The CX3CL1/CX3CR1 reprograms glucose metabolism through HIF-1 pathway in pancreatic adenocarcinoma. J. Cell. Biochem., 2013, 114(11), 2603-2611.
[http://dx.doi.org/10.1002/jcb.24608] [PMID: 23857671]
[109]
Wang, H.; Cai, J.; Du, S.; Guo, Z.; Xin, B.; Wang, J.; Wei, W.; Shen, X. Fractalkine/CX3CR1 induces apoptosis resistance and proliferation through the activation of the AKT/NF-κB cascade in pancreatic cancer cells. Cell Biochem. Funct., 2017, 35(6), 315-326.
[http://dx.doi.org/10.1002/cbf.3278] [PMID: 28845524]
[110]
Huang, L.; Ma, B.; Ma, J.; Wang, F. Fractalkine/CX3CR1 axis modulated the development of pancreatic ductal adenocarcinoma via JAK/STAT signaling pathway. Biochem. Biophys. Res. Commun., 2017, 493(4), 1510-1517.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.006] [PMID: 28986258]
[111]
Xiao, L.J.; Chen, Y.Y.; Lin, P.; Zou, H.F.; Lin, F.; Zhao, L.N.; Li, D.; Guo, L.; Tang, J.B.; Zheng, X.L.; Yu, X.G. Hypoxia increases CX3CR1 expression via HIF-1 and NF-κB in androgen-independent prostate cancer cells. Int. J. Oncol., 2012, 41(5), 1827-1836.
[http://dx.doi.org/10.3892/ijo.2012.1610] [PMID: 22941344]
[112]
Tang, J.; Xiao, L.; Cui, R.; Li, D.; Zheng, X.; Zhu, L.; Sun, H.; Pan, Y.; Du, Y.; Yu, X. CX3CL1 increases invasiveness and metastasis by promoting epithelial-to-mesenchymal transition through the TACE/TGF-α/EGFR pathway in hypoxic androgen-independent prostate cancer cells. Oncol. Rep., 2016, 35(2), 1153-1162.
[http://dx.doi.org/10.3892/or.2015.4470] [PMID: 26718770]
[113]
Rozen, P.; Winawer, S.J.; Waye, J.D. Prospects for the worldwide control of colorectal cancer through screening. Gastrointest. Endosc., 2002, 55(6), 755-759.
[http://dx.doi.org/10.1067/mge.2002.123612] [PMID: 11979269]
[114]
Ohta, M.; Tanaka, F.; Yamaguchi, H.; Sadanaga, N.; Inoue, H.; Mori, M. The high expression of Fractalkine results in a better prognosis for colorectal cancer patients. Int. J. Oncol., 2005, 26(1), 41-47.
[http://dx.doi.org/10.3892/ijo.26.1.41] [PMID: 15586223]
[115]
Erreni, M.; Siddiqui, I.; Marelli, G.; Grizzi, F.; Bianchi, P.; Morone, D.; Marchesi, F.; Celesti, G.; Pesce, S.; Doni, A.; Rumio, C.; Roncalli, M.G.; Laghi, L.; Mantovani, A.; Allavena, P. The fractalkine-receptor axis improves human colorectal cancer prognosis by limiting tumor metastatic dissemination. J. Immunol., 2016, 196(2), 902-914.
[http://dx.doi.org/10.4049/jimmunol.1501335] [PMID: 26673138]
[116]
Zheng, J.; Yang, M.; Shao, J.; Miao, Y.; Han, J.; Du, J. Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis. Mol. Cancer, 2013, 12(1), 141.
[http://dx.doi.org/10.1186/1476-4598-12-141] [PMID: 24245985]
[117]
Dimberg, J.; Dienus, O.; Löfgren, S.; Hugander, A.; Wågsäter, D. Polymorphisms of Fractalkine receptor CX3CR1 and plasma levels of its ligand CX3CL1 in colorectal cancer patients. Int. J. Colorectal Dis., 2007, 22(10), 1195-1200.
[http://dx.doi.org/10.1007/s00384-007-0343-6] [PMID: 17611763]
[118]
Lee, S.; Latha, K.; Manyam, G.; Yang, Y.; Rao, A.; Rao, G. Role of CX3CR1 signaling in malignant transformation of gliomas. Neuro-oncol., 2020, 22(10), 1463-1473.
