Neuroprotection of Multitargeted Phytochemicals against Alzheimer: A Desperate Need from Nature

Article ID: e270622206421 Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Background: Alzheimer’s disease (AD) is an incurable neurodegenerative disorder associated with dementia which leads to the alteration in the psychological and physiological functioning of the individual. From antiquity, medicinal plants serve as important sources of bioactive phytochemicals representing tremendous therapeutic potential. The unavoidable adverse effects associated with synthetic compounds trigger the exploration of new and safer substitutes for the treatment and management of disease conditions. Herbal medication proves to be an emerging and most promising alternative, which is expected to be a revolutionary approach in modern medicine for disease treatment.

Objective: Several phytochemicals like resveratrol, curcumin, apigenin, docosahexaenoic acid, epigallocatechin gallate, and α-lipoic acid exhibit great potential in the prevention and management of AD. Their use might be a possible remedy and lead to a safe strategy to delay the onset of AD and slow the progression of this pervasive disorder. To determine the potential of these natural components as anti- AD, this review focuses on the updates on clinical studies and research.

Methods: Extensive literature survey was carried out on natural multitargeted bioactive phytochemicals from various scientific databases like PubMed, Science Direct, Scopus, Clinicaltrails.gov, and many reputed foundations. Current prose emphasizes the identified bioactive compounds as anti-AD, which were reviewed with particular emphasis on their scientific impact and novelty.

Results: These compounds diminish the pathophysiological aspects of AD; still, further studies are required to prove the safety and efficacy of these compounds in humans.

Conclusion: This present review might help the researchers, academicians and industrialists in drug development as a new paradigm of drug discovery.

Keywords: Phytochemicals, Alzheimer’s disease, AChE, amyloid β, NF-kB, BDNF.

Graphical Abstract

[1]
Cipriani, G.; Dolciotti, C.; Picchi, L.; Bonuccelli, U. Alzheimer and his disease: A brief history. Neurol. Sci., 2011, 32(2), 275-279.
[http://dx.doi.org/10.1007/s10072-010-0454-7] [PMID: 21153601]
[2]
Saini, D.; Dhingra, A.K.; Chopra, B.; Parle, M. Psychopharmacological investigation of the nootropic potential of Trigonella foenum linn in mice. AJPCR, 2011, 4(4), 76-84.
[3]
Singh, R.K. Antagonism of cysteinyl leukotrienes and their receptors as a neuroinflammatory target in Alzheimer’s disease. Neurol. Sci., 2020, 41, 2081-2093.
[http://dx.doi.org/10.1007/s10072-020-04369-7]
[4]
Dhingra, A.K.; Chopra, B.; Dass, R.; Mittal, S.K. An update on anti-inflammatory compounds: A review. Antiinflamm. Antiallergy Agents Med. Chem., 2015, 14(2), 81-97.
[http://dx.doi.org/10.2174/1871523014666150514102027] [PMID: 25973652]
[5]
Rösler, M.; Retz, W.; Thome, J.; Riederer, P. Free radicals in Alzheimer’s dementia: Currently available therapeutic strategies. J. Neural Transm. Suppl., 1998, 54, 211-219.
[http://dx.doi.org/10.1007/978-3-7091-7508-8_21] [PMID: 9850930]
[6]
Dhingra, A.K.; Chopra, B. Inflammation as a therapeutic target for various deadly disorders: A review. Curr. Drug Targets, 2020, 21(6), 582-588.
[http://dx.doi.org/10.2174/1389450120666191204154115] [PMID: 31801453]
[7]
Marizzoni, M.; Cattaneo, A.; Mirabelli, P.; Festari, C.; Lopizzo, N.; Nicolosi, V.; Mombelli, E.; Mazzelli, M.; Luongo, D.; Naviglio, D.; Coppola, L.; Salvatore, M.; Frisoni, G.B. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. J. Alzheimers Dis., 2020, 78(2), 683-697.
[http://dx.doi.org/10.3233/JAD-200306] [PMID: 33074224]
[8]
Blennow, K.; Hampel, H.; Weiner, M.; Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol., 2010, 6(3), 131-144.
[http://dx.doi.org/10.1038/nrneurol.2010.4] [PMID: 20157306]
[9]
Alzheimer’s Disease International. World Alzheimer Report 2019: Attitudes to Dementia. Alzheimer’s Disease International: London, 2019.
[10]
Cummings, J.L.; Cole, G. Alzheimer disease. JAMA, 2002, 287(18), 2335-2338.
[http://dx.doi.org/10.1001/jama.287.18.2335] [PMID: 11988038]
[11]
Atri, A. Current and future treatments in Alzheimer’s disease. Semin. Neurol., 2019, 39(2), 227-240.
[http://dx.doi.org/10.1055/s-0039-1678581] [PMID: 30925615]
[12]
Cummings, J. Lessons learned from Alzheimer disease: Clinical trials with negative outcomes. Clin. Transl. Sci., 2018, 11(2), 147-152.
[http://dx.doi.org/10.1111/cts.12491] [PMID: 28767185]
[13]
Miranda, L.F.; Gomes, K.B.; Silveira, J.N.; Pianetti, G.A.; Byrro, R.M.; Peles, P.R.; Pereira, F.H.; Santos, T.R.; Assini, A.G.; Ribeiro, V.V.; Tito, P.A.; Matoso, R.O.; Lima, T.O.; Moraes, E.N.; Caramelli, P. Predictive factors of clinical response to cholinesterase inhibitors in mild and moderate Alzheimer’s disease and mixed dementia: A one-year naturalistic study. J. Alzheimers Dis., 2015, 45(2), 609-620.
[http://dx.doi.org/10.3233/JAD-142148] [PMID: 25589728]
[14]
Dhingra, A.K.; Chopra, B. Herbal remedies for birth control: An alternative of synthetic hormonal contraceptives. Curr. Womens Health Rev., 2020, 16(4), 290-297.
[http://dx.doi.org/10.2174/1573404816999200511002829]
[15]
Tundis, R.; Loizzo, M.R.; Nabavi, S.M.; Orhan, I.E. Skalicka-Woźniak, K.; D’Onofrio, G.; Aiello, F. Natural compounds and their derivatives as multifunctional agents for the treatment of Alzheimer disease. Discovery and Development of Neuroprotective Agents from Natural Products; Brahmachari, G., Ed.; Elsevier, 2018, pp. 63-102.
[http://dx.doi.org/10.1016/B978-0-12-809593-5.00003-3]
[16]
Williams, P.; Sorribas, A.; Howes, M.J.R. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep., 2011, 28(1), 48-77.
[http://dx.doi.org/10.1039/C0NP00027B] [PMID: 21072430]
[17]
Zhu, Y.; Peng, L.; Hu, J.; Chen, Y.; Chen, F. Current anti-Alzheimer’s disease effect of natural products and their principal targets. J. Integr. Neurosci., 2019, 18(3), 327-339.
[http://dx.doi.org/10.31083/j.jin.2019.03.1105] [PMID: 31601083]
[18]
Ansari, N.; Khodagholi, F. Natural products as promising drug candidates for the treatment of Alzheimer’s disease: Molecular mechanism aspect. Curr. Neuropharmacol., 2013, 11(4), 414-429.
[http://dx.doi.org/10.2174/1570159X11311040005] [PMID: 24381531]
[19]
Dubois, B.; Feldman, H.H.; Jacova, C.; Dekosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.; Meguro, K.; O’brien, J.; Pasquier, F.; Robert, P.; Rossor, M.; Salloway, S.; Stern, Y.; Visser, P.J.; Scheltens, P. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol., 2007, 6(8), 734-746.
[http://dx.doi.org/10.1016/S1474-4422(07)70178-3] [PMID: 17616482]
[20]
Takaoka, M. Resveratrol, a new phenolic compound from Veratrum grandiflorum. Nippon Kagaku Kaishi, 1939, 60, 1090-1100.
[http://dx.doi.org/10.1246/nikkashi1921.60.1090]
[21]
Nonomura, S.; Kanagawa, H.; Makimoto, A. Chemical constituents of polygonaceous plants. I. Studies on the components of Ko-jo-kon (Polygonum cuspidatum Sieb. et Zucc.). Yakugaku Zasshi, 1963, 83(10), 988-990.
[http://dx.doi.org/10.1248/yakushi1947.83.10_988] [PMID: 14089847]
[22]
Liu, Z.; Xu, J.; Wu, X.; Wang, Y.; Lin, Y.; Wu, D.; Zhang, H.; Qin, J. Molecular analysis of UV-C induced resveratrol accumulation in Polygonum cuspidatum leaves. Int. J. Mol. Sci., 2019, 20(24), 6185.
[http://dx.doi.org/10.3390/ijms20246185] [PMID: 31817915]
[23]
Dhingra, A.K.; Rathi, V.; Chopra, B. Resveratrol. In:Naturally Occurring Chemicals against Alzheimer’s Disease, 1st ed; Academic Press Inc., 2020, pp. 33-42.
[24]
Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50(11), 3337-3340.
[http://dx.doi.org/10.1021/jf0112973] [PMID: 12010007]
[25]
Sobolev, V.S.; Cole, R.J. trans-resveratrol content in commercial peanuts and peanut products. J. Agric. Food Chem., 1999, 47(4), 1435-1439.
[http://dx.doi.org/10.1021/jf9809885] [PMID: 10563995]
[26]
Hurst, W.J.; Glinski, J.A.; Miller, K.B.; Apgar, J.; Davey, M.H.; Stuart, D.A. Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J. Agric. Food Chem., 2008, 56(18), 8374-8378.
[http://dx.doi.org/10.1021/jf801297w] [PMID: 18759443]
[27]
Counet, C.; Callemien, D.; Collin, S. Chocolate and cocoa: New sources of trans-resveratrol and trans-piceid. Food Chem., 2006, 98(4), 649-657.
[http://dx.doi.org/10.1016/j.foodchem.2005.06.030]
[28]
Capiralla, H.; Vingtdeux, V.; Zhao, H.; Sankowski, R.; Al-Abed, Y.; Davies, P.; Marambaud, P. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J. Neurochem., 2012, 120(3), 461-472.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07594.x] [PMID: 22118570]
[29]
Sousa, J.C.E.; Santana, A.C.F. MagalhÃes, G.J.P. Resveratrol in Alzheimer’s disease: A review of pathophysiology and therapeutic potential. Arq. Neuropsiquiatr., 2020, 78(8), 501-511.
[http://dx.doi.org/10.1590/0004-282x20200010] [PMID: 32520230]
[30]
Li, F.; Gong, Q.; Dong, H.; Shi, J. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr. Pharm. Des., 2012, 18(1), 27-33.
[http://dx.doi.org/10.2174/138161212798919075] [PMID: 22211686]
[31]
Braidy, N.; Jugder, B.E.; Poljak, A.; Jayasena, T.; Mansour, H.; Nabavi, S.M.; Sachdev, P.; Grant, R. Resveratrol as a potential therapeutic candidate for the treatment and management of Alzheimer’s disease. Curr. Top. Med. Chem., 2016, 16(17), 1951-1960.
[http://dx.doi.org/10.2174/1568026616666160204121431] [PMID: 26845555]
[32]
Anekonda, T.S.; Reddy, P.H. Neuronal protection by sirtuins in Alzheimer’s disease. J. Neurochem., 2006, 96(2), 305-313.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03492.x] [PMID: 16219030]
[33]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[34]
Jang, J.H.; Surh, Y.J. Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic. Biol. Med., 2003, 34(8), 1100-1110.
[http://dx.doi.org/10.1016/S0891-5849(03)00062-5] [PMID: 12684095]
[35]
Jeon, B.T.; Jeong, E.A.; Shin, H.J.; Lee, Y.; Lee, D.H.; Kim, H.J.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Roh, G.S. Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes, 2012, 61(6), 1444-1454.
[http://dx.doi.org/10.2337/db11-1498] [PMID: 22362175]
[36]
Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J. Biol. Chem., 2005, 280(45), 37377-37382.
[http://dx.doi.org/10.1074/jbc.M508246200] [PMID: 16162502]
[37]
Mohan, S.; Gobinath, T.; Salomy, A.; Nisha, M.; Kandasamy, M.; Essa, M.M.; Jayachandran, K.S.; Anusuyadevi, M. Biophysical interaction of resveratrol with sirtuin pathway: Significance in Alzheimer’s disease. Front. Biosci., 2018, 23(7), 1380-1390.
