Treatment Opportunities and Technological Progress Prospective for Acne Vulgaris

Page: [1037 - 1048] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

A frequent inflammatory pilosebaceous disorder that affects 80–90% of teenagers, acne vulgaris is still a concern for dermatologists and other doctors in the field of medicine. Acne has a significant psychosocial impact and is responsible for a bigger worldwide burden of disease than psoriasis, cellulitis, and melanoma, as measured by age-standardized disability-adjusted life years. Patients may experience psychological problems as well as severe skin scars as a result of the condition. The pathogenesis process of acne lesion is complex, so it is myriad of available treatment. Acne is caused by a combination of four different pathological causes, including an increase in sebum production, irregular follicular desquamation, P.acnes proliferation, and inflammation of the afflicted skin. Synthetic, hormonal, and herbal treatments, as well as their efficacy in treating acne vulgaris, are discussed in this article. The laser and light treatment for acne vulgaris available within a specific wavelength range that stimulates type I and III collagen and elastic fibres is described in relation to radiation therapies. The innovative drug delivery techniques are covered here, such as particle, vesicular, and colloidal delivery systems as a prospective therapy. We will present a practical method for acne management in this article and discuss how to assess acne, how to use topical therapies, and how systemic therapy can be used to treat acne. This review will inform readers on the most recent advances in our understanding of acne treatment-related technological potential, with a particular emphasis on developing treatment alternatives and creative ways that can assist improve patient results. Acne has been the subject of substantial research, both in terms of disease mechanism and therapeutic approaches. However, as Propionibacterium acnes develop resistance to current medications there is a requirement for novel therapeutic modalities. Additionally, the absence of required data regarding the efficacy of complementary and alternative medicine (CAM) therapies needs a greater investigation into these treatment choices.

Keywords: Acne vulgaris, pilosebaceous unit (PSU), Propionibacterium acnes (P. acne), topical treatment, systemic treatment, novel delivery approaches.

[1]
Kanwar, I.L.; Haider, T.; Kumari, A.; Dubey, S.; Jain, P.; Soni, V. Models for acne: A comprehensive study. Drug Discov. Ther., 2018, 12(6), 329-340.
[http://dx.doi.org/10.5582/ddt.2018.01079]] [PMID: 30674767]
[2]
Fox, L.; Csongradi, C.; Aucamp, M.; du Plessis, J.; Gerber, M. Treatment modalities for acne. Molecules, 2016, 21(8), 1063.
[http://dx.doi.org/10.3390/molecules21081063]] [PMID: 27529209]
[3]
Latter, G.; Grice, J.E.; Mohammed, Y.; Roberts, M.S.; Benson, H.A.E. Targeted topical delivery of retinoids in the management of acne vulgaris: Current formulations and novel delivery systems. Pharmaceutics, 2019, 11(10), 490.
[http://dx.doi.org/10.3390/pharmaceutics11100490]] [PMID: 31554188]
[4]
Han, S.M.; Pak, S.C.; Nicholls, Y.M.; Macfarlane, N. Evaluation of anti-acne property of purified bee venom serum in humans. J. Cosmet. Dermatol., 2016, 15(4), 324-329.
[http://dx.doi.org/10.1111/jocd.12227]] [PMID: 27216488]
[5]
Misar, K.S.; Kulkarni, S.B.; Gurnule, W.B. Formulation and evaluation of antiacne cream by using clove oil. Mater. Today Proc., 2020, 29, 1251-1258.
[http://dx.doi.org/10.1016/j.matpr.2020.06.106]
[6]
Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The application of medicinal plants in traditional and modern medicine: A review of Thymus vulgaris. Int. J. Clin. Med., 2015, 6(09), 635-642.
[http://dx.doi.org/10.4236/ijcm.2015.69084]
[7]
Well, D. Acne vulgaris: A review of causes and treatment options. J. Dermatol. Nurses Assoc., 2014, 6(6), 302-309.
