Microwave Induced Green Synthesis: Sustainable Technology for Efficient Development of Bioactive Pyrimidine Scaffolds

Page: [1029 - 1059] Pages: 31

  • * (Excluding Mailing and Handling)

Abstract

Microwave radiation is used as a heating source during the synthesis of heterocyclic compounds. The heating mechanisms involved in microwave-induced synthesis include dipolar polarization and ionic conduction. This heating technology follows the green protocol as it involves the use of recyclable organic solvents during synthesis. The microwave heating approach offers a faster rate of reaction, easier work-up procedure, and higher product yield with purity and also reduces environmental pollution. So, microwave heating is applied as a sustainable technology for the efficient production of pyrimidine compounds as one of the heterocyclic moieties. Pyrimidine is a six-membered nitrogenous heterocyclic compound that plays a significant role due to several therapeutic applications. This moiety acts as an essential building block for generating drug candidates with diverse biological activities, including anti-cancer (capecitabine), anti-thyroid (propylthiouracil), antihistaminic (pemirolast), antimalarial (pyrimethamine), antidiabetic (alloxan), antihypertensive (minoxidil), anti-inflammatory (octotiamine), antifungal (cyprodinil), antibacterial (sulfamethazine), etc. This review is focused on the synthesis of pyrimidine analogs under microwave irradiation technique and the study of their therapeutic potentials.

Keywords: Bioactivity, development, green synthesis, microwave, pyrimidine, sustainable.

[1]
Ravichandran, S.; Karthikeyan, E. Microwave synthesis-A potential tool for green chemistry. Int. J. Chemtech Res., 2011, 3(1), 466-470.
[2]
Sahoo, B.M.; Banik, B.K.; Panda, J. Microwave assisted green chemistry approach: A potential tool for drug synthesis in medicinal chemistry, 2nd ed; CRC Press: USA, 2018.
[http://dx.doi.org/10.1201/9781351240499-12]
[3]
Krstenansky, J.L.; Cotterill, I. Recent advances in microwave-assisted organic syntheses. Curr. Opin. Drug Discov. Devel., 2000, 3(4), 454-461.
[PMID: 19649876]
[4]
Sekhon, B.S. Microwave assisted pharmaceutical synthesis: An overview. Int. J. Pharm. Tech. Res., 2010, 2(1), 827-833.
[5]
Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis-A review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[6]
Varma, R.S. Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chem., 1999, 1(1), 43-55.
[http://dx.doi.org/10.1039/a808223e]
[7]
Sahoo, B.M.; Banik, B.K.; Panda, J. Microwave Synthetic Technology: An eco-friendly approach in organic synthesis, 2nd ed; CRC Press, 2018.
[http://dx.doi.org/10.1201/9781351240499-11]
[8]
Varma, R.S. Solvent-free syntheses of heterocycles using microwave irradiation. J. Heterocycl. Chem., 1999, 36, 1565-1571.
[http://dx.doi.org/10.1002/jhet.5570360617]
[9]
Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41(5), 629-639.
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[10]
Strauss, C.R.; Trainor, R.W. Developments in microwave-assisted organic chemistry. Aust. J. Chem., 1995, 48(10), 1665-1692.
[http://dx.doi.org/10.1071/CH9951665]
[11]
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27(41), 4945-4948.
[http://dx.doi.org/10.1016/S0040-4039(00)85103-5]
[12]
Varma, R.S. Solvent-free accelerated organic syntheses using microwaves. Pure Appl. Chem., 2001, 73(1), 193-198.
[http://dx.doi.org/10.1351/pac200173010193]
[13]
Sahoo, B.M.; Panda, J.; Banik, B.K. Thermal and non-thermal effects of microwaves in synthesis. J. Indian Chem. Soc., 2018, 95, 1-9.
[14]
Mahato, A.K.; Sahoo, B.M.; Banik, B.K. Microwave-assisted synthesis: Paradigm of Green Chemistry. J. Indian Chem. Soc., 2018, 95, 1-13.