[http://dx.doi.org/10.2741/4650] [PMID: 29293440]
[38]
Pasinetti, G.M.; Wang, J.; Ho, L.; Zhao, W.; Dubner, L. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim. Biophys. Acta, 2015, 1852(6), 1202-1208.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.006] [PMID: 25315300]
[39]
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1(1), 35.
[http://dx.doi.org/10.1038/s41698-017-0038-6] [PMID: 28989978]
[40]
Lange, K.W.; Li, S. Resveratrol, pterostilbene, and dementia. Biofactors, 2018, 44(1), 83-90.
[http://dx.doi.org/10.1002/biof.1396] [PMID: 29168580]
[41]
Puksasook, T.; Kimura, S.; Tadtong, S.; Jiaranaikulwanitch, J.; Pratuangdejkul, J.; Kitphati, W.; Suwanborirux, K.; Saito, N.; Nukoolkarn, V. Semisynthesis and biological evaluation of prenylated resveratrol derivatives as multi-targeted agents for Alzheimer’s disease. J. Nat. Med., 2017, 71(4), 665-682.
[http://dx.doi.org/10.1007/s11418-017-1097-2] [PMID: 28600778]
[42]
Jeřábek, J.; Uliassi, E.; Guidotti, L.; Korábečný, J.; Soukup, O.; Sepsova, V.; Hrabinova, M.; Kuča, K.; Bartolini, M.; Peña-Altamira, L.E.; Petralla, S.; Monti, B.; Roberti, M.; Bolognesi, M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 250-262.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.048] [PMID: 28064079]
[43]
Kulkarni, S.S.; Cantó, C. The molecular targets of resveratrol. Biochim. Biophys. Acta, 2015, 1852(6), 1114-1123.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.005] [PMID: 25315298]
[44]
Bastianetto, S.; Ménard, C.; Quirion, R. Neuroprotective action of resveratrol. Biochim. Biophys. Acta, 2015, 1852(6), 1195-1201.
[http://dx.doi.org/10.1016/j.bbadis.2014.09.011] [PMID: 25281824]
[45]
Levi, F.; Pasche, C.; Lucchini, F.; Ghidoni, R.; Ferraroni, M.; La Vecchia, C. Resveratrol and breast cancer risk. Eur. J. Cancer Prev., 2005, 14(2), 139-142.
[http://dx.doi.org/10.1097/00008469-200504000-00009] [PMID: 15785317]
[46]
Boocock, D.J.; Faust, G.E.; Patel, K.R.; Schinas, A.M.; Brown, V.A.; Ducharme, M.P.; Booth, T.D.; Crowell, J.A.; Perloff, M.; Gescher, A.J.; Steward, W.P.; Brenner, D.E. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol. Biomarkers Prev., 2007, 16(6), 1246-1252.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-0022] [PMID: 17548692]
[47]
Boocock, DJ.; Patel, KR.; Faust, GE.; Normolle, DP.; Marczylo, TH.; Crowell, JA.; Brenner, DE.; Booth, TD.; Gescher, A.; Steward, WP. Quantitation of transresveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography. J. Chromatogr. B,, 2017, 848(2), 182-187.
[48]
Frozza, R.L.; Bernardi, A.; Hoppe, J.B.; Meneghetti, A.B.; Matté, A.; Battastini, A.M.; Pohlmann, A.R.; Guterres, S.S.; Salbego, C. Neuroprotective effects of resveratrol against Aβ administration in rats are improved by lipid-core nanocapsules. Mol. Neurobiol., 2013, 47(3), 1066-1080.
[http://dx.doi.org/10.1007/s12035-013-8401-2] [PMID: 23315270]
[49]
Ma, T.; Tan, M.S.; Yu, J.T.; Tan, L. Resveratrol as a therapeutic agent for Alzheimer’s disease. BioMed Res. Int., 2014, 2014, 350516.
[http://dx.doi.org/10.1155/2014/350516] [PMID: 25525597]
[50]
Villaflores, O.B.; Chen, Y.J.; Chen, C.P.; Yeh, J.M.; Wu, T.Y. Curcuminoids and resveratrol as anti-Alzheimer agents. Taiwan. J. Obstet. Gynecol., 2012, 51(4), 515-525.
[http://dx.doi.org/10.1016/j.tjog.2012.09.005] [PMID: 23276553]
[51]
Ganguli, M.; Chandra, V.; Kamboh, M.I.; Johnston, J.M.; Dodge, H.H.; Thelma, B.K.; Juyal, R.C.; Pandav, R.; Belle, S.H.; DeKosky, S.T. Apolipoprotein E polymorphism and Alzheimer disease: The IndoeUS cross-national dementia study. Arch. Neurol., 2000, 57(6), 824-830.
[http://dx.doi.org/10.1001/archneur.57.6.824] [PMID: 10867779]
[52]
Garcia-Alloza, M.; Borrelli, L.A.; Rozkalne, A.; Hyman, B.T.; Bacskai, B.J. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J. Neurochem., 2007, 102(4), 1095-1104.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04613.x] [PMID: 17472706]
[53]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[54]
Wang, Y.J.; Thomas, P.; Zhong, J.H.; Bi, F.F.; Kosaraju, S.; Pollard, A.; Fenech, M.; Zhou, X.F. Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox. Res., 2009, 15(1), 3-14.
[http://dx.doi.org/10.1007/s12640-009-9000-x] [PMID: 19384583]
[55]
Xiong, Z.; Hongmei, Z.; Lu, S.; Yu, L. Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s disease. Pharmacol. Rep., 2011, 63(5), 1101-1108.
[http://dx.doi.org/10.1016/S1734-1140(11)70629-6] [PMID: 22180352]
[56]
Zhang, C.; Browne, A.; Child, D.; Tanzi, R.E. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J. Biol. Chem., 2010, 285(37), 28472-28480.
[http://dx.doi.org/10.1074/jbc.M110.133520] [PMID: 20622013]
[57]
Scapagnini, G.; Colombrita, C.; Amadio, M.; D’Agata, V.; Arcelli, E.; Sapienza, M.; Quattrone, A.; Calabrese, V. Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid. Redox Signal., 2006, 8(3-4), 395-403.
[http://dx.doi.org/10.1089/ars.2006.8.395] [PMID: 16677086]
[58]
Yang, C.; Zhang, X.; Fan, H.; Liu, Y. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res., 2009, 1282, 133-141.
[http://dx.doi.org/10.1016/j.brainres.2009.05.009] [PMID: 19445907]
[59]
Teter, B.; Morihara, T.; Lim, G.P.; Chu, T.; Jones, M.R.; Zuo, X.; Paul, R.M.; Frautschy, S.A.; Cole, G.M. Curcumin restores innate immune Alzheimer’s disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol. Dis., 2019, 127, 432-448.
[http://dx.doi.org/10.1016/j.nbd.2019.02.015] [PMID: 30951849]
[60]
Zhang, L.; Fang, Y.; Xu, Y.; Lian, Y.; Xie, N.; Wu, T.; Zhang, H.; Sun, L.; Zhang, R.; Wang, Z. Curcumin improves amyloid b-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One, 2015, 10(6), e0131525.
[http://dx.doi.org/10.1371/journal.pone.0131525] [PMID: 26114940]
[61]
Isik, A.T.; Celik, T.; Ulusoy, G.; Ongoru, O.; Elibol, B.; Doruk, H.; Bozoglu, E.; Kayir, H.; Mas, M.R.; Akman, S. Curcumin ameliorates impaired insulin/IGF signalling and memory deficit in a streptozotocin-treated rat model. Age (Dordr.), 2009, 31(1), 39-49.
[http://dx.doi.org/10.1007/s11357-008-9078-8] [PMID: 19234767]
[62]
Wang, Y.; Yin, H.; Li, J.; Zhang, Y.; Han, B.; Zeng, Z.; Qiao, N.; Cui, X.; Lou, J.; Li, J. Amelioration of β-amyloid-induced cognitive dysfunction and hippocampal axon degeneration by curcumin is associated with suppression of CRMP-2 hyperphosphorylation. Neurosci. Lett.,, 2013, 557(Pt B), 112-117.
[http://dx.doi.org/10.1016/j.neulet.2013.10.024] [PMID: 24157857]
[63]
Yin, H.L.; Wang, Y.L.; Li, J.F.; Han, B.; Zhang, X.X.; Wang, Y.T.; Geng, S. Effects of curcumin on hippocampal expression of NgR and axonal regeneration in Aβ-induced cognitive disorder rats. Genet. Mol. Res., 2014, 13(1), 2039-2047.
[http://dx.doi.org/10.4238/2014.March.24.8] [PMID: 24737429]
[64]
Cherkasov, O.A. Plant sources of galanthamine. Pharm. Chem. J., 1977, 11(6), 810-813.
[http://dx.doi.org/10.1007/BF00779301]
[65]
Cherkasov, O.; Tokachev, O. Medicinal and Aromatic Plants e Industrial Profiles: Narcissus and Daffodil, the Genus Narcissus; Hanks, G., Ed.; Taylor and Francis: London, New York, 2002, pp. 242-255.
[66]
Stefanov, J. Ecological, biological and phytochemical studies on natural populations and introduced origins of snow flake (Leucojum aestivum l.), Bulgaria (D.Sc. thesis). Sofia, 1990.
[67]
Kreh, M. Medicinal and Aromatic Plants e Industrial Profiles: Narcissus and Daffodil, the Genus Narcissus; Hanks, G., Ed.; Taylor and Francis: London, New York, 2002, pp. 256-271.
[68]
Berkov, S.; Georgieva, L.; Kondakova, V.; Atanassov, A.; Viladomat, F.; Bastida, J.; Codina, C. Plant sources of galanthamine: Phytochemical and biotechnological aspects. Biotechnol. Biotechnol. Equip., 2009, 23(2), 1170-1176.
[http://dx.doi.org/10.1080/13102818.2009.10817633]
[69]
Hayashi, A.; Saito, T.; Mukai, Y.; Kurita, S.; Hori, T.A. Genetic variations in Lycoris radiata var. radiata in Japan. Genes Genet. Syst., 2005, 80(3), 199-212.
[http://dx.doi.org/10.1266/ggs.80.199] [PMID: 16172532]
[70]
Pavlov, A.; Berkov, S.; Courot, E.; Gocheva, T.; Tuneva, D.; Pandova, B.; Georgiev, M.; Georgiev, V.; Yanev, S.; Burrus, M.; Ilieva, M. Galanthamine production by Leucojum aestivum in vitro systems. Process Biochem., 2007, 42(4), 734-739.
[http://dx.doi.org/10.1016/j.procbio.2006.12.006]
[71]
Proskurina, N.F.; Yakovleva, A.P.; Ordzhonikidze, S. Alkaloids of Galanthus woronovii, III. Structure of galanthamine. Zurnal Obshchei Khimii, 1955, 25, 1035-1039.
[72]
Albuquerque, E.X.; Santos, M.D.; Alkondon, M.; Pereira, E.F.; Maelicke, A. Modulation of nicotinic receptor activity in the central nervous system: A novel approach to the treatment of Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2001, 15(1)(Suppl. 1), S19-S25.
[http://dx.doi.org/10.1097/00002093-200108001-00004] [PMID: 11669505]
[73]
Thomsen, T.; Kaden, B.; Fischer, J.P.; Bickel, U.; Barz, H.; Gusztony, G.; Cervos-Navarro, J.; Kewitz, H. Inhibition of acetylcholinesterase activity in human brain tissue and erythrocytes by galanthamine, physostigmine and tacrine. Eur. J. Clin. Chem. Clin. Biochem., 1991, 29(8), 487-492.
[http://dx.doi.org/10.1515/cclm.1991.29.8.487] [PMID: 1954303]
[74]
Martin-Ruiz, C.M.; Court, J.A.; Molnar, E.; Lee, M.; Gotti, C.; Mamalaki, A.; Tsouloufis, T.; Tzartos, S.; Ballard, C.; Perry, R.H.; Perry, E.K. Alpha4 but not alpha3 and alpha7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. J. Neurochem., 1999, 73(4), 1635-1640.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0731635.x] [PMID: 10501210]
[75]
Paterson, D.; Nordberg, A. Neuronal nicotinic receptors in the human brain. Prog. Neurobiol., 2000, 61(1), 75-111.
[http://dx.doi.org/10.1016/S0301-0082(99)00045-3] [PMID: 10759066]
[76]
Perry, E.K.; Morris, C.M.; Court, J.A.; Cheng, A.; Fairbairn, A.F.; McKeith, I.G.; Irving, D.; Brown, A.; Perry, R.H. Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: Possible index of early neuropathology. Neuroscience, 1995, 64(2), 385-395.