[http://dx.doi.org/10.1097/JDN.0000000000000104]
[8]
Garg, T. Current nanotechnological approaches for an effective delivery of bio-active drug molecules in the treatment of acne. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 98-105.
[http://dx.doi.org/10.3109/21691401.2014.916715]] [PMID: 24844191]
[9]
Mufaddel, A.; Elnour, A.A.; Omer, A.A.; Alshora, E.H. Psychiatric comorbidity in patients with acne. Open J. Psychiatr., 2017, 7(3), 176-185.
[http://dx.doi.org/10.4236/ojpsych.2017.73016]
[10]
Stamu‐O’Brien, C.; Jafferany, M.; Carniciu, S.; Abdelmaksoud, A. Psychodermatology of acne: Psychological aspects and effects of acne vulgaris. J. Cosmet. Dermatol., 2021, 20(4), 1080-1083.
[PMID: 33031607]
[11]
Pondeljak, N.; Lugović-Mihić, L. Stress-induced interaction of skin immune cells, hormones, and neurotransmitters. Clin. Ther., 2020, 42(5), 757-770.
[http://dx.doi.org/10.1016/j.clinthera.2020.03.008]] [PMID: 32276734]
[12]
Zouboulis, C.C.; Angres, S. Macrophage-activating lipopeptide-2 and corticotropin-releasing hormone stimulate the inflammatory signalling in human sebocytes through activation of stearoyl-CoA desaturase and fatty acid desaturase 2. J. Eur. Acad. Dermatol. Venereol., 2021, 35(2), 493-501.
[PMID: 33131141]
[13]
Mirdamadi, Y.; Thielitz, A.; Wiede, A.; Goihl, A.; Papakonstantinou, E.; Hartig, R.; Zouboulis, C.C.; Reinhold, D.; Simeoni, L.; Bommhardt, U.; Quist, S.; Gollnick, H. Insulin and insulin-like growth factor-1 can modulate the phosphoinositide-3-kinase/Akt/FoxO1 pathway in SZ95 sebocytes in vitro. Mol. Cell. Endocrinol., 2015, 415, 32-44.
[http://dx.doi.org/10.1016/j.mce.2015.08.001]] [PMID: 26257240]
[14]
Sittart, J.A.; Costa, A.; Mulinari-Brenner, F.; Follador, I.; Azulay-Abulafia, L.; Castro, L.C. Multicenter study for efficacy and safety evaluation of a fixeddose combination gel with adapalen 0.1% and benzoyl peroxide 2.5% (Epiduo® for the treatment of acne vulgaris in Brazilian population. Nat. Rev. Dis. Primers, 2015, 90(6)(Suppl. 1), 1-16.
[http://dx.doi.org/10.1590/abd1806-4841.20153969]] [PMID: 27168522]
[15]
Bharti, S.; Vadlamudi, H.C. A strategic review on the involvement of receptors, transcription factors and hormones in acne pathogenesis. J. Recept. Signal Transduct. Res., 2021, 41(2), 105-116.
[16]
De, D.; Mahajan, R. Pathogenesis and management of acne: Recent developments. Recent Adv. Dermatol., 2014, 3, 29.
[17]
Tahir, C.M. Pathogenesis of acne vulgaris. Simplified. J. Pak. Assoc. Dermatol., 2016, 20(2), 93-97.
[18]
Shrivastava, S.; Tirkey, R.; Kujur, A.; Jangde, R.; Daharwal, S.J. Glimpses of ethnopharmacological approaches to treat acne. Res. J. Top. Cosmet. Sci., 2017, 8(1), 40-49.
[http://dx.doi.org/10.5958/2321-5844.2017.00005.X]
[19]
Taylor, M. An analysis of the action of 530–950nm intense pulsed light on the global severity & inflammatory markers in mild to moderate acne vulgaris. MD Thesis, Cardiff University, March 2016.