[15]
Agarwal, O.P. Organic chemistry: Reaction and reagents.Krishna Prakashan Media (p) Ltd 2008, 735-738.
[16]
Verma, A.; Sahu, L.; Chaudhary, N.; Dutta, T.; Dewangan, D.; Tripathi, D.K.A. Review: Pyrimidine their chemistry and pharmacological potentials. Asian J. Biochem. Pharmaceut. Res., 2012, 1(2), 1-15.
[17]
Arikkatt, S.D.; Baldwin, M.V.; Joseph, J.; Chandran, M.; Bhat, A.R.; Kumar, K. Pyrimidine derivatives and its biological potential-A review. Int. J. Org. Bio. Org. Chem., 2014, 4(1), 1-5.
[18]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[19]
Pratyusha, C.; Poornima, G.; Sandhyarani, K.; Krishnaveni, A.; Brahmaiah, B.; Sreekanth, N. An overview on synthesis and biological activity of pyrimidines. Int. J. Pharm. Sci. Rev. Res., 2013, 3(2), 86-90.
[20]
Dansena, H.; Dhongade, H.J.; Chandrakar, K. Pharmacological potentials of pyrimidine derivative: A review. Asian J. Pharm. Clin. Res., 2015, 8(4), 171-177.
[21]
Brown, D.J.; Mason, S.F. Chemistry of heterocyclic compounds: The pyrimidines. 2008, 6, 31-81.
[22]
Michael, B.S.; March, J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed; Wiley-Int, 2007, pp. 102-110.
[23]
Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem., 2017, 132, 108-134.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.025] [PMID: 28342939]
[24]
Mahfoudh, M.; Abderrahim, R.; Leclerc, E.; Campagne, J.M. Recent approaches to the synthesis of pyrimidine derivatives. Eur. J. Org. Chem., 2017, 20(20), 2856-2865.
[http://dx.doi.org/10.1002/ejoc.201700008]
[25]
Katritzky, A.R.; Rees, C.W. Comprehensive heterocyclic. Chemistry, 1984, 1984, 106.
[26]
Maji, P.K. Recent progress in the synthesis of pyrimidine heterocycles: A review. Curr. Org. Chem., 2020, 24(10), 1055-1096.
[http://dx.doi.org/10.2174/1385272824999200507123843]
[27]
Gore, R.P.; Rajput, A.P. A review on recent progress in multicomponent reactions of pyrimidine synthesis. Drug Invent. Today, 2013, 5, 148-152.
[28]
Bhat, A.R.; Dongre, R.S.; Naikoo, G.A.; Hassan, I.U.; Ara, T. Proficient synthesis of bioactive annulated pyrimidine derivatives: A review. J. Taibah Univ. Sci., 2017, 11(6), 1047-1069.
[http://dx.doi.org/10.1016/j.jtusci.2017.05.005]
[29]
Xin, X.; Wang, Y.; Kumar, S.; Liu, X.; Lin, Y.; Dong, D. Efficient one-pot synthesis of substituted pyridines through multicomponent reaction. Org. Biomol. Chem., 2010, 8(13), 3078-3082.
[http://dx.doi.org/10.1039/c001117g] [PMID: 20480101]
[30]
Madhvi, A.S.; Jauhar, S.; Desai, K.R. A brief review: Microwave assisted organic reaction. Arch. Appl. Sci. Res., 2012, 4(1), 645-661.
[31]
Qiya, Z.; Hong, X.H.; Suhui, W. Three-component reaction for the synthesis of 2-amine-4,6-diarylpyrimidine under solvent-free conditions. Synth. Commun., 2009, 39(3), 516-522.
[http://dx.doi.org/10.1080/00397910802399932]
[32]
Shujian, T.; Shanshan, W.U.; Zhengguo, H.; Wenjuan, H. An efficient microwave-assisted synthesis of pyrido[2,3-d]pyrimidine derivatives. Chin. J. Chem., 2009, 27(6), 1148-1152.