[http://dx.doi.org/10.1016/0306-4522(94)00410-7] [PMID: 7700528]
[77]
Emilien, G.; Durlach, C.; Minaker, K.L.; Winblad, B.; Gauthier, S.; Maloteaux, J.M. Alzheimer Disease: Neuropsychology and Pharmacology, 1st ed; Birkhäuser Basel: Switzerland, 2004.
[http://dx.doi.org/10.1007/978-3-0348-7842-5]
[78]
Marco-Contelles, J.; do Carmo Carreiras, M.; Rodríguez, C.; Villarroya, M.; García, A.G. Synthesis and pharmacology of galantamine. Chem. Rev., 2006, 106(1), 116-133.
[http://dx.doi.org/10.1021/cr040415t] [PMID: 16402773]
[79]
Dos Santos, T.C.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Paes, A.M.A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s, disease therapy. Front. Pharmacol., 2018, 9, 1192.
[http://dx.doi.org/10.3389/fphar.2018.01192] [PMID: 30405413]
[80]
Viegas, C., Jr; Bolzani, V.S.; Barreiro, E.J.; Fraga, C.A. New anti-Alzheimer drugs from biodiversity: The role of the natural acetylcholinesterase inhibitors. Mini Rev. Med. Chem., 2005, 5(10), 915-926.
[http://dx.doi.org/10.2174/138955705774329546] [PMID: 16250834]
[81]
Heinrich, M.; Lee Teoh, H. Galanthamine from snowdrop-the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J. Ethnopharmacol., 2004, 92(2-3), 147-162.
[http://dx.doi.org/10.1016/j.jep.2004.02.012] [PMID: 15137996]
[82]
Erkinjuntti, T.; Kurz, A.; Gauthier, S.; Bullock, R.; Lilienfeld, S.; Damaraju, C.V. Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: A randomised trial. Lancet, 2002, 359(9314), 1283-1290.
[http://dx.doi.org/10.1016/S0140-6736(02)08267-3] [PMID: 11965273]
[83]
Lanctôt, K.L.; Herrmann, N.; Yau, K.K.; Khan, L.R.; Liu, B.A. LouLou, M.M.; Einarson, T.R. Effcacy and safety of cholinesterase inhibitors in Alzheimer’s disease: A meta-analysis. CMAJ, 2003, 169, 557-564.
[PMID: 12975222]
[84]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[85]
Li, G.; Higdon, R.; Kukull, W.A.; Peskind, E.; Van Valen Moore, K.; Tsuang, D.; van Belle, G.; McCormick, W.; Bowen, J.D.; Teri, L.; Schellenberg, G.D.; Larson, E.B. Statin therapy and risk of dementia in the elderly: A community-based prospective cohort study. Neurology, 2004, 63(9), 1624-1628.
[http://dx.doi.org/10.1212/01.WNL.0000142963.90204.58] [PMID: 15534246]
[86]
Calciano, M.A.; Zhou, W.; Snyder, P.J.; Einstein, R. Drug treatment of Alzheimer’s disease patients leads to expression changes in peripheral blood cells. Alzheimers Dement., 2010, 6(5), 386-393.
[http://dx.doi.org/10.1016/j.jalz.2009.12.004] [PMID: 20185375]
[87]
Lilienfeld, S. Galantamine-a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev., 2002, 8(2), 159-176.
[http://dx.doi.org/10.1111/j.1527-3458.2002.tb00221.x] [PMID: 12177686]
[88]
Hanafy, A.S.; Farid, R.M.; Helmy, M.W.; ElGamal, S.S. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: Future potential contribution in Alzheimer’s disease management. Drug Deliv., 2016, 23(8), 3111-3122.
[http://dx.doi.org/10.3109/10717544.2016.1153748] [PMID: 26942549]
[89]
Liu, Y.; Zhang, Y.; Zheng, X.; Fang, T.; Yang, X.; Luo, X.; Guo, A.; Newell, K.A.; Huang, X.F.; Yu, Y. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J. Neuroinflammation, 2018, 15(1), 112.
[http://dx.doi.org/10.1186/s12974-018-1141-5] [PMID: 29669582]
[90]
Kumar, V. Potential medicinal plants for CNS disorders: An overview. Phytother. Res., 2006, 20(12), 1023-1035.
[http://dx.doi.org/10.1002/ptr.1970] [PMID: 16909441]
[91]
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 77991, Rivastigmine. 2019. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Rivastigmine
[92]
Williams, B.R.; Nazarians, A.; Gill, M.A. A review of rivastigmine: A reversible cholinesterase inhibitor. Clin. Ther., 2003, 25(6), 1634-1653.
[http://dx.doi.org/10.1016/S0149-2918(03)80160-1] [PMID: 12860489]
[93]
Polinsky, R.J. Clinical pharmacology of rivastigmine: A new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin. Ther., 1998, 20(4), 634-647.
[http://dx.doi.org/10.1016/S0149-2918(98)80127-6] [PMID: 9737824]
[94]
Nesi, G.; Chen, Q.; Sestito, S.; Digiacomo, M.; Yang, X.; Wang, S.; Pi, R.; Rapposelli, S. Nature-based molecules combined with rivastigmine: A symbiotic approach for the synthesis of new agents against Alzheimer’s disease. Eur. J. Med. Chem., 2017, 141, 232-239.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.006] [PMID: 29031070]
[95]
Reading, P.J.; Luce, A.K.; McKeith, I.G. Rivastigmine in the treatment of parkinsonian psychosis and cognitive impairment: Preliminary findings from an open trial. Mov. Disord., 2001, 16(6), 1171-1174.
[http://dx.doi.org/10.1002/mds.1204] [PMID: 11748755]
[96]
Bolognesi, M.L.; Bartolini, M.; Cavalli, A.; Andrisano, V.; Rosini, M.; Minarini, A.; Melchiorre, C. Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues. J. Med. Chem., 2004, 47(24), 5945-5952.
[http://dx.doi.org/10.1021/jm049782n] [PMID: 15537349]
[97]
Kennedy, J.S.; Polinsky, R.J.; Johnson, B.; Loosen, P.; Enz, A.; Laplanche, R.; Schmidt, D.; Mancione, L.C.; Parris, W.C.; Ebert, M.H. Preferential cerebrospinal fluid acetylcholinesterase inhibition by rivastigmine in humans. J. Clin. Psychopharmacol., 1999, 19(6), 513-521.
[http://dx.doi.org/10.1097/00004714-199912000-00005] [PMID: 10587286]
[98]
Darreh-Shori, T.; Almkvist, O.; Guan, Z.Z.; Garlind, A.; Strandberg, B.; Svensson, A.L.; Soreq, H.; Hellström-Lindahl, E.; Nordberg, A. Sustained cholinesterase inhibition in AD patients receiving rivastigmine for 12 months. Neurology, 2002, 59(4), 563-572.
[http://dx.doi.org/10.1212/WNL.59.4.563] [PMID: 12196650]
[99]
Darvesh, S.; Grantham, D.L.; Hopkins, D.A. Distribution of butyrylcholinesterase in the human amygdala and hippocampal formation. J. Comp. Neurol., 1998, 393(3), 374-390.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19980413)393:3<374:AID-CNE8>3.0.CO;2-Z] [PMID: 9548556]
[100]
Kandiah, N.; Pai, M.C.; Senanarong, V.; Looi, I.; Ampil, E.; Park, K.W.; Karanam, A.K.; Christopher, S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging, 2017, 12, 697-707.
[http://dx.doi.org/10.2147/CIA.S129145] [PMID: 28458525]
[101]
Mesulam, M.M.; Geula, C. Acetylcholinesterase-rich neurons of the human cerebral cortex: Cytoarchitectonic and ontogenetic patterns of distribution. J. Comp. Neurol., 1991, 306(2), 193-220.
[http://dx.doi.org/10.1002/cne.903060202] [PMID: 2050843]
[102]
Onor, M.L.; Trevisiol, M.; Aguglia, E. Rivastigmine in the treatment of Alzheimer’s disease: An update. Clin. Interv. Aging, 2007, 2(1), 17-32.
[http://dx.doi.org/10.2147/ciia.2007.2.1.17] [PMID: 18044073]
[103]
Lane, R.M.; Potkin, S.G.; Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol., 2006, 9(1), 101-124.
[http://dx.doi.org/10.1017/S1461145705005833] [PMID: 16083515]
[104]
Ballard, C.G. Advances in the treatment of Alzheimer’s disease: Benefits of dual cholinesterase inhibition. Eur. Neurol., 2002, 47(1), 64-70.
[http://dx.doi.org/10.1159/000047952] [PMID: 11803198]
[105]
Poirier, J. Evidence that the clinical effects of cholinesterase inhibitors are related to potency and targeting of action. Int. J. Clin. Pract. Suppl., 2002, (127), 6-19.
[PMID: 12139368]
[106]
Mesulam, M.M.; Geula, C. Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann. Neurol., 1994, 36(5), 722-727.
[http://dx.doi.org/10.1002/ana.410360506] [PMID: 7979218]
[107]
Venneri, A.; McGeown, W.J.; Shanks, M.F. Empirical evidence of neuroprotection by dual cholinesterase inhibition in Alzheimer’s disease. Neuroreport, 2005, 16(2), 107-110.
[http://dx.doi.org/10.1097/00001756-200502080-00006] [PMID: 15671856]
[108]
Almkvist, O.; Darreh-Shori, T.; Stefanova, E.; Spiegel, R.; Nordberg, A. Preserved cognitive function after 12 months of treatment with rivastigmine in mild Alzheimer’s disease in comparison with untreated AD and MCI patients. Eur. J. Neurol., 2004, 11(4), 253-261.
[http://dx.doi.org/10.1046/j.1468-1331.2003.00757.x] [PMID: 15061827]
[109]
Darreh-Shori, T.; Hellström-Lindahl, E.; Flores-Flores, C.; Guan, Z.Z.; Soreq, H.; Nordberg, A. Long-lasting acetylcholinesterase splice variations in anticholinesterase-treated Alzheimer’s disease patients. J. Neurochem., 2004, 88(5), 1102-1113.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02230.x] [PMID: 15009666]
[110]
Trabace, L.; Coluccia, A.; Gaetani, S.; Tattoli, M.; Cagiano, R.; Pietra, C.; Kendrick, K.M.; Cuomo, V. In vivo neurochemical effects of the acetylcholinesterase inhibitor ENA713 in rat hippocampus. Brain Res., 2000, 865(2), 268-271.
[http://dx.doi.org/10.1016/S0006-8993(00)02266-6] [PMID: 10821930]
[111]
Andin, J.; Enz, A.; Gentsch, C.; Marcusson, J. Rivastigmine as a modulator of the neuronal glutamate transporter rEAAC1 mRNA expression. Dement. Geriatr. Cogn. Disord., 2005, 19(1), 18-23.
[http://dx.doi.org/10.1159/000080966] [PMID: 15383741]
[112]
López-Pousa, S.; Turon-Estrada, A.; Garre-Olmo, J.; Pericot-Nierga, I.; Lozano-Gallego, M.; Vilalta-Franch, M.; Hernández-Ferràndiz, M.; Morante-Muñoz, V.; Isern-Vila, A.; Gelada-Batlle, E.; Majó-Llopart, J. Differential efficacy of treatment with acetylcholinesterase inhibitors in patients with mild and moderate Alzheimer’s disease over a 6-month period. Dement. Geriatr. Cogn. Disord., 2005, 19(4), 189-195.
[http://dx.doi.org/10.1159/000083498] [PMID: 15677866]
[113]
Aguglia, E.; Onor, M.L.; Saina, M.; Maso, E. An open-label, comparative study of rivastigmine, donepezil and galantamine in a real-world setting. Curr. Med. Res. Opin., 2004, 20(11), 1747-1752.
[http://dx.doi.org/10.1185/030079904X6273] [PMID: 15537474]
[114]
Rösler, M.; Anand, R.; Cicin-Sain, A.; Gauthier, S.; Agid, Y.; Dal-Bianco, P.; Stähelin, H.B.; Hartman, R.; Gharabawi, M.; Bayer, T. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: International randomised controlled trial. BMJ, 1999, 318(7184), 633-638.
[http://dx.doi.org/10.1136/bmj.318.7184.633] [PMID: 10066203]
[115]
Farlow, M.; Anand, R.; Messina, J., Jr; Hartman, R.; Veach, J. A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer’s disease. Eur. Neurol., 2000, 44(4), 236-241.