[20]
Feneran, A.N.; Kaufman, W.S.; Dabade, T.S.; Feldman, S.R. Retinoid plus antimicrobial combination treatments for acne. Clin. Cosmet. Investig. Dermatol., 2011, 4, 79-92.
[PMID: 21760743]
[21]
Rao, J. Treatment of acne scarring. Facial Plast. Surg. Clin. North Am., 2011, 19(2), 275-291.
[http://dx.doi.org/10.1016/j.fsc.2011.04.004]] [PMID: 21763989]
[22]
Leyden, J.J. A review of the use of combination therapies for the treatment of acne vulgaris. J. Am. Acad. Dermatol., 2003, 49(3)(Suppl.), S200-S210.
[http://dx.doi.org/10.1067/S0190-9622(03)01154-X]] [PMID: 12963896]
[23]
Simonart, T. Newer approaches to the treatment of acne vulgaris. Am. J. Clin. Dermatol., 2012, 13(6), 357-364.
[http://dx.doi.org/10.2165/11632500-000000000-00000]] [PMID: 22920095]
[24]
Mosler, E.L.; Leitner, C.; Gouda, M.A.; Carter, B.; Layton, A.M. KhalafAllah, M.T. Topical antibiotics for acne. Cochrane Database Syst. Rev., 2018, 2018(1)CD012263
[25]
Brammann, C.; Müller-Goymann, C.C. An update on formulation strategies of benzoyl peroxide in efficient acne therapy with special focus on minimizing undesired effects. Int. J. Pharm., 2020, 578119074
[http://dx.doi.org/10.1016/j.ijpharm.2020.119074]] [PMID: 31982561]
[26]
Farrah, G.; Tan, E. The use of oral antibiotics in treating acne vulgaris: A new approach. Dermatol. Ther. , 2016, 29(5), 377-384.
[http://dx.doi.org/10.1111/dth.12370]] [PMID: 27306750]
[27]
Dréno, B. Keratolytic treatment of acne. In: Baran, R.; Maibach, H.I.;Eds. Textbook of Cosmetic DermatologyCRC Press: Boca Raton, 2017, p. 360.
[28]
Kumar, A.; Rao, R.; Yadav, P. Azelaic acid: A promising agent for dermatological applications. Curr. Drug Ther., 2020, 15(3), 181-193.
[http://dx.doi.org/10.2174/1574885514666190904160228]
[29]
Arif, T. Salicylic acid as a peeling agent: A comprehensive review. Clin. Cosmet. Investig. Dermatol., 2015, 8, 455-461.
[http://dx.doi.org/10.2147/CCID.S84765]] [PMID: 26347269]
[30]
Al Sabaa, H.; Mady, F.M.; Hussein, A.K.; Abdel-Wahab, H.M.; Ragaie, M.H. Dapsone in topical niosomes for treatment of acne vulgaris. Afr. J. Pharm. Pharmacol., 2018, 12(18), 221-230.
[http://dx.doi.org/10.5897/AJPP2018.4925]
[31]
Beckenbach, L.; Baron, J.M.; Merk, H.F.; Löffler, H.; Amann, P.M. Retinoid treatment of skin diseases. Eur. J. Dermatol., 2015, 25(5), 384-391.
[http://dx.doi.org/10.1684/ejd.2015.2544]] [PMID: 26069148]
[32]
Patel, M.; Bowe, W.P.; Heughebaert, C.; Shalita, A.R. The development of antimicrobial resistance due to the antibiotic treatment of acne vulgaris: A review. J. Drugs Dermatol., 2010, 9(6), 655-664.
[PMID: 20645527]
[33]
Dreno, B.; Thiboutot, D.; Gollnick, H.; Bettoli, V.; Kang, S.; Leyden, J.J.; Shalita, A.; Torres, V. Antibiotic stewardship in dermatology: Limiting antibiotic use in acne. Eur. J. Dermatol., 2014, 24(3), 330-334.