[http://dx.doi.org/10.1002/cjoc.200990192]
[33]
Caddick, S. Microwave assisted organic reactions. Tetrahedron, 1995, 51(38), 10403-10432.
[http://dx.doi.org/10.1016/0040-4020(95)00662-R]
[34]
Mobinikhaledi, A.; Forughifar, N. Microwave assisted synthesis of some pyrimidine derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2006, 181(11), 2653-2658.
[http://dx.doi.org/10.1080/10426500600862977]
[35]
Quiroga, J.; Portilla, J.; Abonía, R.; Insuasty, B.; Nogueras, M.; Cobo, J. Regioselective synthesis of novel substituted pyrazolo[1,5-a]pyrimidines under solvent-free conditions. Tetrahedron Lett., 2008, 49(43), 6254-6256.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.044]
[36]
Dabiri, M.; Arvin-Nezhad, H.; Khavasi, H.R.; Bazgir, A. A novel and efficient synthesis of pyrimido[4,5-d]pyrimidine-2,4,7-trione and pyrido[2,3-d:6,5-d] dipyrimidine-2,4,6,8-tetrone derivatives. Tetrahedron, 2007, 63(8), 1770-1774.
[http://dx.doi.org/10.1016/j.tet.2006.12.043]
[37]
Polshettiwar, V.; Varma, R.S. Biginelli reaction in aqueous medium: A greener and sustainable approach to substituted 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2007, 48(41), 7343-7346.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.031]
[38]
Kategaonkar, A.H.; Sadaphal, S.A.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. Microwave assisted synthesis of pyrimido[4,5-d]pyrimidine derivatives in dry media. Ukr. Bioorg. Acta, 2009, 1, 1-7.
[39]
Mario, L.A.; Vargas, D.; Francisco, L.A.; Julio, G.M.A. Ethyl (S)-2-Benzamido-5-[(4,6-dimethylpyrimidin-2-yl) amino]pentanoate. Molbank, 2020, 4(M1166), 1-5.
[40]
Hassan, S.; Arman, S.S.; Ayoob, B. Three-component process for the synthesis of 4-amino-5-pyrimidinecarbonitriles under thermal aqueous conditions or microwave irradiation. ARKIVOC, 2008, (ii), 115-123.
[41]
Shi, F.; Ma, N.; Zhou, D.; Zhang, G.; Chen, R.; Zhang, Y.; Tu, S. Green approach to the Synthesis of polyfunctionalized pyrazolo[4′,3′:5,6] pyrido[2,3-d]pyrimidines via microwave-assisted multicomponent reactions in water without catalyst. Synth. Commun., 2010, 40(1), 135-143.
[http://dx.doi.org/10.1080/00397910902962860]
[42]
Jain, S.K.; Chaudhari, S.K.; More, N.S.; More, K.D.; Wakedkar, S.A.; Kathiravan, M.K. A facile synthesis of 2-amino-5-cyano-4,6-disubstituted-pyrimidines under MWI. Int. J. Org. Chem. (Irvine), 2011, 1(2), 47-52.
[http://dx.doi.org/10.4236/ijoc.2011.12009]
[43]
Borisagar, M.; Joshi, K.; Ram, H.; Vyas, K.; Nimavat, K. A one-pot microwave irradiation synthesis of 1,2,4-triazolo[1,5-a]pyrimidines. Acta Chim. Pharm. Indica, 2012, 2(2), 101-105.
[44]
Nandini, P.; Krishnakant, W.; Dileep, K. Microwave promoted solvent-free Biginelli reaction for the one pot synthesis of dihydropyrimidin-2-(1H)-ones catalyzed by sulfamic acid. Asian J. Chem., 2011, 23(12), 5217-5219.