[http://dx.doi.org/10.1159/000008243] [PMID: 11096224]
[116]
Lee, Y.J.; Park, Y. Green synthetic nanoarchitectonics of gold and silver nanoparticles prepared using quercetin and their cytotoxicity and catalytic applications. J. Nanosci. Nanotechnol., 2020, 20(5), 2781-2790.
[http://dx.doi.org/10.1166/jnn.2020.17453] [PMID: 31635614]
[117]
Bischoff, S.C. Quercetin: Potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(6), 733-740.
[http://dx.doi.org/10.1097/MCO.0b013e32831394b8] [PMID: 18827577]
[118]
Chatterjee, J.; Langhnoja, J.; Pillai, P.P.; Mustak, M.S. Neuroprotective effect of quercetin against radiation-induced endoplasmic reticulum stress in neurons. J. Biochem. Mol. Toxicol., 2019, 33(2), e22242.
[http://dx.doi.org/10.1002/jbt.22242] [PMID: 30368985]
[119]
Lee, S.; Lee, H.H.; Shin, Y.S.; Kang, H.; Cho, H. The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in Raw 264.7 cells. Arch. Pharm. Res., 2017, 40(5), 623-630.
[http://dx.doi.org/10.1007/s12272-017-0898-x] [PMID: 28258480]
[120]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[121]
Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin and its anti-allergic immune response. Molecules, 2016, 21(5), 622-636.
[http://dx.doi.org/10.3390/molecules21050623] [PMID: 27187333]
[122]
Rezaei-Sadabady, R.; Eidi, A.; Zarghami, N.; Barzegar, A. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 128-134.
[http://dx.doi.org/10.3109/21691401.2014.926456] [PMID: 24959911]
[123]
Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol., 2012, 83(1), 6-15.
[http://dx.doi.org/10.1016/j.bcp.2011.08.010] [PMID: 21856292]
[124]
Suganthy, N.; Devi, K.P.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother., 2016, 84, 892-908.
[http://dx.doi.org/10.1016/j.biopha.2016.10.011] [PMID: 27756054]
[125]
Yang, T.; Kong, B.; Gu, J.W.; Kuang, Y.Q.; Cheng, L.; Yang, W.T.; Xia, X.; Shu, H.F. Anti-apoptotic and anti-oxidative roles of quercetin after traumatic brain injury. Cell. Mol. Neurobiol., 2014, 34(6), 797-804.
[http://dx.doi.org/10.1007/s10571-014-0070-9] [PMID: 24846663]
[126]
Yao, C.; Xi, C.; Hu, K.; Gao, W.; Cai, X.; Qin, J.; Lv, S.; Du, C.; Wei, Y. Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. Virol. J., 2018, 15(1), 116-128.
[http://dx.doi.org/10.1186/s12985-018-1023-6] [PMID: 30064445]
[127]
Zhang, X.W.; Chen, J.Y.; Ouyang, D.; Lu, J.H. Quercetin in animal models of Alzheimer’s disease: A systematic review of preclinical studies. Int. J. Mol. Sci., 2020, 21(2), E493.
[http://dx.doi.org/10.3390/ijms21020493] [PMID: 31941000]
[128]
Khan, A.; Ali, T.; Rehman, S.U.; Khan, M.S.; Alam, S.I.; Ikram, M.; Muhammad, T.; Saeed, K.; Badshah, H.; Kim, M.O. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front. Pharmacol., 2018, 9, 1383.
[http://dx.doi.org/10.3389/fphar.2018.01383] [PMID: 30618732]
[129]
Li, Y.; Tian, Q.; Li, Z.; Dang, M.; Lin, Y.; Hou, X. Activation of Nrf2 signaling by sitagliptin and quercetin combination against β-amyloid induced Alzheimer’s disease in rats. Drug Dev. Res., 2019, 80(6), 837-845.
[http://dx.doi.org/10.1002/ddr.21567] [PMID: 31301179]
[130]
Lu, Y.; Liu, Q.; Yu, Q. Quercetin enrich diet during the early-middle not middle-late stage of Alzheimer’s disease ameliorates cognitive dysfunction. Am. J. Transl. Res., 2018, 10(4), 1237-1246.
[PMID: 29736217]
[131]
Nakagawa, T.; Ohta, K. Quercetin regulates the integrated stress response to improve memory. Int. J. Mol. Sci., 2019, 20(11), 2761.
[http://dx.doi.org/10.3390/ijms20112761] [PMID: 31195662]
[132]
Patil, C.S.; Singh, V.P.; Satyanarayan, P.S.; Jain, N.K.; Singh, A.; Kulkarni, S.K. Protective effect of flavonoids against aging- and lipopolysaccharide-induced cognitive impairment in mice. Pharmacology, 2003, 69(2), 59-67.
[http://dx.doi.org/10.1159/000072357] [PMID: 12928578]
[133]
Paula, P.C.; Angelica Maria, S.G.; Luis, C.H.; Gloria Patricia, C.G. Preventive effect of quercetin in a triple transgenic Alzheimer’s disease mice model. Molecules, 2019, 24(12), 2287.
[http://dx.doi.org/10.3390/molecules24122287] [PMID: 31226738]
[134]
Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[135]
Vargas-Restrepo, F.; Sabogal-Guáqueta, A.M.; Cardona-Gómez, G.P. Quercetin ameliorates inflammation in CA1 hippocampal region in aged triple transgenic Alzheimer’s disease mice model. Biomédica, 2018, 38(0), 69-76.
[PMID: 29809330]
[136]
Wang, D.M.; Li, S.Q.; Wu, W.L.; Zhu, X.Y.; Wang, Y.; Yuan, H.Y. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem. Res., 2014, 39(8), 1533-1543.
[http://dx.doi.org/10.1007/s11064-014-1343-x] [PMID: 24893798]
[137]
Zhang, X.; Hu, J.; Zhong, L.; Wang, N.; Yang, L.; Liu, C.C.; Li, H.; Wang, X.; Zhou, Y.; Zhang, Y.; Xu, H.; Bu, G.; Zhuang, J. Quercetin stabilizes apolipoprotein E and reduces brain Aβ levels in amyloid model mice. Neuropharmacology, 2016, 108, 179-192.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.032] [PMID: 27114256]
[138]
Abdalla, F.H.; Schmatz, R.; Cardoso, A.M.; Carvalho, F.B.; Baldissarelli, J.; de Oliveira, J.S.; Rosa, M.M.; Gonçalves Nunes, M.A.; Rubin, M.A.; da Cruz, I.B.; Barbisan, F.; Dressler, V.L.; Pereira, L.B.; Schetinger, M.R.; Morsch, V.M.; Gonçalves, J.F.; Mazzanti, C.M. Quercetin protects the impairment of memory and anxiogenic-like behavior in rats exposed to cadmium: Possible involvement of the acetylcholinesterase and Na+,K+-ATPase activities. Physiol. Behav., 2014, 135, 152-167.
[http://dx.doi.org/10.1016/j.physbeh.2014.06.008] [PMID: 24952260]
[139]
Jung, M.; Park, M. Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules, 2007, 12(9), 2130-2139.
[http://dx.doi.org/10.3390/12092130] [PMID: 17962731]
[140]
Grycová, L.; Dostál, J.; Marek, R. Quaternary protoberberine alkaloids. Phytochemistry, 2007, 68(2), 150-175.
[http://dx.doi.org/10.1016/j.phytochem.2006.10.004] [PMID: 17109902]
[141]
Alzamora, R.; O’Mahony, F.; Ko, W.H.; Yip, T.W.; Carter, D.; Irnaten, M.; Harvey, B.J. Berberine reduces cAMP-induced chloride secretion in T84 human colonic carcinoma cells through inhibition of basolateral KCNQ1 channels. Front. Physiol., 2011, 2, 33.
[http://dx.doi.org/10.3389/fphys.2011.00033] [PMID: 21747769]
[142]
Habtemariam, S. Berberine and inflammatory bowel disease: A concise review. Pharmacol. Res.,, 2016, 113(Pt A), 592-599.
[http://dx.doi.org/10.1016/j.phrs.2016.09.041] [PMID: 27697643]
[143]
Tillhon, M.; Guamán Ortiz, L.M.; Lombardi, P.; Scovassi, A.I. Berberine: New perspectives for old remedies. Biochem. Pharmacol., 2012, 84(10), 1260-1267.
[http://dx.doi.org/10.1016/j.bcp.2012.07.018] [PMID: 22842630]
[144]
Hou, Q.; Tang, X.; Liu, H.; Tang, J.; Yang, Y.; Jing, X.; Xiao, Q.; Wang, W.; Gou, X.; Wang, Z. Berberine induces cell death in human hepatoma cells in vitro by downregulating CD147. Cancer Sci., 2011, 102(7), 1287-1292.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01933.x] [PMID: 21443647]
[145]
Hu, J.; Chai, Y.; Wang, Y.; Kheir, M.M.; Li, H.; Yuan, Z.; Wan, H.; Xing, D.; Lei, F.; Du, L. PI3K p55γ promoter activity enhancement is involved in the anti-apoptotic effect of berberine against cerebral ischemia-reperfusion. Eur. J. Pharmacol., 2012, 674(2-3), 132-142.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.014] [PMID: 22119079]
[146]
Jiang, H.; Wang, X.; Huang, L.; Luo, Z.; Su, T.; Ding, K.; Li, X. Benzenediol-berberine hybrids: Multifunctional agents for Alzheimer’s disease. Bioorg. Med. Chem., 2011, 19(23), 7228-7235.
[http://dx.doi.org/10.1016/j.bmc.2011.09.040] [PMID: 22041172]
[147]
Lau, C.W.; Yao, X.Q.; Chen, Z.Y.; Ko, W.H.; Huang, Y. Cardiovascular actions of berberine. Cardiovasc. Drug Rev., 2001, 19(3), 234-244.
[http://dx.doi.org/10.1111/j.1527-3466.2001.tb00068.x] [PMID: 11607041]
[148]
Lee, Y.S.; Kim, W.S.; Kim, K.H.; Yoon, M.J.; Cho, H.J.; Shen, Y.; Ye, J.M.; Lee, C.H.; Oh, W.K.; Kim, C.T.; Hohnen-Behrens, C.; Gosby, A.; Kraegen, E.W.; James, D.E.; Kim, J.B. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes, 2006, 55(8), 2256-2264.
[http://dx.doi.org/10.2337/db06-0006] [PMID: 16873688]
[149]
Lee, C.H.; Chen, J.C.; Hsiang, C.Y.; Wu, S.L.; Wu, H.C.; Ho, T.Y. Berberine suppresses inflammatory agents-induced interleukin-1beta and tumor necrosis factor-alpha productions via the inhibition of IkappaB degradation in human lung cells. Pharmacol. Res., 2007, 56(3), 193-201.
[http://dx.doi.org/10.1016/j.phrs.2007.06.003] [PMID: 17681786]
[150]
Lee, I.A.; Hyun, Y.J.; Kim, D.H. Berberine ameliorates TNBS-induced colitis by inhibiting lipid peroxidation, enterobacterial growth and NF-κB activation. Eur. J. Pharmacol., 2010, 648(1-3), 162-170.
[http://dx.doi.org/10.1016/j.ejphar.2010.08.046] [PMID: 20828550]
[151]
Singh, T.; Vaid, M.; Katiyar, N.; Sharma, S.; Katiyar, S.K. Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E2 and prostaglandin E2; receptors. Carcinogenesis, 2011, 32(1), 86-92.
[http://dx.doi.org/10.1093/carcin/bgq215] [PMID: 20974686]
[152]
Su, T.; Xie, S.; Wei, H.; Yan, J.; Huang, L.; Li, X. Synthesis and biological evaluation of berberine-thiophenyl hybrids as multi-functional agents: Inhibition of acetylcholinesterase, butyrylcholinesterase, and Aβ aggregation and antioxidant activity. Bioorg. Med. Chem., 2013, 21(18), 5830-5840.
[http://dx.doi.org/10.1016/j.bmc.2013.07.011] [PMID: 23932451]
[153]
Tang, L.Q.; Wei, W.; Chen, L.M.; Liu, S. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J. Ethnopharmacol., 2006, 108(1), 109-115.
[http://dx.doi.org/10.1016/j.jep.2006.04.019] [PMID: 16759828]
[154]
Christen, Y. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr., 2000, 71(2), 621S-629S.
[http://dx.doi.org/10.1093/ajcn/71.2.621s] [PMID: 10681270]
[155]
Cai, Z.; Wang, C.; Yang, W. Role of berberine in Alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2016, 12, 2509-2520.