[http://dx.doi.org/10.1093/neuonc/noaa075] [PMID: 32236410]
[119]
Ferretti, E.; Pistoia, V.; Corcione, A. Role of fractalkine/CX3CL1 and its receptor in the pathogenesis of inflammatory and malignant diseases with emphasis on B cell malignancies. Mediators Inflamm., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/480941] [PMID: 24799766]
[120]
Siegel, R.; Ward, E.; Brawley, O.; Jemal, A. Cancer statistics, 2011. CA Cancer J. Clin., 2011, 61(4), 212-236.
[http://dx.doi.org/10.3322/caac.20121] [PMID: 21685461]
[121]
Schmall, A.; Al-tamari, H.M.; Herold, S.; Kampschulte, M.; Weigert, A.; Wietelmann, A.; Vipotnik, N.; Grimminger, F.; Seeger, W.; Pullamsetti, S.S.; Savai, R. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. Am. J. Respir. Crit. Care Med., 2015, 191(4), 437-447.
[http://dx.doi.org/10.1164/rccm.201406-1137OC] [PMID: 25536148]
[122]
Ishida, Y.; Kuninaka, Y.; Yamamoto, Y.; Nosaka, M.; Kimura, A.; Furukawa, F.; Mukaida, N.; Kondo, T. Pivotal involvement of the CX3CL1-CX3CR1 Axis for the recruitment of M2 tumor-associated macrophages in skin carcinogenesis. J. Invest. Dermatol., 2020, 140(10), 1951-1961.e6.
[http://dx.doi.org/10.1016/j.jid.2020.02.023] [PMID: 32179066]
[123]
Amsellem, V.; Abid, S.; Poupel, L.; Parpaleix, A.; Rodero, M.; Gary-Bobo, G.; Latiri, M.; Dubois-Rande, J.L.; Lipskaia, L.; Combadiere, C.; Adnot, S. Roles for the CX3CL1/CX3CR1 and CCL2/CCR2 chemokine systems in hypoxic pulmonary hypertension. Am. J. Respir. Cell Mol. Biol., 2017, 56(5), 597-608.
[http://dx.doi.org/10.1165/rcmb.2016-0201OC] [PMID: 28125278]
[124]
Liu, Y.; Ma, H.; Dong, T.; Yan, Y.; Sun, L.; Wang, W. Clinical significance of expression level of CX3CL1–CX3CR1 axis in bone metastasis of lung cancer. Clin. Transl. Oncol., 2021, 23(2), 378-388.
[http://dx.doi.org/10.1007/s12094-020-02431-6] [PMID: 32638214]
[125]
Liu, J.; Li, Y.; Zhu, X.; Li, Q.; Liang, X.; Xie, J.; Hu, S.; Peng, W.; Li, C. Increased CX3CL1 mRNA expression level is a positive prognostic factor in patients with lung adenocarcinoma. Oncol. Lett., 2019, 17(6), 4877-4890.
[http://dx.doi.org/10.3892/ol.2019.10211] [PMID: 31186696]
[126]
Xin, H.; Kikuchi, T.; Andarini, S.; Ohkouchi, S.; Suzuki, T.; Nukiwa, T.; Huqun, ; Hagiwara, K.; Honjo, T.; Saijo, Y. Antitumor immune response by CX3CL1 fractalkine gene transfer depends on both NK and T cells. Eur. J. Immunol., 2005, 35(5), 1371-1380.
[http://dx.doi.org/10.1002/eji.200526042] [PMID: 15789339]
[127]
Xin, H.; Kanehira, M.; Mizuguchi, H.; Hayakawa, T.; Kikuchi, T.; Nukiwa, T.; Saijo, Y. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells, 2007, 25(7), 1618-1626.
[http://dx.doi.org/10.1634/stemcells.2006-0461] [PMID: 17412895]
[128]
Li, G.; Hattermann, K.; Mentlein, R.; Mehdorn, H.M.; Held-Feindt, J. The transmembrane chemokines CXCL16 and CX3CL1 and their receptors are expressed in human meningiomas. Oncol. Rep., 2013, 29(2), 563-570.
[http://dx.doi.org/10.3892/or.2012.2164] [PMID: 23229614]
[129]
Tang, L.; Hu, H.; Hu, P.; Lan, Y.; Peng, M.; Chen, M.; Ren, H. Gene therapy with CX3CL1/Fractalkine induces antitumor immunity to regress effectively mouse hepatocellular carcinoma. Gene Ther., 2007, 14(16), 1226-1234.