[45]
Singhal, S.; Joseph, J.K.; Jain, S.L.; Sain, B. Synthesis of 3,4-dihydro-pyrimidinones in the presence of water under solvent free conditions using conventional heating, microwave irradiation/ultrasound. Green Chem. Lett. Rev., 2010, 3(1), 23-26.
[http://dx.doi.org/10.1080/17518250903490126]
[46]
Dehbi, O.; Ishak, E.A.; Bakht, M.A.; Geesi, M.H.; Alshammari, M.B.; Kaiba, V.C.A.; Lazar, S.; Riadi, Y. Water-mediated synthesis of disubstituted 5-aminopyrimidines from vinyl azides under microwave irradiation. Green Chem. Lett. Rev., 2018, 11(2), 62-66.
[http://dx.doi.org/10.1080/17518253.2018.1437225]
[47]
Yildirim, M.; Celikel, D.; Durust, Y.; Knight, D.W.; Kariuki, B.M. A rapid and efficient protocol for the synthesis of novel nitrothiazolo[3,2-c]pyrimidines via microwave-mediated Mannich cyclisation. Tetrahedron, 2014, 70(12), 2122-2128.
[http://dx.doi.org/10.1016/j.tet.2014.02.003]
[48]
Cudden, C.M. Analgesics and anti-inflammatory drugs; Toxicology Cases for the Clinical and Forensic Laboratory, 2020, pp. 67-74.
[49]
Chaudhary, A.; Sharma, P.K.; Verma, P.; Kumar, N.; Dudhe, R. Microwave assisted synthesis of novel pyrimidine derivatives and investigation of their analgesic and ulcerogenic activity. Med. Chem. Res., 2012, 21(11), 3629-3645.
[http://dx.doi.org/10.1007/s00044-011-9907-7]
[50]
Bhatewara, A.; Jetti, S.R.; Kadre, T.; Paliwal, P.; Jain, S. Microwave assisted synthesis and biological evaluation of dihydropyrimidinone derivatives as anti-inflammatory, antibacterial, and antifungal agents. Int. J. Med. Chem., 2013, 197612, 1-5.
[51]
Patil, P.A.; Bhole, R.P.; Chikhale, R.V.; Bhusari, K.P. Synthesis of 3,4-dihydropyrimidine-2(1H)-one derivatives using microwave for their biological screening. Int. J. Chemtech Res., 2009, 1(2), 373-384.
[52]
Inoyama, D.; Paget, S.D.; Russo, R.; Kandasamy, S.; Kumar, P.; Singleton, E.; Occi, J.; Tuckman, M.; Zimmerman, M.D.; Ho, H.P.; Perryman, A.L.; Dartois, V.; Connell, N.; Freundlich, J.S. Novel pyrimidines as antitubercular agents. Antimicrob. Agents Chemother., 2018, 62(3), e02063-e17.
[http://dx.doi.org/10.1128/AAC.02063-17] [PMID: 29311070]
[53]
Patel, N.; Pathan, S.; Soni, H.I. 3,4-dihydropyrimidin-2(1h)-one analogues: Microwave irradiated synthesis with antimicrobial and antituberculosis study. Curr. Microw. Chem., 2019, 6(1), 61-70.
[http://dx.doi.org/10.2174/2213335606666190724093305]
[54]
Liu, P.; Yang, Y.; Tang, Y.; Yang, T.; Sang, Z.; Liu, Z.; Zhang, T.; Luo, Y. Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents. Eur. J. Med. Chem., 2019, 163, 169-182.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.054] [PMID: 30508666]
[55]
Mohan, S.B.; Ravi Kumar, B.V.V.; Dinda, S.C.; Naik, D.; Prabu Seenivasan, S.; Kumar, V.; Rana, D.N.; Brahmkshatriya, P.S. Microwave-assisted synthesis, molecular docking and antitubercular activity of 1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Bioorg. Med. Chem. Lett., 2012, 22(24), 7539-7542.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.032] [PMID: 23122523]
[56]
Patil, D.R.; Salunkhe, S.M.; Deshmukh, M.B.; Anbhule, P.V. One step synthesis of 6-amino-5-cyano-4-phenyl-2- mercapto pyrimidine using phosphorus pentoxide. The Open Cat. J, 2010, 3, 83-86.