[http://dx.doi.org/10.2147/NDT.S114846] [PMID: 27757035]
[156]
Kassab, R.B.; Vasicek, O.; Ciz, M.; Lojek, A.; Perecko, T. The effects of berberine on reactive oxygen species production in human neutrophils and in cell-free assays. Interdiscip. Toxicol., 2017, 10(2), 61-65.
[http://dx.doi.org/10.1515/intox-2017-0010] [PMID: 30123039]
[157]
Thirupurasundari, C.J.; Padmini, R.; Devaraj, S.N. Effect of berberine on the antioxidant status, ultrastructural modifications and protein bound carbohydrates in azoxymethane-induced colon cancer in rats. Chem. Biol. Interact., 2009, 177(3), 190-195.
[http://dx.doi.org/10.1016/j.cbi.2008.09.027] [PMID: 18951886]
[158]
Bhutada, P.; Mundhada, Y.; Bansod, K.; Tawari, S.; Patil, S.; Dixit, P.; Umathe, S.; Mundhada, D. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav. Brain Res., 2011, 220(1), 30-41.
[http://dx.doi.org/10.1016/j.bbr.2011.01.022] [PMID: 21262264]
[159]
Zhu, X.; Raina, A.K.; Perry, G.; Smith, M.A. Apoptosis in Alzheimer disease: A mathematical improbability. Curr. Alzheimer Res., 2006, 3(4), 393-396.
[http://dx.doi.org/10.2174/156720506778249470] [PMID: 17017869]
[160]
Yu, W.; Sheng, M.; Xu, R.; Yu, J.; Cui, K.; Tong, J.; Shi, L.; Ren, H.; Du, H. Berberine protects human renal proximal tubular cells from hypoxia/reoxygenation injury via inhibiting endoplasmic reticulum and mitochondrial stress pathways. J. Transl. Med., 2013, 11(1), 24.
[http://dx.doi.org/10.1186/1479-5876-11-24] [PMID: 23360542]
[161]
Lv, X.; Yu, X.; Wang, Y.; Wang, F.; Li, H.; Wang, Y.; Lu, D.; Qi, R.; Wang, H. Berberine inhibits doxorubicin-triggered cardiomyocyte apoptosis via attenuating mitochondrial dysfunction and increasing Bcl-2 expression. PLoS One, 2012, 7(10), e47351.
[http://dx.doi.org/10.1371/journal.pone.0047351] [PMID: 23077597]
[162]
Wang, N.; Feng, Y.; Zhu, M.; Tsang, C.M.; Man, K.; Tong, Y.; Tsao, S.W. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: The cellular mechanism. J. Cell. Biochem., 2010, 111(6), 1426-1436.
[http://dx.doi.org/10.1002/jcb.22869] [PMID: 20830746]
[163]
Zhou, X.Q.; Zeng, X.N.; Kong, H.; Sun, X.L. Neuroprotective effects of berberine on stroke models in vitro and in vivo. Neurosci. Lett., 2008, 447(1), 31-36.
[http://dx.doi.org/10.1016/j.neulet.2008.09.064] [PMID: 18838103]
[164]
Kalalian-Moghaddam, H.; Baluchnejadmojarad, T.; Roghani, M.; Goshadrou, F.; Ronaghi, A. Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocin-diabetic rats. Eur. J. Pharmacol., 2013, 698(1-3), 259-266.
[http://dx.doi.org/10.1016/j.ejphar.2012.10.020] [PMID: 23099256]
[165]
Chen, Q.; Mo, R.; Wu, N.; Zou, X.; Shi, C.; Gong, J.; Li, J.; Fang, K.; Wang, D.; Yang, D.; Wang, K.; Chen, J. Berberine ameliorates diabetes-associated cognitive decline through modulation of aberrant inflammation response and insulin signaling pathway in DM rats. Front. Pharmacol., 2017, 8, 334.
[http://dx.doi.org/10.3389/fphar.2017.00334] [PMID: 28634451]
[166]
He, W.; Wang, C.; Chen, Y.; He, Y.; Cai, Z.; Gong, J.; Li, J.; Fang, K.; Wang, D.; Yang, D.; Wang, K.; Chen, J. Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-κB signaling, oxidative stress and neuroinflammation. Pharmacol. Rep., 2017, 69(6), 1341-1348.
[http://dx.doi.org/10.1016/j.pharep.2017.06.006] [PMID: 29132092]
[167]
Jia, L.; Liu, J.; Song, Z.; Pan, X.; Chen, L.; Cui, X.; Wang, M. Berberine suppresses amyloid-beta-induced inflammatory response in microglia by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase signalling pathways. J. Pharm. Pharmacol., 2012, 64(10), 1510-1521.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01529.x] [PMID: 22943182]
[168]
Lee, B.; Sur, B.; Shim, I.; Lee, H.; Hahm, D.H. Phellodendron amurense and its major alkaloid compound, berberine ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats. Korean J. Physiol. Pharmacol., 2012, 16(2), 79-89.
[http://dx.doi.org/10.4196/kjpp.2012.16.2.79] [PMID: 22563252]
[169]
Ji, H.F.; Shen, L. Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer’s disease. ScientificWorldJournal, 2012, 2012, 823201.
[http://dx.doi.org/10.1100/2012/823201] [PMID: 22262957]
[170]
de Oliveira, J.S.; Abdalla, F.H.; Dornelles, G.L.; Adefegha, S.A.; Palma, T.V.; Signor, C.; da Silva Bernardi, J.; Baldissarelli, J.; Lenz, L.S.; Magni, L.P.; Rubin, M.A.; Pillat, M.M.; de Andrade, C.M. Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer’s-like dementia: Involvement of acetylcholinesterase and cell death. Neurotoxicology, 2016, 57, 241-250.
[http://dx.doi.org/10.1016/j.neuro.2016.10.008] [PMID: 27746125]
[171]
Huang, M.; Jiang, X.; Liang, Y.; Liu, Q.; Chen, S.; Guo, Y. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease. Exp. Gerontol., 2017, 91, 25-33.
[http://dx.doi.org/10.1016/j.exger.2017.02.004] [PMID: 28223223]
[172]
Shrivastava, M.; Dwivedi, L.K. Therapeutic potential of Hypericum perforatum: A review. IJPSR, 2015, 6(12), 4982-4988.
[173]
Karioti, A.; Bilia, A.R. Hypericins as potential leads for new therapeutics. Int. J. Mol. Sci., 2010, 11(2), 562-594.
[http://dx.doi.org/10.3390/ijms11020562] [PMID: 20386655]
[174]
Jendželovská, Z.; Jendželovský, R.; Kuchárová, B. Fedoročko, P. Hypericin in the light and in the dark: Two sides of the same coin. Front. Plant Sci., 2016, 7, 560.
[http://dx.doi.org/10.3389/fpls.2016.00560] [PMID: 27200034]
[175]
Miller, A.L.St. John’s Wort (Hypericum perforatum): Clinical effects on depression and other conditions. Alternative Medicine review. J Clin Therapeutic, 1998, 3(1), 18-26.
[PMID: 9600023]
[176]
Khalifa, A.E. Hypericum perforatum as a nootropic drug: Enhancement of retrieval memory of a passive avoidance conditioning paradigm in mice. J. Ethnopharmacol., 2001, 76(1), 49-57.
[http://dx.doi.org/10.1016/S0378-8741(01)00210-0] [PMID: 11378281]
[177]
Altun, M.L. Yılmaz, B.S.; Ilkay, E.O.; Citoglu, G.S. Assessment of cholinesterase and tyrosinase inhibitory and antioxidant effects of Hypericum perforatum L. (St. John’s Wort). Ind. Crops Prod., 2013, 43, 87-92.
[http://dx.doi.org/10.1016/j.indcrop.2012.07.017]
[178]
Božin, B.; Kladar, N. Grujić, N.; Anačkov, G.; Samojlik, I.; Gavarić, N.; Conić B.S. Impact of origin and biological source on chemical composition, anticholinesterase and antioxidant properties of some St. John’s wort species (Hypericum spp., Hypericaceae) from the Central Balkans. Molecules, 2013, 18(10), 11733-11750.
[http://dx.doi.org/10.3390/molecules181011733] [PMID: 24071982]
[179]
Béjaoui, A.; Ben Salem, I.; Rokbeni, N.; M’rabet, Y.; Boussaid, M.; Boulila, A. Bioactive compounds from Hypericum humifusum and Hypericum perfoliatum: Inhibition potential of polyphenols with acetylcholinesterase and key enzymes linked to type-2 diabetes. Pharm. Biol., 2017, 55(1), 906-911.
[http://dx.doi.org/10.1080/13880209.2016.1270973] [PMID: 28147885]
[180]
Ozkan, E.E.; Ozden, T.Y.; Ozsoy, N.; Mat, A. Evaluation of chemical composition, antioxidant and anti-acetylcholinesterase activities of Hypericum neurocalycinum and Hypericum malatyanum. S. Afr. J. Bot., 2018, 114, 104-110.
[http://dx.doi.org/10.1016/j.sajb.2017.10.022]
[181]
Griffith, T.N.; Varela-Nallar, L.; Dinamarca, M.C.; Inestrosa, N.C. Neurobiological effects of Hyperforin and its potential in Alzheimer’s disease therapy. Curr. Med. Chem., 2010, 17(5), 391-406.
[http://dx.doi.org/10.2174/092986710790226156] [PMID: 20015041]
[182]
Hofrichter, J.; Krohn, M.; Schumacher, T.; Lange, C.; Feistel, B.; Walbroel, B.; Heinze, H.J.; Crockett, S.; Sharbel, T.F.; Pahnke, J. Reduced Alzheimer’s disease pathology by St. John’s Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice. Curr. Alzheimer Res., 2013, 10(10), 1057-1069.
[http://dx.doi.org/10.2174/15672050113106660171] [PMID: 24156265]
[183]
Russo, E.; Scicchitano, F.; Whalley, B.J.; Mazzitello, C.; Ciriaco, M.; Esposito, S.; Patanè, M.; Upton, R.; Pugliese, M.; Chimirri, S.; Mammì, M.; Palleria, C.; De Sarro, G. Hypericum perforatum: Pharmacokinetic, mechanism of action, tolerability, and clinical drug-drug interactions. Phytother. Res., 2014, 28(5), 643-655.
[http://dx.doi.org/10.1002/ptr.5050] [PMID: 23897801]
[184]
Sgarbossa, A.; Buselli, D.; Lenci, F. In vitro perturbation of aggregation processes in beta-amyloid peptides: A spectroscopic study. FEBS Lett., 2008, 582(23-24), 3288-3292.
[http://dx.doi.org/10.1016/j.febslet.2008.08.039] [PMID: 18805418]
[185]
Zhang, M.; Wang, Y.; Qian, F.; Li, P.; Xu, X. Hypericin inhibits oligomeric amyloid β42-induced inflammation response in microglia and ameliorates cognitive deficits in an amyloid β injection mouse model of Alzheimer’s disease by suppressing MKL1. Biochem. Biophys. Res. Commun., 2016, 481(1-2), 71-76.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.016] [PMID: 27825966]
[186]
Silva, B.A.; Dias, A.C.; Ferreres, F.; Malva, J.O.; Oliveira, C.R. Neuroprotective effect of H. perforatum extracts on beta-amyloid-induced neurotoxicity. Neurotox. Res., 2004, 6(2), 119-130.
[http://dx.doi.org/10.1007/BF03033214] [PMID: 15325964]
[187]
Sosa, S.; Pace, R.; Bornancin, A.; Morazzoni, P.; Riva, A.; Tubaro, A.; Della Loggia, R. Topical anti-inflammatory activity of extracts and compounds from Hypericum perforatum L. J. Pharm. Pharmacol., 2007, 59(5), 703-709.
[http://dx.doi.org/10.1211/jpp.59.5.0011] [PMID: 17524236]
[188]
Wada, Y.; Kaga, H.; Uchiito, S.; Kumazawa, E.; Tomiki, M.; Onozaki, Y.; Kurono, N.; Tokuda, M.; Ohkuma, T.; Orito, K. On the synthesis of protopine alkaloids. J. Org. Chem., 2007, 72(19), 7301-7306.
[http://dx.doi.org/10.1021/jo071038y] [PMID: 17705430]
[189]
Johns, S.; Lamberton, J.A.; Tweeddale, H.J.; Willing, R.I. Alkaloids of Zanthoxylum conspersipunctatum (rutaceae): The structure of a new alkaloid isomeric with protopine. Aust. J. Chem., 1969, 22(10), 2233-2236.