[http://dx.doi.org/10.1038/sj.gt.3302959] [PMID: 17597794]
[130]
Milani, S.; Herbst, H.; Schuppan, D.; Grappone, C.; Pellegrini, G.; Pinzani, M.; Casini, A.; Calabró, A.; Ciancio, G.; Stefanini, F. Differential expression of matrix metalloproteinasematrix-metalloproteinase-1 and -2 genes in normal and fibrotic human liver. Am. J. Pathol., 1994, 144, 528-537.
[PMID: 8129038]
[131]
Matsubara, T.; Ono, T.; Yamanoi, A.; Tachibana, M.; Nagasue, N. Fractalkine-CX3CR1 axis regulates tumor cell cycle and deteriorates prognosis after radical resection for hepatocellular carcinoma. J. Surg. Oncol., 2007, 95(3), 241-249.
[http://dx.doi.org/10.1002/jso.20642] [PMID: 17323338]
[132]
Huang, F.; Geng, X.P. Chemokines and hepatocellular carcinoma. World J. Gastroenterol., 2010, 16(15), 1832-1836.
[http://dx.doi.org/10.3748/wjg.v16.i15.1832] [PMID: 20397259]
[133]
Miao, S.; Lu, M.; Liu, Y.; Shu, D.; Zhu, Y.; Song, W.; Ma, Y.; Ma, R.; Zhang, B.; Fang, C.; Ming, Z.Y. Platelets are recruited to hepatocellular carcinoma tissues in a CX3CL1‐CX3CR1 dependent manner and induce tumour cell apoptosis. Mol. Oncol., 2020, 14(10), 2546-2559.
[http://dx.doi.org/10.1002/1878-0261.12783] [PMID: 32799418]
[134]
Chen, E.B.; Zhou, Z.J.; Xiao, K.; Zhu, G.Q.; Yang, Y.; Wang, B.; Zhou, S.L.; Chen, Q.; Yin, D.; Wang, Z.; Shi, Y.H.; Gao, D.M.; Chen, J.; Zhao, Y.; Wu, W.Z.; Fan, J.; Zhou, J.; Dai, Z. The miR-561-5p/CX 3 CL1 signaling axis regulates pulmonary metastasis in hepatocellular carcinoma involving CX 3 CR1 + natural killer cells infiltration. Theranostics, 2019, 9(16), 4779-4794.
[http://dx.doi.org/10.7150/thno.32543] [PMID: 31367257]
[135]
Luo, P.; Chu, S.; Zhang, Z.; Xia, C.; Chen, N. Fractalkine/CX3CR1 is involved in the cross-talk between neuron and glia in neurological diseases. Brain Res. Bull., 2019, 146, 12-21.
[http://dx.doi.org/10.1016/j.brainresbull.2018.11.017] [PMID: 30496784]
[136]
Cho, S.H.; Sun, B.; Zhou, Y.; Kauppinen, T.M.; Halabisky, B.; Wes, P.; Ransohoff, R.M.; Gan, L. CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J. Biol. Chem., 2011, 286(37), 32713-32722.
[http://dx.doi.org/10.1074/jbc.M111.254268] [PMID: 21771791]
[137]
González-Prieto, M.; Gutiérrez, I.L.; García-Bueno, B.; Caso, J.R.; Leza, J.C.; Ortega-Hernández, A.; Gómez-Garre, D.; Madrigal, J.L.M. Microglial CX3CR1 production increases in Alzheimer’s disease and is regulated by noradrenaline. Glia, 2021, 69(1), 73-90.
[http://dx.doi.org/10.1002/glia.23885] [PMID: 32662924]
[138]
Wang, L.; Liu, Y.; Yan, S.; Du, T.; Fu, X.; Gong, X.; Zhou, X.; Zhang, T.; Wang, X. Disease progression-dependent expression of CD200R1 and CX3CR1 in mouse models of Parkinson’s Disease. Aging Dis., 2020, 11(2), 254-268.
[http://dx.doi.org/10.14336/AD.2019.0615] [PMID: 32257540]
[139]
Kim, A.; García-García, E.; Straccia, M.; Comella-Bolla, A.; Miguez, A.; Masana, M.; Alberch, J.; Canals, J.M.; Rodríguez, M.J. Reduced fractalkine levels lead to striatal synaptic plasticity deficits in Huntington’s disease. Front. Cell. Neurosci., 2020, 14, 163.
[http://dx.doi.org/10.3389/fncel.2020.00163] [PMID: 32625064]
[140]
Yang, G.; Liu, Z.; Wang, L.; Chen, X.; Wang, X.; Dong, Q.; Zhang, D.; Yang, Z.; Zhou, Q.; Sun, J.; Xue, L.; Wang, X.; Gao, M.; Li, L.; Yi, R.; Ilgiz, G.; Ai, J.; Zhao, S. MicroRNA-195 protection against focal cerebral ischemia by targeting CX3CR1. J. Neurosurg., 2018, 1-10.
