Analysis of Interaction Between Odorant Receptors and Flexible Spike of SARS CoV-2- Key to Loss of Smell

Page: [151 - 159] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: The development of a vaccine for SARS-CoV-2 is primarily focused on the structure of the spike (S) protein. The heavy glycosylation of S with flexible hinges at the stalk shields from antibody attachment.

Objective: This study deciphers the flexible nature of hinges responsible for binding the odorant receptor on neurons responsible for the loss of smell in COVID-19 patients.

Methods: The 3D structure via EPIK in Maestro, protein docking with ligands via Maestro protein analysis tool, and molecular dynamic simulation at 30 ns run using DESMOND was prepared.

Results: The data of the study strongly suggest that strong and stable bond formation results from the reaction between R:14: Trp and Phe at the residue, targeting the flexible hinges of SARS-CoV-2. The difference in the conformational structure of the S protein and its binding with the odorant receptor in COVID-19 is the prime factor for the loss of smell and taste in patients, as supported by the concept of Antigen (epitope) Antibody interaction by the stable formation of a hydrogen bond among odorant receptor and the S protein. The flexibility of structural proteins determines the binding potential of antibodies or other defense proteins produced to participate in the antigen-antibody reaction.

Conclusion: Molecular and atomic details potentiate the design and screening of small molecules that can inhibit the fusion at entry level or odorant receptors and potentially be used in the prevention and treatment of infection, particularly when formulated as nasal drops, paving a new approach for pharmacologists in the treatment of COVID-19 infection.