[http://dx.doi.org/10.1071/CH9692233]
[190]
Siatka, T.; Adamcová, M.; Opletal, L.; Cahlíková, L.; Jun, D.; Hrabinová, M.; Kuneš, J.; Chlebek, J. Cholinesterase and prolyl oligopeptidase inhibitory activities of alkaloids from Argemone platyceras (Papaveraceae). Molecules, 2017, 22(7), 1181.
[http://dx.doi.org/10.3390/molecules22071181] [PMID: 28708094]
[191]
Chen, C.H.; Liao, C.H.; Chang, Y.L.; Guh, J.H.; Pan, S.L.; Teng, C.M. Protopine, a novel microtubule-stabilizing agent, causes mitotic arrest and apoptotic cell death in human hormone-refractory prostate cancer cell lines. Cancer Lett., 2012, 315(1), 1-11.
[http://dx.doi.org/10.1016/j.canlet.2011.09.042] [PMID: 22033245]
[192]
Capasso, A.; Piacente, S.; Pizza, C.; De Tommasi, N.; Jativa, C.; Sorrentino, L. Isoquinoline alkaloids from Argemone mexicana reduce morphine withdrawal in guinea pig isolated ileum. Planta Med., 1997, 63(4), 326-328.
[http://dx.doi.org/10.1055/s-2006-957693] [PMID: 9270378]
[193]
Tao, J.; Zhang, X.; Ye, W.; Zhao, S. [Chemical constituents from Corydalis humosa] Zhong Yao Cai,, 2005, 28(7), 556-557.
[PMID: 16252721]
[194]
Lu, Z.; Sun, W.; Duan, X.; Yang, Z.; Liu, Y.; Tu, P. [Chemical constituents from Corydalis yanhusuo Zhongguo Zhongyao Zazhi,, 2012, 37(2), 235-237.
[PMID: 22737858]
[195]
Vrancheva, R.Z.; Ivanov, I.G.; Aneva, I.Y.; Dincheva, I.N.; Badjakov, I.K.; Pavlov, A.I. Alkaloid profiles and acetylcholinesterase inhibitory activities of Fumaria species from Bulgaria. Z. Naturforsch. C J. Biosci., 2016, 71(1-2), 9-14.
[http://dx.doi.org/10.1515/znc-2014-4179] [PMID: 26756091]
[196]
Tripathi, Y.C.; Pandey, V.B.; Pathak, N.K.R.; Biswas, M. A seco-phthalideisoquinoline alkaloid from fumaria indica seeds. Phytochemistry, 1988, 27(6), 1918-1919.
[http://dx.doi.org/10.1016/0031-9422(88)80485-0]
[197]
Sun, M.; Liu, J.; Lin, C.; Miao, L.; Lin, L. Alkaloid profiling of the traditional Chinese medicine Rhizoma corydalis using high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Acta Pharm. Sin. B, 2014, 4(3), 208-216.
[http://dx.doi.org/10.1016/j.apsb.2014.04.003] [PMID: 26579385]
[198]
Yan, T.Q.; Yang, Y.F.; Ai, T.M. Determination of protopine and isocorydine in root of Dactylicapnos scandens by HPLC. Zhongguo Zhongyao Zazhi, 2004, 29(10), 961-963.
[PMID: 15631083]
[199]
Vacek, J.; Walterova, D.; Vrublova, E.; Imanek, V. The Chemical and biological properties of protopine and allocryptopine. Heterocycles, 2010, 81(8), 1773.
[http://dx.doi.org/10.3987/REV-10-673]
[200]
Kaneko, H.; Naruto, S. Constituents of corydalis species. VI. Alkaloids from Chinese corydalis and the identity of d-corydalmine with d-corybulbine. J. Org. Chem., 1969, 34(9), 2803-2805.
[http://dx.doi.org/10.1021/jo01261a086]
[201]
Xu, L.F.; Chu, W.J.; Qing, X.Y.; Li, S.; Wang, X.S.; Qing, G.W.; Fei, J.; Guo, L.H. Protopine inhibits serotonin transporter and noradrenaline transporter and has the antidepressant-like effect in mice models. Neuropharmacology, 2006, 50(8), 934-940.
[http://dx.doi.org/10.1016/j.neuropharm.2006.01.003] [PMID: 16530230]
[202]
Xiao, X.; Liu, J.; Hu, J.; Li, T.; Zhang, Y. Protective effect of protopine on the focal cerebral ischaemic injury in rats. Basic Clin. Pharmacol. Toxicol., 2007, 101(2), 85-89.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00075.x] [PMID: 17651307]
[203]
Shiomoto, H.; Matsuda, H.; Kubo, M. Effects of protopine on blood platelet aggregation. II. Effect on metabolic system of adenosine 3′,5′-cyclic monophosphate in platelets. Chem. Pharm. Bull. (Tokyo), 1990, 38(8), 2320-2322.
[http://dx.doi.org/10.1248/cpb.38.2320] [PMID: 2177684]
[204]
Vrba, J.; Vrublova, E.; Modriansky, M.; Ulrichova, J. Protopine and allocryptopine increase mRNA levels of cytochromes P450 1A in human hepatocytes and HepG2 cells independently of AhR. Toxicol. Lett., 2011, 203(2), 135-141.
[http://dx.doi.org/10.1016/j.toxlet.2011.03.015] [PMID: 21419197]
[205]
Dev, S.; Dhaneshwar, S.R.; Mathew, B. Discovery of camptothecin based topoisomerase I inhibitors: Identification using an atom based 3D-QSAR, pharmacophore modeling, virtual screening and molecular docking approach. Comb. Chem. High Throughput Screen., 2016, 19(9), 752-763.
[http://dx.doi.org/10.2174/1386207319666160810154346] [PMID: 27515040]
[206]
He, K.; Gao, J.L. Protopine inhibits heterotypic cell adhesion in MDA-MB-231 cells through down-regulation of multi-adhesive factors. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(2), 415-424.
[http://dx.doi.org/10.4314/ajtcam.v11i2.28] [PMID: 25435628]
[207]
Prokopenko, Y.; Tsyvunin, V.; Shtrygol’, S.; Georgiyants, V. In vivo anticonvulsant activity of extracts and protopine from the Fumaria schleicheri herb. Sci. Pharm., 2015, 84(3), 547-554.
[http://dx.doi.org/10.3390/scipharm84030547] [PMID: 28117320]
[208]
Jugran, A.K.; Rawat, S.; Bhatt, I.D.; Rawal, R.S. Valeriana jatamansi: An herbaceous plant with multiple medicinal uses. Phytother. Res., 2019, 33(3), 482-503.
[http://dx.doi.org/10.1002/ptr.6245] [PMID: 30663144]
[209]
Srivastava, R.P.; Dixit, P.; Singh, L.; Verma, P.C.; Saxena, G. Status of Selinum spp. L. a references Himalayan medicinal plant in India: A review of its pharmacology, phytochemistry and traditional uses. Curr. Pharm. Biotechnol., 2018, 19(14), 1122-1134.
[http://dx.doi.org/10.2174/1389201020666181227150829] [PMID: 30588880]
[210]
Tousi, E.S.; Radjabian, T.; Ebrahimzadeh, H.; Niknam, V. Enhanced production of valerenic acids and valepotriates by in vitro cultures of Valeriana officinalis L. Int. J. Plant Prod., 2012, 4(3), 209-222.
[211]
Patocka, J.; Jakl, J. Biomedically relevant chemical constituents of Valeriana officinalis. J. Appl. Biomed., 2010, 8(1), 11-18.
[http://dx.doi.org/10.2478/v10136-009-0002-z]
[212]
Khom, S.; Baburin, I.; Timin, E.; Hohaus, A.; Trauner, G.; Kopp, B.; Hering, S. Valerenic acid potentiates and inhibits GABA(A) receptors: Molecular mechanism and subunit specificity. Neuropharmacology, 2007, 53(1), 178-187.
[http://dx.doi.org/10.1016/j.neuropharm.2007.04.018] [PMID: 17585957]
[213]
Vishwakarma, S.; Goyal, R.; Gupta, V.; Dhar, K.L. GABAergic effect of valeric acid from Valeriana wallichii in amelioration of ICV STZ induced dementia in rats. Rev. Bras. Farmacogn., 2016, 26(4), 1-10.
[http://dx.doi.org/10.1016/j.bjp.2016.02.008]
[214]
Dietz, B.M.; Mahady, G.B.; Pauli, G.F.; Farnsworth, N.R. Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro. Brain Res. Mol. Brain Res., 2005, 138(2), 191-197.
[http://dx.doi.org/10.1016/j.molbrainres.2005.04.009] [PMID: 15921820]
[215]
Mustafa, G.; Ansari, S.H.; Bhat, Z.A. Antianxiety activities associated with herbal drugs: A review. Plant and Human Health; Springer: Cham, 2019, Vol. 3, pp. 87-100.
[http://dx.doi.org/10.1007/978-3-030-04408-4_5]
[216]
Jung, H.Y.; Yoo, D.Y.; Nam, S.M.; Kim, J.W.; Choi, J.H.; Yoo, M.; Lee, S.; Yoon, Y.S.; Hwang, I.K. Valerenic acid protects against physical and psychological stress by reducing the turnover of serotonin and norepinephrine in mouse hippocampus-amygdala region. J. Med. Food, 2015, 18(12), 1333-1339.
[http://dx.doi.org/10.1089/jmf.2014.3412] [PMID: 26177123]
[217]
Desilets, A.R.; Gickas, J.J.; Dunican, K.C. Role of huperzine a in the treatment of Alzheimer’s disease. Ann. Pharmacother., 2009, 43(3), 514-518.
[http://dx.doi.org/10.1345/aph.1L402] [PMID: 19240260]
[218]
Koshiba, T.; Yokoshima, S.; Fukuyama, T. Total synthesis of (-)-huperzine A. Org. Lett., 2009, 11(22), 5354-5356.
[http://dx.doi.org/10.1021/ol9022408] [PMID: 19873983]
[219]
Ma, X.; Tan, C.; Zhu, D.; Gang, D.R. A survey of potential huperzine A natural resources in China: The Huperziaceae. J. Ethnopharmacol., 2006, 104(1-2), 54-67.
[http://dx.doi.org/10.1016/j.jep.2005.08.042] [PMID: 16203116]
[220]
Ma, X.; Gang, D.R. In vitro production of huperzine A, a promising drug candidate for Alzheimer’s disease. Phytochemistry, 2008, 69(10), 2022-2028.
[http://dx.doi.org/10.1016/j.phytochem.2008.04.017] [PMID: 18538805]
[221]
Wang, R.; Yan, H.; Tang, X.C. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol. Sin., 2006, 27(1), 1-26.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00255.x] [PMID: 16364207]
[222]
Hanin, I.; Tang, X.C.; Kindel, G.L.; Kozikowski, A.P. Natural and synthetic Huperzine A: Effect on cholinergic function in vitro and in vivo. Ann. N. Y. Acad. Sci., 1993, 695(1), 304-306.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb23071.x] [PMID: 8239300]
[223]
Tang, X.C.; Kindel, G.H.; Kozikowski, A.P.; Hanin, I. Comparison of the effects of natural and synthetic huperzine-A on rat brain cholinergic function in vitro and in vivo. J. Ethnopharmacol., 1994, 44(3), 147-155.
[http://dx.doi.org/10.1016/0378-8741(94)01182-6] [PMID: 7898122]
[224]
Wang, Y.; Wei, Y.; Oguntayo, S.; Jensen, N.; Doctor, B.P.; Nambiar, M.P. [+]-Huperzine A protects against soman toxicity in guinea pigs. Neurochem. Res., 2011, 36(12), 2381-2390.
[http://dx.doi.org/10.1007/s11064-011-0564-5] [PMID: 21822920]
[225]
Ding, R.; Fu, J.G.; Xu, G.Q.; Sun, B.F.; Lin, G.Q. Divergent total synthesis of the Lycopodium alkaloids huperzine A, huperzine B, and huperzine U. J. Org. Chem., 2014, 79(1), 240-250.
[http://dx.doi.org/10.1021/jo402419h] [PMID: 24299147]
[226]
Qian, L.; Ji, R. A total synthesis of (±)-huperzine A. Tetrahedron Lett., 1989, 30(16), 2089-2090.