[http://dx.doi.org/10.1684/ejd.2014.2309]] [PMID: 24721547]
[34]
Mays, R.M.; Gordon, R.A.; Wilson, J.M.; Silapunt, S. New antibiotic therapies for acne and rosacea. Dermatol. Ther. , 2012, 25(1), 23-37.
[http://dx.doi.org/10.1111/j.1529-8019.2012.01497.x]] [PMID: 22591497]
[35]
Nast, A.; Dréno, B.; Bettoli, V.; Degitz, K.; Erdmann, R.; Finlay, A.Y.; Ganceviciene, R.; Haedersdal, M.; Layton, A.; López-Estebaranz, J.L.; Ochsendorf, F.; Oprica, C.; Rosumeck, S.; Rzany, B.; Sammain, A.; Simonart, T.; Veien, N.K.; Zivković, M.V.; Zouboulis, C.C.; Gollnick, H. European evidence-based (S3) guidelines for the treatment of acne. J. Eur. Acad. Dermatol. Venereol., 2012, 26(Suppl. 1), 1-29.
[http://dx.doi.org/10.1111/j.1468-3083.2011.04374.x]] [PMID: 22356611]
[36]
Barros, B.; Thiboutot, D. Hormonal therapies for acne. Clin. Dermatol., 2017, 35(2), 168-172.
[http://dx.doi.org/10.1016/j.clindermatol.2016.10.009]] [PMID: 28274354]
[37]
Sadick, N.S.; Cardona, A. Laser treatment for facial acne scars: A review. J. Cosmet. Laser Ther., 2018, 20(7-8), 424-435.
[http://dx.doi.org/10.1080/14764172.2018.1461230]] [PMID: 30395754]
[38]
Arthi, I.; Rajagopal, P.L.; Kumar, P.S.; Mohan, A.; John, R. A review on medicinal plants used in certain skin diseases. IJNRD, 2018, 3(12), 6-11.
[39]
Sudhakar, P.; Hari, C.K.; Divya, R. Role of Indian spices in CNS disorders: A review. Faslnamah-i Giyahan-i Daruyi, 2020, 8(4), 171-175.
[40]
Chandrasekar, R. A comprehensive review on herbal cosmetics in the management of skin diseases. Res. J. Top. Cosmet. Sci., 2020, 11(1), 32-44.
[http://dx.doi.org/10.5958/2321-5844.2020.00007.2]
[41]
Pandey, G.; Verma, K.K.; Singh, M. Evaluation of phytochemical, antibacterial and free radical scavenging properties of Azadirachta indica (neem) leaves. Int. J. Pharm. Pharm. Sci., 2014, 6(2), 444-447.
[42]
Aladekoyi, G.; Omosuli, S.V.; Orungbemi, O.O.; Adesuyi, A.T. Evaluation of antimicrobial activity of oil extracted from three different citrus seeds (Citrus limon, Citrus aurantifolia and Citrus aurantium). Int. J. Sci. Res. Eng. Stud., 2016, 3(3), 16-20.
[43]
Budholiya, P. Medicinal plants for the treatment of acne vulgaris: A review of recent facts. J. Gujarat Res. Soc., 2019, 21(14), 1275-1291.
[44]
Alafiatayo, A.A.; Syahida, A.; Mahmood, M. Total anti-oxidant capacity, flavonoid, phenolic acid and polyphenol content in ten selected species of Zingiberaceae rhizomes. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(3), 7-13.
[http://dx.doi.org/10.4314/ajtcam.v11i3.2]] [PMID: 25371557]
[45]
Minwuyelet, T. MogesSewalem, M; Gashe, M. Review on therapeutic uses of aloe vera. Glob. J. Pharmacol., 2017, 11(2), 14-20.
[46]
Singh, A.; Saharan, V.A.; Garg, R.; Gupta, V.B. Effect of time on extraction of Ashwagandha in various Hydroalcoholic compositions and their anti-inflammatory activity. Int. J. Green Pharm., 2011, 5(1), 69.