Keywords: COVID-19, Odorant receptor, Spike protein, Flexible, SARS-CoV-2

Graphical Abstract

[1]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[2]
Lin, L.; Lu, L.; Cao, W.; Li, T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect., 2020, 9(1), 727-732.
[http://dx.doi.org/10.1080/22221751.2020.1746199] [PMID: 32196410]
[3]
Ghinai, I.; McPherson, T.D.; Hunter, J.C.; Kirking, H.L.; Christiansen, D.; Joshi, K.; Rubin, R.; Morales-Estrada, S.; Black, S.R.; Pacilli, M.; Fricchione, M.J.; Chugh, R.K.; Walblay, K.A.; Ahmed, N.S.; Stoecker, W.C.; Hasan, N.F.; Burdsall, D.P.; Reese, H.E.; Wallace, M.; Wang, C.; Moeller, D.; Korpics, J.; Novosad, S.A.; Benowitz, I.; Jacobs, M.W.; Dasari, V.S.; Patel, M.T.; Kauerauf, J.; Charles, E.M.; Ezike, N.O.; Chu, V.; Midgley, C.M.; Rolfes, M.A.; Gerber, S.I.; Lu, X.; Lindstrom, S.; Verani, J.R.; Layden, J.E. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet, 2020, 395(10230), 1137-1144.
[http://dx.doi.org/10.1016/S0140-6736(20)30607-3] [PMID: 32178768]
[4]
Ibrahim, N.K. Epidemiologic surveillance for controlling Covid-19 pandemic: Types, challenges and implications. J. Infect. Public Health, 2020, 13(11), 1630-1638.
[http://dx.doi.org/10.1016/j.jiph.2020.07.019] [PMID: 32855090]
[5]
Hwang, C.S. Olfactory neuropathy in severe acute respiratory syndrome: Report of A case. Acta Neurol. Taiwan., 2006, 15(1), 26-28.
[PMID: 16599281]
[6]
Whitcroft, K.L.; Hummel, T. Olfactory dysfunction in COVID-19: Diagnosis and management. JAMA, 2020, 323(24), 2512-2514.
[http://dx.doi.org/10.1001/jama.2020.8391] [PMID: 32432682]
[7]
Hopkins, C.; Surda, P.; Kumar, N. Presentation of new onset anosmia during the COVID-19 pandemic. Rhinology, 2020, 58(3), 295-298.
[http://dx.doi.org/10.4193/Rhin20.116] [PMID: 32277751]
[8]
Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; Guo, Q.; Song, T.; He, J.; Yen, H.L.; Peiris, M.; Wu, J. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med., 2020, 382(12), 1177-1179.
[http://dx.doi.org/10.1056/NEJMc2001737] [PMID: 32074444]
[9]
ENT, U. Loss of sense of smell as marker of COVID-19 infection. 2020.
[10]
Vaira, L.A.; Deiana, G.; Fois, A.G.; Pirina, P.; Madeddu, G.; De Vito, A.; Babudieri, S.; Petrocelli, M.; Serra, A.; Bussu, F.; Ligas, E.; Salzano, G.; De Riu, G. Objective evaluation of anosmia and ageusia in COVID-19 patients: Single-center experience on 72 cases. Head Neck, 2020, 42(6), 1252-1258.
[http://dx.doi.org/10.1002/hed.26204] [PMID: 32342566]
[11]
Galougahi, M.K.; Ghorbani, J.; Bakhshayeshkaram, M.; Naeini, A.S.; Haseli, S. Olfactory bulb magnetic resonance imaging in SARS-CoV-2-induced anosmia: The first report. Acad. Radiol., 2020, 27(6), 892-893.
[http://dx.doi.org/10.1016/j.acra.2020.04.002] [PMID: 32295727]
[12]
Walls, A.C.; Park, Y-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.
[13]
Xiao, T.; Lu, J.; Zhang, J.; Johnson, R.I.; McKay, L.G.A.; Storm, N.; Lavine, C.L.; Peng, H.; Cai, Y.; Rits-Volloch, S.; Lu, S.; Quinlan, B.D.; Farzan, M.; Seaman, M.S.; Griffiths, A.; Chen, B. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Nat. Struct. Mol. Biol., 2021, 28(2), 202-209.
[http://dx.doi.org/10.1038/s41594-020-00549-3] [PMID: 33432247]
[14]
Liu, C. MendonAa, L.; Yang, Y.; Gao, Y.; Shen, C.; Liu, J.; Ni, T.; Ju, B.; Liu, C.; Tang, X. The architecture of inactivated SARS-CoV-2 with postfusion spikes revealed by cryo-EM and cryo-ET. Structure, 2020, 28(11), 1218-1224.
[http://dx.doi.org/10.1016/j.str.2020.10.001]
[15]
Ke, Z.; Oton, J.; Qu, K.; Cortese, M.; Zila, V.; McKeane, L.; Nakane, T.; Zivanov, J.; Neufeldt, C.J.; Cerikan, B.; Lu, J.M.; Peukes, J.; Xiong, X. KrAusslich, H.G.; Scheres, S.H.W.; Bartenschlager, R.; Briggs, J.A.G. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 2020, 588(7838), 498-502.
[http://dx.doi.org/10.1038/s41586-020-2665-2] [PMID: 32805734]
[16]
Turoňov, A. ¬, B.; Sikora, M.; Schürmann, C.; Hagen, W.J.H.; Welsch, S.; Blanc, F.E.C.; von Bülow, S.; Gecht, M.; Bagola, K.; HArner, C.; van Zandbergen, G.; Landry, J.; de Azevedo, N.T.D.; Mosalaganti, S.; Schwarz, A.; Covino, R.; Mühlebach, M.D.; Hummer, G.; Krijnse Locker, J.; Beck, M. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science, 2020, 370(6513), 203-208.
[http://dx.doi.org/10.1126/science.abd5223] [PMID: 32817270]
[17]
Raghuvamsi, P.V.; Tulsian, N.K.; Samsudin, F.; Qian, X.; Purushotorman, K.; Yue, G.; Kozma, M.M.; Hwa, W.Y.; Lescar, J.; Bond, P.J.; MacAry, P.A.; Anand, G.S. SARS-CoV-2 S protein:ACE2 interaction reveals novel allosteric targets. eLife, 2021, 10, e63646.
[http://dx.doi.org/10.7554/eLife.63646] [PMID: 33554856]
[18]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[19]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[20]
Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L.; Abel, R.; Friesner, R.A.; Harder, E.D. OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput., 2019, 15(3), 1863-1874.
[http://dx.doi.org/10.1021/acs.jctc.8b01026] [PMID: 30768902]
[21]
Jacobson, M.P.; Friesner, R.A.; Xiang, Z.; Honig, B. On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol., 2002, 320(3), 597-608.