[http://dx.doi.org/10.1016/S0040-4039(01)93719-0]
[227]
Xia, Y.; Kozikowski, A.P. A practical synthesis of the Chinese “nootropic” agent huperzine A: A possible lead in the treatment of Alzheimer’s disease. J. Am. Chem. Soc., 1989, 111(11), 4116-4117.
[http://dx.doi.org/10.1021/ja00193a062]
[228]
Luo, S.P.; Peng, Q.L.; Xu, C.P.; Wang, A.E.; Huang, P.Q. Bio-inspired step-economical, redox-economical and protecting-group-free enantioselective total syntheses of (-)-chaetominine and analogues. Chin. J. Chem., 2014, 32(8), 757-770.
[http://dx.doi.org/10.1002/cjoc.201400413]
[229]
Özkaya, F.C.; Ebrahim, W.; El-Neketi, M. Tansel Tanrıkul, T.; Kalscheuer, R.; Müller, W.E.G.; Guo, Z.; Zou, K.; Liu, Z.; Proksch, P. Induction of new metabolites from sponge-associated fungus Aspergillus carneus by OSMAC approach. Fitoterapia, 2018, 131, 9-14.
[http://dx.doi.org/10.1016/j.fitote.2018.10.008] [PMID: 30312652]
[230]
Ishiuchi, K.; Hirose, D.; Suzuki, T.; Nakayama, W.; Jiang, W.P.; Monthakantirat, O.; Wu, J.B.; Kitanaka, S.; Makino, T. Identification of lycopodium alkaloids produced by an ultraviolet-irradiated strain of paraboeremia, an endophytic fungus from Lycopodium serratum var. longipetiolatum. J. Nat. Prod., 2018, 81(5), 1143-1147.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00627] [PMID: 29676580]
[231]
Yuan, C.L.; Wang, Z.B.; Jiao, Y.; Cao, A.M.; Huo, Y.L.; Cui, C.X. Sedative and hypnotic constituents of flavonoids in the seeds of Ziziphus spinosae. Zhong Yao Tong Bao, 1987, 12(9), 34-36, 62-63.
[PMID: 3449249]
[232]
Xu, F.; He, B.; Xiao, F.; Yan, T.; Bi, K.; Jia, Y.; Wang, Z. Neuroprotective effects of spinosin on recovery of learning and memory in a mouse model of Alzheimer’s disease. Biomol. Ther. (Seoul), 2019, 27(1), 71-77.
[http://dx.doi.org/10.4062/biomolther.2018.051] [PMID: 29925225]
[233]
Jung, I.H.; Lee, H.E.; Park, S.J.; Ahn, Y.J.; Kwon, G.; Woo, H.; Lee, S.Y.; Kim, J.S.; Jo, Y.W.; Jang, D.S.; Kang, S.S.; Ryu, J.H. Ameliorating effect of spinosin, a C-glycoside flavonoid, on scopolamine-induced memory impairment in mice. Pharmacol. Biochem. Behav., 2014, 120, 88-94.
[http://dx.doi.org/10.1016/j.pbb.2014.02.015] [PMID: 24582850]
[234]
Ko, S.Y.; Lee, H.E.; Park, S.J.; Jeon, S.J.; Kim, B.; Gao, Q.; Jang, D.S.; Ryu, J.H. Spinosin, a C-glucosylflavone, from Zizyphus jujuba var. spinosa ameliorates Aβ1-42 oligomer-induced memory impairment in mice. Biomol. Ther. (Seoul), 2015, 23(2), 156-164.
[http://dx.doi.org/10.4062/biomolther.2014.110] [PMID: 25767684]
[235]
Lee, Y.; Jeon, S.J.; Lee, H.E.; Jung, I.H.; Jo, Y.W.; Lee, S.; Cheong, J.H.; Jang, D.S.; Ryu, J.H. Spinosin, a C-glycoside flavonoid, enhances cognitive performance and adult hippocampal neurogenesis in mice. Pharmacol. Biochem. Behav., 2016, 145, 9-16.
[http://dx.doi.org/10.1016/j.pbb.2016.03.007] [PMID: 26997033]
[236]
He, B.; Li, Q.; Jia, Y.; Zhao, L.; Xiao, F.; Lv, C.; Xu, H.; Chen, X.; Bi, K.A. UFLC-MS/MS method for simultaneous quantitation of spinosin, mangiferin and ferulic acid in rat plasma: Application to a comparative pharmacokinetic study in normal and insomnic rats. J. Mass Spectrom., 2012, 47(10), 1333-1340.
[http://dx.doi.org/10.1002/jms.3072] [PMID: 23019165]
[237]
Wang, L.E.; Bai, Y.J.; Shi, X.R.; Cui, X.Y.; Cui, S.Y.; Zhang, F.; Zhang, Q.Y.; Zhao, Y.Y.; Zhang, Y.H. Spinosin, a C-glycoside flavonoid from semen Zizhiphi Spinozae, potentiated pentobarbital-induced sleep via the serotonergic system. Pharmacol. Biochem. Behav., 2008, 90(3), 399-403.
[http://dx.doi.org/10.1016/j.pbb.2008.03.022] [PMID: 18466960]
[238]
Björkholm, C.; Monteggia, L.M. BDNF - a key transducer of antidepressant effects. Neuropharmacology, 2016, 102, 72-79.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.034] [PMID: 26519901]
[239]
Zhao, L.; Wang, J.L.; Liu, R.; Li, X.X.; Li, J.F.; Zhang, L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules, 2013, 18(8), 9949-9965.
[http://dx.doi.org/10.3390/molecules18089949] [PMID: 23966081]
[240]
Chen, F.; Eckman, E.A.; Eckman, C.B.; Chen, F.; Eckman, E.A.; Eckman, C.B. Reductions in levels of the Alzheimer’s amyloid β peptide after oral administration of ginsenosides. FASEB J., 2006, 20(8), 1269-1271.
[http://dx.doi.org/10.1096/fj.05-5530fje] [PMID: 16636099]
[241]
Lee, M.S.; Yang, E.J.; Kim, J.I.; Ernst, E. Ginseng for cognitive function in Alzheimer’s disease: A systematic review. J. Alzheimers Dis., 2009, 18(2), 339-344.
[http://dx.doi.org/10.3233/JAD-2009-1149] [PMID: 19584437]
[242]
Nakajima, A.; Ohizumi, Y.; Yamada, K. Anti-dementia activity of nobiletin, a Citrus flavonoid: A review of animal studies. Clin. Psychopharmacol. Neurosci., 2014, 12(2), 75-82.
[http://dx.doi.org/10.9758/cpn.2014.12.2.75] [PMID: 25191498]
[243]
Yehuda, S.; Rabinovtz, S.; Carasso, R.L.; Mostofsky, D.I. Essential fatty acids preparation (SR-3) improves Alzheimer’s patients quality of life. Int. J. Neurosci., 1996, 87(3-4), 141-149.
[http://dx.doi.org/10.3109/00207459609070833] [PMID: 9003975]
[244]
Levine, B.S. Most frequently asked questions about DHA. Nutr. Today, 1997, 32, 248-249.
[http://dx.doi.org/10.1097/00017285-199711000-00005]
[245]
Kalmijn, S.; Feskens, E.J.M.; Launer, L.J.; Kromhout, D. Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. Am. J. Epidemiol., 1997, 145(1), 33-41.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a009029] [PMID: 8982020]
[246]
Kalmijn, S.; Launer, L.J.; Ott, A.; Witteman, J.C.; Hofman, A.; Breteler, M.M. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann. Neurol., 1997, 42(5), 776-782.
[http://dx.doi.org/10.1002/ana.410420514] [PMID: 9392577]
[247]
Etcheberrigaray, R.; Tan, M.; Dewachter, I.; Kuipéri, C.; Van der Auwera, I.; Wera, S.; Qiao, L.; Bank, B.; Nelson, T.J.; Kozikowski, A.P.; Van Leuven, F.; Alkon, D.L. Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice. Proc. Natl. Acad. Sci. USA, 2004, 101(30), 11141-11146.
[http://dx.doi.org/10.1073/pnas.0403921101] [PMID: 15263077]
[248]
Srivareerat, M.; Tran, T.T.; Salim, S.; Aleisa, A.M.; Alkadhi, K.A. Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer’s disease. Neurobiol. Aging, 2011, 32(5), 834-844.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.015] [PMID: 19464074]
[249]
Nordberg, A.; Hellström-Lindahl, E.; Lee, M.; Johnson, M.; Mousavi, M.; Hall, R.; Perry, E.; Bednar, I.; Court, J. Chronic nicotine treatment reduces beta-amyloidosis in the brain of a mouse model of Alzheimer’s disease (APPsw). J. Neurochem., 2002, 81(3), 655-658.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00874.x] [PMID: 12065674]
[250]
Chopra, B.; Dhingra, A.K.; Kapoor, R.P.; Prasad, D.N. Piperine and its various physicochemical and biological aspects: A review. Open Chem. J., 2016, 3(1), 75-96.
[http://dx.doi.org/10.2174/1874842201603010075]
[251]
Chopra, B.; Dhingra, A.K.; Parsad, D.N. Modification in natural bioactive molecule: Piperine; a continuing source for drug development. Curr. Bioact. Compd., 2020, 16(6), 714-725.
[http://dx.doi.org/10.2174/1573407215666190318125023]
[252]
Elaine, W.L.C.; Emilia, T.Y.Y.; Kelly, W.L.W.; Mun, L.S.; Ka, Y.W.; Jeremy, K.Y.Y.; Sook, Y.G. Piper sarmentosum Roxb. Attenuates Beta Amyloid (Aβ)-induced neurotoxicity via the inhibition of amyloidogenesis and tau hyperphosphorylation in SH-SY5Y cells. Curr. Alzheimer Res., 2021, 18(1), 80-87.
[http://dx.doi.org/10.2174/1567205018666210324124239]
[253]
Chopra, B.; Dhingra, AK.; Dhar, KL.; Nepali, K. Emerging role of terpenoids for the treatment of cancer: A review. Mini Rev. Med. Chem., 2021.
[http://dx.doi.org/10.2174/1389557521666210112143024]
[254]
Lepenies, B.; Seeberger, P.H. The promise of glycomics, glycan arrays and carbohydrate-based vaccines. Immunopharmacol. Immunotoxicol., 2010, 32(2), 196-207.
[http://dx.doi.org/10.3109/08923970903292663] [PMID: 20141495]
[255]
Shukla, R.K.; Tiwari, A. Carbohydrate molecules: An expanding horizon in drug delivery and biomedicine. Crit. Rev. Ther. Drug Carrier Syst., 2011, 28(3), 255-292.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i3.20] [PMID: 21663577]
[256]
Wang, P.; Liao, W.; Fang, J.; Liu, Q.; Yao, J.; Hu, M.; Ding, K. A glucan isolated from flowers of Lonicera japonica Thunb. inhibits aggregation and neurotoxicity of Aβ42. Carbohydr. Polym., 2014, 110, 142-147.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.060] [PMID: 24906740]
[257]
Liu, Q.; Wang, S.C.; Ding, K. Research advances in the treatment of Alzheimer’s disease with polysaccharides from traditional Chinese medicine. Chin. J. Nat. Med., 2017, 15(9), 641-652.
[http://dx.doi.org/10.1016/S1875-5364(17)30093-6] [PMID: 28991525]
[258]
Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology, 2015, 85(16), 1383-1391.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[259]
Zhu, C.W.; Grossman, H.; Neugroschl, J.; Parker, S.; Burden, A.; Luo, X.; Sano, M. A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study. Alzheimers Dement. (N. Y.), 2018, 4(1), 609-616.
[http://dx.doi.org/10.1016/j.trci.2018.09.009] [PMID: 30480082]
[260]
Foralumab, CD3 antibody, shows promise in Alzheimer’s mouse model. Available from: https://alzheimersnewstoday.com
[261]
Baum, L.; Lam, C.W.K.; Cheung, S.K.K.; Kwok, T.; Lui, V.; Tsoh, J.; Lam, L.; Leung, V.; Hui, E.; Ng, C.; Woo, J.; Chiu, H.F.K.; Goggins, W.B.; Zee, B.C.Y.; Cheng, K.F.; Fong, C.Y.S.; Wong, A.; Mok, H.; Chow, M.S.S.; Ho, P.C.; Ip, S.P.; Ho, C.S.; Yu, X.W.; Lai, C.Y.L.; Chan, M.H.; Szeto, S.; Chan, I.H.S.; Mok, V. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J. Clin. Psychopharmacol., 2008, 28(1), 110-113.
[http://dx.doi.org/10.1097/jcp.0b013e318160862c] [PMID: 18204357]
[262]
Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4(5), 43.