[57]
Zhuang, J.; Ma, S. Recent development of pyrimidine-containing antimicrobial agents. ChemMedChem, 2020, 15(20), 1875-1886.
[http://dx.doi.org/10.1002/cmdc.202000378] [PMID: 32797654]
[58]
Khatri, T.T.; Shah, V.H. Effective microwave synthesis of bioactive thieno[2,3-d]pyrimidines. J. Chil. Chem. Soc., 2017, 62(1), 3354-3358.
[http://dx.doi.org/10.4067/S0717-97072017000100010]
[59]
Youssef, A.M.S.; Fouda, A.M.; Faty, R.M. Microwave assisted synthesis of some new thiazolopyrimidine and pyrimidothiazolopyrimido-pyrimidine derivatives with potential antimicrobial activity. Chem. Cent. J., 2018, 2018, 2-14.
[60]
Sureja, D.K.; Dholakia, S.P.; Vadalia, K.R. Synthesis of some novel pyrazolo[3,4-d] pyrimidin-4(5H)-one derivatives as potential antimicrobial agent. J. Pharm. Bioallied Sci., 2016, 8(4), 321-326.
[http://dx.doi.org/10.4103/0975-7406.199337] [PMID: 28216957]
[61]
Panneerselvam, T.; Reddy, M.J. Microwave assisted synthesis and antimicrobial evaluation of novel substituted thiosemicarbazide derivatives of pyrimidine. J. Het. Chem., 2020, 2020, 1-7.
[62]
Esvet, A.; Ismet, B.; Inci, A.; Baris, A.; Ela, Y. Microwave assisted synthesis of tetrahydropyrimidines via multicomponent reactions and evaluation of biological activities. Lett. Org. Chem., 2011, 8(9), 663-667.
[http://dx.doi.org/10.2174/157017811799304287]
[63]
Karthic, R.; Andrews, B.; Subramani, K. Microwave assisted synthesis and antifungal studies of 5-amino thiadiazole substituted pyrimidine compounds. Asian J. Res. Chem, 2017, 10(2), 119-123.
[http://dx.doi.org/10.5958/0974-4150.2017.00018.9]
[64]
Chandrasekaran, S.; Nagarajan, S. Microwave-assisted synthesis and anti-bacterial activity of some 2-amino-6-aryl-4-(2-thienyl)pyrimidines. Farmaco, 2005, 60(4), 279-282.
[http://dx.doi.org/10.1016/j.farmac.2005.01.012] [PMID: 15848201]
[65]
Elkanzi, N.A.A.; Bakr, R.B. Microwave assisted, antimicrobial activity and molecular modeling of some synthesized newly pyrimidine derivatives using 1,4- diazabicyclo[2.2.2]octane as a catalyst. Lett. Drug Des. Discov., 2020, 17(12), 1538-1551.
[http://dx.doi.org/10.2174/1570180817999200802033351]
[66]
Bhat, A.R.; Shalla, A.H.; Dongre, R.S. Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyra- no[2,3-d]pyrimidine-6-carboxylates as potent in vitro antibacterial and antifungal activity. J. Adv. Res., 2015, 6(6), 941-948.
[http://dx.doi.org/10.1016/j.jare.2014.10.007] [PMID: 26644932]
[67]
Bansal, S.; Chaudhary, A.N.; Kothiyal, P. Microwave assisted synthesis and antibacterial activity of pyrimidine derivatives. Int. J. Pharm. Pharm. Sci., 2013, 5(S1), 346-348.
[68]
Stahl, S.M. Stahl’s Essential Psychopharmacology: Neuroscientific Basis and Practical Applications, 3rd ed; Cambridge University Press: New York, 2008, pp. 327-451.