[http://dx.doi.org/10.1016/S0022-2836(02)00470-9] [PMID: 12096912]
[22]
Kozakov, D.; Brenke, R.; Comeau, S.R.; Vajda, S. PIPER: An FFT-based protein docking program with pairwise potentials. Proteins, 2006, 65(2), 392-406.
[http://dx.doi.org/10.1002/prot.21117] [PMID: 16933295]
[23]
Castro, T.G.; Silva, C.; Matam, A. ¬, T.; Cavaco-Paulo, A. The structural properties of odorants modulate their association to human odorant binding protein. Biomolecules, 2021, 11(2), 145.
[http://dx.doi.org/10.3390/biom11020145] [PMID: 33499295]
[24]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[25]
Xu, C.; Wang, Y.; Liu, C.; Zhang, C.; Han, W.; Hong, X.; Wang, Y.; Hong, Q.; Wang, S.; Zhao, Q.; Wang, Y.; Yang, Y.; Chen, K.; Zheng, W.; Kong, L.; Wang, F.; Zuo, Q.; Huang, Z.; Cong, Y. Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Sci. Adv., 2021, 7(1), eabe5575.
[http://dx.doi.org/10.1126/sciadv.abe5575] [PMID: 33277323]
[26]
Briand, L.; Eloit, C.; Nespoulous, C. BA(c)zirard, V.; Huet, J-C.; Henry, C.; Blon, F.; Trotier, D.; Pernollet, J-C. Evidence of an odorant-binding protein in the human olfactory mucus: Location, structural characterization, and odorant-binding properties. Biochemistry, 2002, 41(23), 7241-7252.
[http://dx.doi.org/10.1021/bi015916c] [PMID: 12044155]
[27]
Kaushik, A.C.; Sahi, S. Molecular modeling and molecular dynamics simulation-based structural analysis of GPR3. Netw. Model. Anal. Health Inform. Bioinform., 2017, 6(1), 9.
[http://dx.doi.org/10.1007/s13721-017-0150-0]
[28]
Qiao, B.; Olvera de la Cruz, M. Enhanced binding of SARS-CoV-2 spike protein to receptor by distal polybasic cleavage sites. ACS Nano, 2020, 14(8), 10616-10623.
[http://dx.doi.org/10.1021/acsnano.0c04798] [PMID: 32806067]
[29]
Cai, Y.; Zhang, J.; Xiao, T.; Peng, H.; Sterling, S.M.; Walsh, R.M., Jr; Rawson, S.; Rits-Volloch, S.; Chen, B. Distinct conformational states of SARS-CoV-2 spike protein. Science, 2020, 369(6511), 1586-1592.
[http://dx.doi.org/10.1126/science.abd4251] [PMID: 32694201]
[30]
Benton, D.J.; Nans, A.; Calder, L.J.; Turner, J.; Neu, U.; Lin, Y.P.; Ketelaars, E.; Kallewaard, N.L.; Corti, D.; Lanzavecchia, A.; Gamblin, S.J.; Rosenthal, P.B.; Skehel, J.J. Influenza hemagglutinin membrane anchor. Proc. Natl. Acad. Sci. USA, 2018, 115(40), 10112-10117.
[http://dx.doi.org/10.1073/pnas.1810927115] [PMID: 30224494]
[31]
Henderson, R.; Edwards, R.J.; Mansouri, K.; Janowska, K.; Stalls, V.; Gobeil, S.M.C.; Kopp, M.; Li, D.; Parks, R.; Hsu, A.L.; Borgnia, M.J.; Haynes, B.F.; Acharya, P. Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat. Struct. Mol. Biol., 2020, 27(10), 925-933.
[http://dx.doi.org/10.1038/s41594-020-0479-4] [PMID: 32699321]
[32]
Hsieh, C-L.; Goldsmith, J.A.; Schaub, J.M.; DiVenere, A.M.; Kuo, H-C.; Javanmardi, K.; Le, K.C.; Wrapp, D.; Lee, A.G.; Liu, Y.; Chou, C.W.; Byrne, P.O.; Hjorth, C.K.; Johnson, N.V.; Ludes-Meyers, J.; Nguyen, A.W.; Park, J.; Wang, N.; Amengor, D.; Lavinder, J.J.; Ippolito, G.C.; Maynard, J.A.; Finkelstein, I.J.; McLellan, J.S. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science, 2020, 369(6510), 1501-1505.
[http://dx.doi.org/10.1126/science.abd0826] [PMID: 32703906]
[33]
Ye, Q.; Zhou, J.; He, Q.; Li, R.T.; Yang, G.; Zhang, Y.; Wu, S.J.; Chen, Q.; Shi, J.H.; Zhang, R.R.; Zhu, H.M.; Qiu, H.Y.; Zhang, T.; Deng, Y.Q.; Li, X.F.; Liu, J.F.; Xu, P.; Yang, X.; Qin, C.F. SARS-CoV-2 infection in the mouse olfactory system. Cell Discov., 2021, 7(1), 49.
[http://dx.doi.org/10.1038/s41421-021-00290-1] [PMID: 34230457]
[34]
Tan, C.W.; Chia, W.N.; Qin, X.; Liu, P.; Chen, M.I-C.; Tiu, C.; Hu, Z.; Chen, V.C-W.; Young, B.E.; Sia, W.R.A.; Tan, Y.J.; Foo, R.; Yi, Y.; Lye, D.C.; Anderson, D.E.; Wang, L.F.A. SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat. Biotechnol., 2020, 38(9), 1073-1078.
[http://dx.doi.org/10.1038/s41587-020-0631-z] [PMID: 32704169]
[35]
Kumar, A.; Kumar, P.; Garg, N.; Giri, R. An insight into SARS-CoV-2 membrane protein interaction with spike, envelope, and nucleocapsid proteins. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.10.30.363002]
[36]
Gane, S.B.; Kelly, C.; Hopkins, C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology, 2020, 58(3), 299-301.
[http://dx.doi.org/10.4193/Rhin20.114] [PMID: 32240279]
[37]
Bilinska, K.; Jakubowska, P.; Von Bartheld, C.S.; Butowt, R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem. Neurosci., 2020, 11(11), 1555-1562.
[http://dx.doi.org/10.1021/acschemneuro.0c00210] [PMID: 32379417]
[38]
Qu, L.; Qiao, X.; Qi, F.; Nishida, N.; Hoshino, T. Analysis of binding modes of antigen-antibody complexes by molecular mechanics calculation. J. Chem. Inf. Model., 2021, 61(5), 2396-2406.
[http://dx.doi.org/10.1021/acs.jcim.1c00167] [PMID: 33934602]
[39]
Richter, A.; Eggenstein, E.; Skerra, A. Anticalins: Exploiting a non-Ig scaffold with hypervariable loops for the engineering of binding proteins. FEBS Lett., 2014, 588(2), 213-218.
[http://dx.doi.org/10.1016/j.febslet.2013.11.006] [PMID: 24239535]