[http://dx.doi.org/10.4103/0973-8258.82098]
[47]
Ali, A.; Akhtar, N. The safety and efficacy of 3% Cannabis seeds extract cream for reduction of human cheek skin sebum and erythema content. Pak. J. Pharm. Sci., 2015, 28(4), 1389-1395.
[PMID: 26142529]
[48]
Muddathir, A.M.; Yamauchi, K.; Mitsunaga, T. Anti-acne activity of tannin-related compounds isolated from Terminalia laxiflora. J. Wood Sci., 2013, 59(5), 426-431.
[http://dx.doi.org/10.1007/s10086-013-1344-4]
[49]
Nawarathne, N.W.; Wijesekera, K.; Wijayaratne, W.M.D.G.B.; Napagoda, M. Development of novel topical cosmeceutical formulations from nigella sativa l. with antimicrobial activity against acne-causing microorganisms. ScientificWorldJournal, 2019, 20195985207
[http://dx.doi.org/10.1155/2019/5985207]] [PMID: 31485198]
[50]
Lee, D.S.; Song, H.G. Antibacterial activity of isolated bacteria against Propionibacterium acnes causing acne vulgaris. Microbiological Society of Korea., 2018, 54(3), 272-279.
[51]
Daud, F.S.; Pande, G.; Joshi, M.; Pathak, R.; Wankhede, S. A study of antibacterial effect of some selected essential oils and medicinal herbs against acne causing bacteria. Int. J. Pharm. Sci. Invent., 2013, 2(1), 27-34.
[52]
Naz, M.; Nisar, S.; El Zerey-Belaskri, A.; Umer, A.; Idrees, M. Synthesis and Uses of various essential oil based derivatives in biomedicine. Int. J. Chem. Biochem. Sci., 2018, 13, 92-99.
[53]
Irshad, M.; Subhani, M.A.; Ali, S.; Hussain, A. Biological importance of essential oils. In: El-Shemy, H.A.; Ed. Essential Oils-Oils of Nature.IntechOpen: London, 2020.
[http://dx.doi.org/10.5772/intechopen.87198]
[54]
Kumar, S.M.; Chandrasekar, M.J.; Nanjan, M.J.; Suresh, B. Herbal remedies for acne. Nat. Prod. Radiance, 2005, 4(4), 328-334.
[55]
Sirvi, K.; Goyal, P.K.; Vyas, B. Novel drug delivery system and its uses in the treatment of acne. Int. J. Pharm. Erud., 2016, 6(3), 12-28.
[56]
Rahman, H.S.; Othman, H.H.; Hammadi, N.I.; Yeap, S.K.; Amin, K.M.; Abdul Samad, N.; Alitheen, N.B. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomedi, 2020, 15, 2439-2483.
[http://dx.doi.org/10.2147/IJN.S227805]] [PMID: 32346289]
[57]
Gupta, S.; Wairkar, S.; Bhatt, L.K. Isotretinoin and α-tocopherol acetate-loaded solid lipid nanoparticle topical gel for the treatment of acne. J. Microencapsul., 2020, 37(8), 557-565.
[http://dx.doi.org/10.1080/02652048.2020.1823499]] [PMID: 32924680]
[58]
Castro, G.A.; Ferreira, L.A. Novel vesicular and particulate drug delivery systems for topical treatment of acne. Expert Opin. Drug Deliv., 2008, 5(6), 665-679.
[http://dx.doi.org/10.1517/17425247.5.6.665]] [PMID: 18532922]
[59]
Madan, S.; Nehate, C.; Barman, T.K.; Rathore, A.S.; Koul, V. Design, preparation, and evaluation of liposomal gel formulations for treatment of acne: In vitro and in vivo studies. Drug Dev. Ind. Pharm., 2019, 45(3), 395-404.