[http://dx.doi.org/10.3171/2018.5.JNS173061] [PMID: 30497184]
[141]
Wang, J.; Gan, Y.; Han, P.; Yin, J.; Liu, Q.; Ghanian, S.; Gao, F.; Gong, G.; Tang, Z. Ischemia-induced neuronal cell death is mediated by chemokine receptor CX3CR1. Sci. Rep., 2018, 8(1), 556.
[http://dx.doi.org/10.1038/s41598-017-18774-0] [PMID: 29323156]
[142]
Komissarov, A.; Potashnikova, D.; Freeman, M.L.; Gontarenko, V.; Maytesyan, D.; Lederman, M.M.; Vasilieva, E.; Margolis, L. Driving T cells to human atherosclerotic plaques: CCL3/CCR5 and CX3CL1/CX3CR1 migration axes. Eur. J. Immunol., 2021, 51(7), 1857-1859.
[http://dx.doi.org/10.1002/eji.202049004] [PMID: 33772780]
[143]
Cormican, S.; Griffin, M.D. Fractalkine (CX3CL1) and its receptor CX3CR1: A promising therapeutic target in chronic kidney disease? Front. Immunol., 2021, 12, 664202.
[http://dx.doi.org/10.3389/fimmu.2021.664202] [PMID: 34163473]
[144]
Chen, S.; Luo, D.; Streit, W.J.; Harrison, J.K. TGF-β1 upregulates CX3CR1 expression and inhibits fractalkine-stimulated signaling in rat microglia. J. Neuroimmunol., 2002, 133(1-2), 46-55.
[http://dx.doi.org/10.1016/S0165-5728(02)00354-5] [PMID: 12446007]
[145]
Sciumè, G.; Soriani, A.; Piccoli, M.; Frati, L.; Santoni, A.; Bernardini, G. CX3CR1/CX3CL1 axis negatively controls glioma cell invasion and is modulated by transforming growth factor-β1. Neuro-oncol., 2010, 12(7), 701-710.
[http://dx.doi.org/10.1093/neuonc/nop076] [PMID: 20511186]
[146]
Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer, 2009, 9(5), 361-371.
[http://dx.doi.org/10.1038/nrc2628] [PMID: 19343034]
[147]
Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444.
[http://dx.doi.org/10.1038/nature07205] [PMID: 18650914]
[148]
Su, Y.C.; Chang, H.; Sun, S.J.; Liao, C.Y.; Wang, L.Y.; Ko, J.L.; Chang, J.T. Differential impact of CX3CL1 on lung cancer prognosis in smokers and non-smokers. Mol. Carcinog., 2018, 57(5), 629-639.
[http://dx.doi.org/10.1002/mc.22787] [PMID: 29380447]
[149]
Stout, M.C.; Narayan, S.; Pillet, E.S.; Salvino, J.M.; Campbell, P.M. Inhibition of CX3CR1 reduces cell motility and viability in pancreatic adenocarcinoma epithelial cells. Biochem. Biophys. Res. Commun., 2018, 495(3), 2264-2269.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.116] [PMID: 29274778]
[150]
Liu, W.; Bian, C.; Liang, Y.; Jiang, L.; Qian, C.; Dong, J. CX3CL1: A potential chemokine widely involved in the process spinal metastases. Oncotarget, 2017, 8(9), 15213-15219.
[http://dx.doi.org/10.18632/oncotarget.14773] [PMID: 28122354]
[151]
Roskoski, R.Jr. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol. Res., 2015, 94, 9-25.
[http://dx.doi.org/10.1016/j.phrs.2015.01.003] [PMID: 25662515]
[152]
Yoon, H.; Dehart, J.P.; Murphy, J.M.; Lim, S.T.S. Understanding the roles of FAK in cancer: Inhibitors, genetic models, and new insights. J. Histochem. Cytochem., 2015, 63(2), 114-128.
[http://dx.doi.org/10.1369/0022155414561498] [PMID: 25380750]
[153]
Jean, C.; Chen, X.L.; Nam, J.O.; Tancioni, I.; Uryu, S.; Lawson, C.; Ward, K.K.; Walsh, C.T.; Miller, N.L.G.; Ghassemian, M.; Turowski, P.; Dejana, E.; Weis, S.; Cheresh, D.A.; Schlaepfer, D.D. Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J. Cell Biol., 2014, 204(2), 247-263.