[http://dx.doi.org/10.1186/alzrt146] [PMID: 23107780]
[263]
Rainey-Smith, S.R.; Brown, B.M.; Sohrabi, H.R.; Shah, T.; Goozee, K.G.; Gupta, V.B.; Martins, R.N. Curcumin and cognition: A randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br. J. Nutr., 2016, 115(12), 2106-2113.
[http://dx.doi.org/10.1017/S0007114516001203] [PMID: 27102361]
[264]
Lee, M.S.; Wahlqvist, M.L.; Chou, Y.C.; Fang, W.H.; Lee, J.T.; Kuan, J.C.; Liu, H.Y.; Lu, T.M.; Xiu, L.; Hsu, C.C.; Andrews, Z.B.; Pan, W.H. Turmeric improves post-prandial working memory in pre-diabetes independent of insulin. Asia Pac. J. Clin. Nutr., 2014, 23(4), 581-591.
[PMID: 25516316]
[265]
Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.P.; Liu, J.; Merrill, D.A.; Chen, S.T.; Henning, S.M.; Satyamurthy, N.; Huang, S.C.; Heber, D.; Barrio, J.R. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry, 2018, 26(3), 266-277.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010] [PMID: 29246725]
[266]
Senolytic Therapy to Modulate Progression of Alzheimer’s Disease (SToMP-AD). Clinicaltrials.gov,, 2020.
[267]
Short term efficacy and safety of perispinal administration of etanercept in mild to moderate Alzheimer’s disease linicaltrials.gov,, 2020.
[268]
Roh, D.; Jung, J.H.; Yoon, K.H.; Lee, C.H.; Kang, L.Y.; Lee, S.K.; Shin, K.; Kim, D.H. Valerian extract alters functional brain connectivity: A randomized double-blind placebo-controlled trial. Phytother. Res., 2019, 33(4), 939-948.
[http://dx.doi.org/10.1002/ptr.6286] [PMID: 30632220]
[269]
Ahmadi, M.; Khalili, H.; Abbasian, L.; Ghaeli, P. Effect of valerian in preventing neuropsychiatric adverse effects of efavirenz in HIV-positive patients: A pilot randomized, placebocontrolled clinical trial. Ann. Pharmacother., 2017, 51(6), 457-464.
[http://dx.doi.org/10.1177/1060028017696105] [PMID: 28478716]
[270]
Pakseresht, S.; Boostani, H.; Sayyah, M. Extract of valerian root (Valeriana officinalis L.) vs. placebo in treatment of obsessivecompulsive disorder: A randomized double-blind study. J. Complement. Integr. Med.,, 2011, 8(1), j-jcin.
[http://dx.doi.org/10.2202/1553-3840.1465] [PMID: 22718671]
[271]
Doody, R.; Galvin, J.; Farlow, M.; Shah, R.; Doraiswamy, P.M.; Ferris, S. A new 26-week, double-blind, randomized, placebo-controlled, study of AC-1204 (caprylic triglyceride) in mild to moderate Alzheimer’s disease: Presentation of study design. J. Nutr. Health Aging, 2012, 16(9), 868.
[272]
Seki, T.; Kamiya, T.; Furukawa, K.; Azumi, M.; Ishizuka, S.; Takayama, S.; Nagase, S.; Arai, H.; Yamakuni, T.; Yaegashi, N. Nobiletin-rich Citrus reticulata peels, a kampo medicine for Alzheimer’s disease: A case series. Geriatr. Gerontol. Int., 2013, 13(1), 236-238.
[http://dx.doi.org/10.1111/j.1447-0594.2012.00892.x] [PMID: 23286569]
[273]
Meguro, K.; Yamaguchi, S. Decreased behavioral abnormalities after treatment with combined Donepezil and Yokukansankachimpihange in Alzheimer disease: An observational study. The Osaki-Tajiri project. Neurol. Ther., 2018, 7(2), 333-340.
[http://dx.doi.org/10.1007/s40120-018-0109-9] [PMID: 30255467]
[274]
Wilson, A.L.; Langley, L.K.; Monley, J.; Bauer, T.; Rottunda, S.; McFalls, E.; Kovera, C.; McCarten, J.R. Nicotine patches in Alzheimer’s disease: Pilot study on learning, memory, and safety. Pharmacol. Biochem. Behav., 1995, 51(2-3), 509-514.
[http://dx.doi.org/10.1016/0091-3057(95)00043-V] [PMID: 7667377]
[275]
Wade, A.G.; Farmer, M.; Harari, G.; Fund, N.; Laudon, M.; Nir, T.; Frydman-Marom, A.; Zisapel, N. Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer’s disease: A 6-month, randomized, placebo-controlled, multicenter trial. Clin. Interv. Aging, 2014, 9, 947-961.
[PMID: 24971004]
[276]
Furio, A.M.; Brusco, L.I.; Cardinali, D.P. Possible therapeutic value of melatonin in mild cognitive impairment: A retrospective study. J. Pineal Res., 2007, 43(4), 404-409.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00491.x] [PMID: 17910609]
[277]
Brusco, L.I.; Márquez, M.; Cardinali, D.P. Monozygotic twins with Alzheimer’s disease treated with melatonin: Case report. J. Pineal Res., 1998, 25(4), 260-263.
[http://dx.doi.org/10.1111/j.1600-079X.1998.tb00396.x] [PMID: 9885996]
[278]
Brusco, L.I.; Márquez, M.; Cardinali, D.P. Melatonin treatment stabilizes chronobiologic and cognitive symptoms in Alzheimer’s disease. Neuroendocrinol. Lett., 2000, 21(1), 39-42.
[PMID: 11455329]
[279]
Farlow, M.R.; Thompson, R.E.; Wei, L.J.; Tuchman, A.J.; Grenier, E.; Crockford, D.; Wilke, S.; Benison, J.; Alkon, D.L.A. A randomized, double-blind, placebo-controlled, phase ii study assessing safety, tolerability, and efficacy of bryostatin in the treatment of moderately severe to severe Alzheimer’s disease. J. Alzheimers Dis., 2019, 67(2), 555-570.
[http://dx.doi.org/10.3233/JAD-180759] [PMID: 30530975]
[280]
Nelson, T.J.; Sun, M.K.; Lim, C.; Sen, A.; Khan, T.; Chirila, F.V.; Alkon, D.L. bryostatin effects on cognitive function and pkcɛ in Alzheimer’s disease phase iia and expanded access trials. J. Alzheimers Dis., 2017, 58(2), 521-535.
[http://dx.doi.org/10.3233/JAD-170161] [PMID: 28482641]
[281]
Rafii, M.S.; Walsh, S.; Little, J.T.; Behan, K.; Reynolds, B.; Ward, C.; Jin, S.; Thomas, R.; Aisen, P.S. A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology, 2011, 76(16), 1389-1394.
[http://dx.doi.org/10.1212/WNL.0b013e318216eb7b] [PMID: 21502597]
[282]
Xu, S.S.; Cai, Z.Y.; Qu, Z.W.; Yang, R.M.; Cai, Y.L.; Wang, G.Q.; Su, X.Q.; Zhong, X.S.; Cheng, R.Y.; Xu, W.A.; Li, J.X.; Feng, B. Huperzine-A in capsules and tablets for treating patients with Alzheimer disease. Chung Kuo Yao Li Hsueh Pao, 1999, 20(6), 486-490.
[PMID: 10678137]
[283]
Xu, S.S.; Gao, Z.X.; Weng, Z.; Du, Z.M.; Xu, W.A.; Yang, J.S.; Zhang, M.L.; Tong, Z.H.; Fang, Y.S.; Chai, X.S. Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer’s disease. Chung Kuo Yao Li Hsueh Pao, 1995, 16(5), 391-395.
[PMID: 8701750]
[284]
Aisen, P.S.; Gauthier, S.; Ferris, S.H.; Saumier, D.; Haine, D.; Garceau, D.; Duong, A.; Suhy, J.; Oh, J.; Lau, W.C.; Sampalis, J. Tramiprosate in mild-to-moderate Alzheimer’s disease - a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch. Med. Sci., 2011, 7(1), 102-111.
[http://dx.doi.org/10.5114/aoms.2011.20612] [PMID: 22291741]
[285]
Gauthier, S.; Aisen, P.S.; Ferris, S.H.; Saumier, D.; Duong, A.; Haine, D.; Garceau, D.; Suhy, J.; Oh, J.; Lau, W.; Sampalis, J. Effect of tramiprosate in patients with mild-to-moderate Alzheimer’s disease: Exploratory analyses of the MRI sub-group of the Alphase study. JNHA J. Nutr. Health Aging, 2009, 13(6), 550-557.
[http://dx.doi.org/10.1007/s12603-009-0106-x] [PMID: 19536424]
[286]
Lee, L.K.; Shahar, S.; Chin, A.V.; Yusoff, N.A.M. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): A 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl.), 2013, 225(3), 605-612.
[http://dx.doi.org/10.1007/s00213-012-2848-0] [PMID: 22932777]
[287]
Yurko-Mauro, K.; McCarthy, D.; Rom, D.; Nelson, E.B.; Ryan, A.S.; Blackwell, A.; Salem, N., Jr; Stedman, M. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement., 2010, 6(6), 456-464.
[http://dx.doi.org/10.1016/j.jalz.2010.01.013] [PMID: 20434961]
[288]
Quinn, J.F.; Raman, R.; Thomas, R.G.; Yurko-Mauro, K.; Nelson, E.B.; Van Dyck, C.; Galvin, J.E.; Emond, J.; Jack, C.R., Jr; Weiner, M.; Shinto, L.; Aisen, P.S. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: A randomized trial. JAMA, 2010, 304(17), 1903-1911.
[http://dx.doi.org/10.1001/jama.2010.1510] [PMID: 21045096]
[289]
Freund-Levi, Y.; Eriksdotter-Jönhagen, M.; Cederholm, T.; Basun, H.; Faxén-Irving, G.; Garlind, A.; Vedin, I.; Vessby, B.; Wahlund, L.O.; Palmblad, J. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: A randomized double-blind trial. Arch. Neurol., 2006, 63(10), 1402-1408.
[http://dx.doi.org/10.1001/archneur.63.10.1402] [PMID: 17030655]
[290]
Dysken, M.W.; Sano, M.; Asthana, S.; Vertrees, J.E.; Pallaki, M.; Llorente, M.; Love, S.; Schellenberg, G.D.; McCarten, J.R.; Malphurs, J.; Prieto, S.; Chen, P.; Loreck, D.J.; Trapp, G.; Bakshi, R.S.; Mintzer, J.E.; Heidebrink, J.L.; Vidal-Cardona, A.; Arroyo, L.M.; Cruz, A.R.; Zachariah, S.; Kowall, N.W.; Chopra, M.P.; Craft, S.; Thielke, S.; Turvey, C.L.; Woodman, C.; Monnell, K.A.; Gordon, K.; Tomaska, J.; Segal, Y.; Peduzzi, P.N.; Guarino, P.D. Effect of vitamin E and memantine on functional decline in Alzheimer disease: The TEAM-AD VA cooperative randomized trial. JAMA, 2014, 311(1), 33-44.
[http://dx.doi.org/10.1001/jama.2013.282834] [PMID: 24381967]
[291]
Petersen, R.C.; Thomas, R.G.; Grundman, M.; Bennett, D.; Doody, R.; Ferris, S.; Galasko, D.; Jin, S.; Kaye, J.; Levey, A.; Pfeiffer, E.; Sano, M.; van Dyck, C.H.; Thal, L.J. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med., 2005, 352(23), 2379-2388.
[http://dx.doi.org/10.1056/NEJMoa050151] [PMID: 15829527]
[292]
Sano, M.; Ernesto, C.; Thomas, R.G.; Klauber, M.R.; Schafer, K.; Grundman, M.; Woodbury, P.; Growdon, J.; Cotman, C.W.; Pfeiffer, E.; Schneider, L.S.; Thal, L.J. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N. Engl. J. Med., 1997, 336(17), 1216-1222.
[http://dx.doi.org/10.1056/NEJM199704243361704] [PMID: 9110909]
[293]
Annweiler, C.; Herrmann, F.R.; Fantino, B.; Brugg, B.; Beauchet, O. Effectiveness of the combination of memantine plus vitamin D on cognition in patients with Alzheimer disease: A pre-post pilot study. Cogn. Behav. Neurol., 2012, 25(3), 121-127.
[http://dx.doi.org/10.1097/WNN.0b013e31826df647] [PMID: 22960436]