[69]
Sharma, C.; Yerande, S.; Chavan, R.; Bhosale, A.V. Synthesis of thienopyrimidines and their antipsychotic activity. E-J. Chem., 2010, 7(2), 655-664.
[http://dx.doi.org/10.1155/2010/369141]
[70]
Meegan, M.J.; O’Boyle, N.M. Anticancer drugs. Pharmaceuticals (Basel), 2019, 12(3), 134.
[http://dx.doi.org/10.3390/ph12030134] [PMID: 31527393]
[71]
Ahmad, M.R.; Sastry, V.G.; Prasad, Y.R.; Khan, M.H.R.; Bano, N.; Anwar, S. Conventional and microwave assisted synthesis of 2-amino-4,6-diarylpyrimidine derivatives and their cytotoxic, anti-oxidant activities. Eur. J. Chem., 2012, 3(1), 94-98.
[http://dx.doi.org/10.5155/eurjchem.3.1.94-98.523]
[72]
Jainey, P.J.; Ishwar, B.K. Microwave assisted synthesis of novel pyrimidines bearing benzene sulfonamides and evaluation of anticancer and antioxidant activities. Asian J. Pharm. Clin. Res., 2014, 7(S1), 111-114.
[73]
Hosamani, K.M.; Reddya, D.S.; Devarajegowda, H.C. Microwave-assisted synthesis of new fluorinated coumarin–pyrimidine hybrids as potent anticancer agents, their DNA cleavage and X-ray crystal studies. RSC Advances, 2015, 5(15), 11261-11271.
[http://dx.doi.org/10.1039/C4RA12222D]
[74]
Singh, N.; Kshirsagar, S.S.; Nimje, H.M.; Chaudhari, P.S. Microwave assisted synthesis of 4-substituted 1,2,3,4-tetrahydropyrimidine derivatives. Int. J. Pharm. Pharm. Sci., 2011, 3(1), 109-111.
[75]
Sandhu, J.S.; Dhruv, K. Microwave enhanced, solvent free green protocol for the production of 3,4-dihydropyrimidine-2-(1H)-ones using AlCl3.6H2O as a catalyst. Indian J. Chem., 2010, 49B, 360-363.
[76]
Aceves, J.; Erlij, D.; Martínez-Marañón, R. The mechanism of the paralysing action of tetramisole on Ascaris somatic muscle. Br. J. Pharmacol., 1970, 38(3), 602-607.
[http://dx.doi.org/10.1111/j.1476-5381.1970.tb10601.x] [PMID: 5445688]
[77]
Sahoo, B.M.; Rajeswari, M.; Panda, J.; Sahoo, B. Green Expedient Synthesis of Pyrimidine derivatives via chalcones and evaluation of their anthelmintic activity. Ind. J. Pharmac. Edu. Res., 2017, 51(4S), 136-143.
[http://dx.doi.org/10.5530/ijper.51.4s.101]
[78]
Brossi, A.; Venugopalan, B.; Dominguez Gerpe, L.; Yeh, H.J.; Flippen-Anderson, J.L.; Buchs, P.; Luo, X.D.; Milhous, W.; Peters, W. Arteether, a new antimalarial drug: Synthesis and antimalarial properties. J. Med. Chem., 1988, 31(3), 645-650.
[http://dx.doi.org/10.1021/jm00398a026] [PMID: 3279208]
[79]
Rathwa, S.K.; Bhoi, M.N.; Mayuri, A.; Borad, K.D.; Patel, D.P.; Rajani, S.D.; Patel, H.D. Microwave assisted synthesis, biological characterization and docking studies of pyrimidine derivatives. Curr. Microw. Chem., 2016, 3(3), 178-186.