[http://dx.doi.org/10.1080/03639045.2018.1546310]] [PMID: 30442066]
[60]
Rahimpour, Y.; Hamishehkar, H. Liposomes in cosmeceutics. Expert Opin. Drug Deliv., 2012, 9(4), 443-455.
[http://dx.doi.org/10.1517/17425247.2012.666968]] [PMID: 22413847]
[61]
Kazi, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M.; Kuotsu, K. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res., 2010, 1(4), 374-380.
[http://dx.doi.org/10.4103/0110-5558.76435]] [PMID: 22247876]
[62]
Muzzalupo, R.; Elisabetta, M. Do niosomes have a place in the field of drug delivery? Expert Opin. Drug Deliv., 2019, 16(11), 1145-1147.
[63]
Cerqueira, C.; Dos Santos, E.P.; Mansur, C.R. Niosomes as nano-delivery systems in the pharmaceutical field. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(2), 195-212.
[64]
Arunachalam, A.; Jeganath, S.; Yamini, K.; Tharangini, K. Niosomes: A novel drug delivery system. Int. J. Novel Trends Pharm. Sci., 2012, 2(1), 25-31.
[65]
Pham, B.T.; Such, C.H.; Hawkett, B.S. Synthesis of polymeric janus nanoparticles and their application in surfactant-free emulsion polymerizations. Polym. Chem., 2015, 6(3), 426-435.
[http://dx.doi.org/10.1039/C4PY01125B]
[66]
Moghimipour, E.; Salimi, A.; Leis, F. Preparation and evaluation of tretinoin microemulsion based on pseudo-ternary phase diagram. Adv. Pharm. Bull., 2012, 2(2), 141-147.
[PMID: 24312785]
[67]
Patel, M.R.; Patel, R.B.; Parikh, J.R.; Patel, B.G. Novel isotretinoin microemulsion-based gel for targeted topical therapy of acne: Formulation consideration, skin retention and skin irritation studies. Appl. Nanosci., 2016, 6(4), 539-553.
[http://dx.doi.org/10.1007/s13204-015-0457-z]
[68]
Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release, 2018, 270, 203-225.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049]] [PMID: 29199062]
[69]
Ali, M.; McCoy, T.M.; McKinnon, I.R.; Majumder, M.; Tabor, R.F. Synthesis and characterization of graphene oxide-polystyrene composite capsules with aqueous cargo via a water-oil-water multiple emulsion templating route. ACS Appl. Mater. Interfaces, 2017, 9(21), 18187-18198.
[http://dx.doi.org/10.1021/acsami.7b02576]] [PMID: 28492312]
[70]
Arzhavitina, A.; Steckel, H. Foams for pharmaceutical and cosmetic application. Int. J. Pharm., 2010, 394(1-2), 1-17.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.028]] [PMID: 20434532]
[71]
Parsa, M.; Trybala, A.; Malik, D.J.; Starov, V. Foam in pharmaceutical and medical applications. Curr. Opin. Colloid Interface Sci., 2019, 44, 153-167.
[http://dx.doi.org/10.1016/j.cocis.2019.10.007]
[72]
Myrdal, P.B.; Sheth, P.; Stein, S.W. Advances in metered dose inhaler technology: Formulation development. AAPS PharmSciTech, 2014, 15(2), 434-455.
[http://dx.doi.org/10.1208/s12249-013-0063-x]] [PMID: 24452499]
[73]
Syal, S.; Pandit, V.; Ankalgi, A.D.; Verma, C.P.; Ashawat, M.S. Formulation and evaluation of microsponges gel of havan ash for the treatment of acne. J. Drug Deliv. Ther., 2020, 10(6), 74-85.
[http://dx.doi.org/10.22270/jddt.v10i6.4380]
[74]
Singhvi, G.; Manchanda, P.; Hans, N.; Dubey, S.K.; Gupta, G. Microsponge: An emerging drug delivery strategy. Drug Dev. Res., 2019, 80(2), 200-208.
[http://dx.doi.org/10.1002/ddr.21492]] [PMID: 30456763]