[http://dx.doi.org/10.1083/jcb.201307067] [PMID: 24446483]
[154]
Ruest, P.J.; Roy, S.; Shi, E.; Mernaugh, R.L.; Hanks, S.K. Phosphospecific antibodies reveal focal adhesion kinase activation loop phosphorylation in nascent and mature focal adhesions and requirement for the autophosphorylation site. Cell Growth Differ., 2000, 11(1), 41-48.
[PMID: 10672902]
[155]
Green, T.P.; Fennell, M.; Whittaker, R.; Curwen, J.; Jacobs, V.; Allen, J.; Logie, A.; Hargreaves, J.; Hickinson, D.M.; Wilkinson, R.W.; Elvin, P.; Boyer, B.; Carragher, N.; Plé, P.A.; Bermingham, A.; Holdgate, G.A.; Ward, W.H.J.; Hennequin, L.F.; Davies, B.R.; Costello, G.F. Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Mol. Oncol., 2009, 3(3), 248-261.
[http://dx.doi.org/10.1016/j.molonc.2009.01.002] [PMID: 19393585]
[156]
Chang, Y-M.; Bai, L.; Liu, S.; Yang, J.C.; Kung, H-J.; Evans, C.P. Src family kinase oncogenic potential and pathways in prostate cancer as revealed by AZD0530. Oncogene, 2008, 27(49), 6365-6375.
[http://dx.doi.org/10.1038/onc.2008.250] [PMID: 18679417]
[157]
Yamauchi, T.; Hoki, T.; Oba, T.; Saito, H.; Attwood, K.; Sabel, M.S.; Chang, A.E.; Odunsi, K.; Ito, F. CX3CR1–CD8+ T cells are critical in antitumor efficacy but functionally suppressed in the tumor microenvironment. JCI Insight, 2020, 5(8), e133920.
[http://dx.doi.org/10.1172/jci.insight.133920] [PMID: 32255766]
[158]
Lavergne, E.; Combadière, B.; Bonduelle, O.; Iga, M.; Gao, J.L.; Maho, M.; Boissonnas, A.; Murphy, P.M.; Debré, P.; Combadière, C. Fractalkine mediates natural killer-dependent antitumor responses in vivo. Cancer Res., 2003, 63(21), 7468-7474.
[PMID: 14612547]
[159]
Shulby, S.A.; Dolloff, N.G.; Stearns, M.E.; Meucci, O.; Fatatis, A. CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res., 2004, 64(14), 4693-4698.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3437] [PMID: 15256432]
[160]
Castellana, D.; Zobairi, F.; Martinez, M.C.; Panaro, M.A.; Mitolo, V.; Freyssinet, J.M.; Kunzelmann, C. Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: A role for activated fibroblasts and CX3CL1-CX3CR1 axis. Cancer Res., 2009, 69(3), 785-793.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1946] [PMID: 19155311]
[161]
Siddiqui, I.; Erreni, M.; van Brakel, M.; Debets, R.; Allavena, P. Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: Importance of the chemokine gradient. J. Immunother. Cancer, 2016, 4(1), 21.
[http://dx.doi.org/10.1186/s40425-016-0125-1] [PMID: 27096098]
[162]
Böttcher, J.P.; Beyer, M.; Meissner, F.; Abdullah, Z.; Sander, J.; Höchst, B.; Eickhoff, S.; Rieckmann, J.C.; Russo, C.; Bauer, T.; Flecken, T.; Giesen, D.; Engel, D.; Jung, S.; Busch, D.H.; Protzer, U.; Thimme, R.; Mann, M.; Kurts, C.; Schultze, J.L.; Kastenmüller, W.; Knolle, P.A. Functional classification of memory CD8+ T cells by CX3CR1 expression. Nat. Commun., 2015, 6(1), 8306.
[http://dx.doi.org/10.1038/ncomms9306] [PMID: 26404698]
[163]
Yan, Y.; Cao, S.; Liu, X.; Harrington, S.M.; Bindeman, W.E.; Adjei, A.A.; Jang, J.S.; Jen, J.; Li, Y.; Chanana, P.; Mansfield, A.S.; Park, S.S.; Markovic, S.N.; Dronca, R.S.; Dong, H. CX3CR1 identifies PD-1 therapy–responsive CD8+ T cells that withstand chemotherapy during cancer chemoimmunotherapy. JCI Insight, 2018, 3(8), e97828.
[http://dx.doi.org/10.1172/jci.insight.97828] [PMID: 29669928]