Abstract
Background: The effect of bionanointeractions on graphene-biomolecule nanohybrids
is of great interest, since external influences on their structural and surface properties can
significantly affect their biological activity.
Introduction: The effects of the fatty acid binding with shungite carbon (ShC) nanoparticles on
the stability of aqueous dispersions of ShC and the oxidation state of ShC (oxygen-containing
groups) were studied using linoleic acid (LA) as an example.
Methods: The size and surface charge (ζ -potential) of the ShC-LA associates formed at various
LA concentrations in the dispersion were estimated using the dynamic light scattering method
and the ultraviolet (UV) absorption spectra of dispersions were taken.
Results: The negative ShC charge becomes less negative upon LA binding, depending on LA
concentration. The size of ShC upon functionalization by LA molecules does not depend on LA
concentration, suggesting the predominance of surface rearrangement of NPs, rather than a
change in their global structure. ShC - LA interaction is accompanied by an increase in absorption
in the UV spectrum region of conjugated С=С bonds, the reduction of С=О groups, sp2 hybridization
and bonds in the plane of graphene fragments, the basic structural units of ShC.
Conclusion: The results are interpreted in terms of the surface structural effects of LA on ShC
that affect variations of the colloid and redox characteristics of ShC in aqueous dispersion.
Keywords:
Shungite carbon nanoparticles, linoleic acid, colloid and redox properties
Graphical Abstract
[12]
Ferrari, A.C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; Garrido, J.A.; Sordan, R.; Bianco, A.; Ballerini, L.; Prato, M.; Lidorikis, E.; Kivioja, J.; Marinelli, C.; Ryhänen, T.; Morpurgo, A.; Coleman, J.N.; Nicolosi, V.; Colombo, L.; Fert, A.; Garcia-Hernandez, M.; Bachtold, A.; Schneider, G.F.; Guinea, F.; Dekker, C.; Barbone, M.; Sun, Z.; Galiotis, C.; Grigorenko, A.N.; Konstantatos, G.; Kis, A.; Katsnelson, M.; Vandersypen, L.; Loiseau, A.; Morandi, V.; Neumaier, D.; Treossi, E.; Pellegrini, V.; Polini, M.; Tredicucci, A.; Williams, G.M.; Hong, B.H.; Ahn, J-H.; Kim, J.M.; Zirath, H.; van Wees, B.J.; van der Zant, H.; Occhipinti, L.; Di Matteo, A.; Kinloch, I.A.; Seyller, T.; Quesnel, E.; Feng, X.; Teo, K.; Rupesinghe, N.; Hakonen, P.; Neil, S.R.T.; Tannock, Q.; Löfwander, T.; Kinaret, J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems.
Nanoscale, 2015,
7(11), 4598-4810.
[
http://dx.doi.org/10.1039/C4NR01600A] [PMID:
25707682]
[28]
Rozhkova, N.N.; Rozhkov, S.P.; Goryunov, A.S. Natural graphene based shungitenanocarbon. In: Carbon nanomaterials sourcebook. Graphene, fullerenes, nanotubes, and nanodiamonds; Sattler, K.D., Ed.; CRC Press: Boca Raton, 2016; Vol. 1, pp. 153-176.
[31]
Razbirin, B.S.; Rozhkova, N.N.; Sheka, E.F.; Nelson, D.K.; Starukhin, A.N. Fractals of graphene quantum dots in photoluminescence of shungite. J. Exp. Theor. Phys., 2014, 5, 838-850.
[38]
Goryunov, A.S.; Rozhkov, S.P.; Sukhanova, G.A.; Borisova, A.G. Thermodynamic effects of serum albumin interaction with shungitenanocarbon. Trans. Karelian Res. Centre Russ. Acad. Sci. Exp. Biol., 2016, 11, 33-38.
[39]
Rozhkov, S.P.; Goryunov, A.S. Structural dynamic effects of protein and other biologically significant molecules’ interaction with shungite nanocarbon. Trans. Karelian Res. Centre Russ. Acad. of Sci. Exp. Biol., 2017, 5, 33-44.
[44]
Rozhkova, N.N.; Rozhkov, S.S.; Loschilov, A.S. A method of producing an aqueous dispersion of carbon nanoparticles from shungite. R.F. Patent 2642632, 2018.
[47]
Hunter, R.J. Foundations of Colloid Science, 2nd ed; Oxford University Press: New York, 2001.
[56]
Rozhkov, S.P.; Goryunov, A.S. Conformational effects of interaction of serum albumine with nanoparticles of carbon shungyte: EPR spin-probe study. Trans. Karelian Res. Centre Russ. Acad. Sci. Exp. Biol., 2018, 12, 38-50.