[http://dx.doi.org/10.2174/2213335602666150728205457]
[80]
Prasad, P.; Kalola, A.G.; Patel, M.P. Microwave assisted one-pot synthetic route to imidazo[1,2-a]pyrimidine derivatives of imidazo/triazole clubbed pyrazole and their pharmacological screening. New J. Chem., 2018, 42(15), 12666-12676.
[http://dx.doi.org/10.1039/C8NJ00670A]
[81]
Hollander, P. Current and future therapeutic options for treating postprandial glucose. Curr. Opin. Endocrinol. Diabetes, 1998, 5(4), 268-274.
[http://dx.doi.org/10.1097/00060793-199811000-00006]
[82]
Lalpara, J.N.; Hadiyal, S.D.; Radia, A.J.; Dhalani, J.M.; Dubal, G.G. Design and rapid microwave irradiated one-pot synthesis of tetrahydropyrimidine derivatives and their screening in-vitro anti-diabetic activity. Polycycl. Aromat. Compd., 2020, 2020, 1-15.
[83]
Gejalakshmi, S.; Harikrishnan, N.; Thillai, G.G.E.; Divyasri, A. Microwave assisted synthesis of tetrahydropyrmidine and in-silico screening of antidiabetic drug. Int. J. Curr. Pharm. Res., 2020, 12(1), 10-13.
[84]
Leonetti, F.; Capaldi, C.; Carotti, A. Microwave-assisted solid phase synthesis of Imatinib, A blockbuster anticancer drug. Tetrahedron Lett., 2007, 48(19), 3455-3458.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.033]
[85]
Baxendale, I.R.; Ley, S.V. Polymer-supported reagents for multi-step organic synthesis: Application to the synthesis of sildenafil. Bioorg. Med. Chem. Lett., 2000, 10(17), 1983-1986.
[http://dx.doi.org/10.1016/S0960-894X(00)00383-8] [PMID: 10987432]
[86]
Xu, L.; Zhang, Y.; Dai, W.; Wang, Y.; Jiang, D.; Wang, L.; Xiao, J.; Yang, X.; Li, S. Design, synthesis and SAR study of novel trisubstituted pyrimidine amide derivatives as CCR4 antagonists. Molecules, 2014, 19(3), 3539-3551.
[http://dx.doi.org/10.3390/molecules19033539] [PMID: 24662072]
[87]
Zhou, H.; Che, X.; Bao, G.; Na, W.; Xu, B. Design, synthesis and structure-activity relationship study of pyrimidine-fused diazepine derivatives as L3MBTL3 inhibitors. Youji Huaxue, 2016, 36(12), 2948-2959.
[http://dx.doi.org/10.6023/cjoc201607001]
[88]
Rajeev, K.; Tyagi, M.; Sharma, A.K. Current status and future scenario of pyrimidine derivatives having antimicrobial potential. Pharma Chem., 2014, 6(4), 298-320.
[89]
de la Hoz, A.; Díaz-Ortiz, A.; Prieto, P. Microwave assisted green organic synthesis, in alternative energy sources for green chemistry. In: Alternative Energy Sources for Green Chemistry; Royal Society of Chemistry: USA, 2016; pp. 1-33.
[http://dx.doi.org/10.1039/9781782623632-00001]
[90]
Then, R.L. History and future of antimicrobial diaminopyrimidines. J. Chemother., 1993, 5(6), 361-368.
[http://dx.doi.org/10.1080/1120009X.1993.11741082] [PMID: 8195827]
[91]
Yadav, P.; Shah, K. An overview on synthetic and pharmaceutical prospective of pyrido[2,3-d]pyrimidines scaffold. Chem. Biol. Drug Des., 2021, 97(3), 633-648.
[http://dx.doi.org/10.1111/cbdd.13800] [PMID: 32946161]
[92]
Shilpa, C.; Dipak, S.; Vimukta, S.; Arti, D. Microwave and conventional synthesis of pyrimidine derivatives and their pharmacological activity-A review. J. Pharm. Biomed. Sci., 2012, 21(10), 1-11.