Traumatic Brain Injury and Gut Brain Axis: The Disruption of an Alliance

Page: [268 - 279] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Traumatic brain injury (TBI) can be considered a "silent epidemic", causing morbidity, disability, and mortality in all age cohorts. Therefore, a greater understanding of the underlying pathophysiological intricate mechanisms and interactions with other organs and systems is necessary to intervene not only in the treatment but also in the prevention of complications. In this complex of reciprocal interactions, the complex brain-gut axis has captured a growing interest.

Scope: The purpose of this manuscript is to examine and systematize existing evidence regarding the pathophysiological processes that occur following TBI and the influences exerted on these by the brain-gut axis.

Literature Review: A systematic review of the literature was conducted according to the PRISMA methodology. On the 8th of October 2021, two independent databases were searched: PubMed and Scopus. Following the inclusion and exclusion criteria selected, 24 (12 from PubMed and 12 from Scopus) eligible manuscripts were included in the present review. Moreover, references from the selected articles were also updated following the criteria mentioned above, yielding 91 included manuscripts.

Discussion: Published evidence suggests that the brain and gut are mutually influenced through four main pathways: microbiota, inflammatory, nervous, and endocrine.

Conclusion: These pathways are bidirectional and interact with each other. However, the studies conducted so far mainly involve animals. An autopsy methodological approach to corpses affected by traumatic brain injury or intestinal pathology could represent the keystone for future studies to clarify the complex pathophysiological processes underlying the interaction between these two main systems.

Keywords: traumatic brain injury, gut-brain axis, dysbiosis, dysautonomia, neuroinflammation, microbiota.

Graphical Abstract

[1]
Rusnak M. Traumatic brain injury: Giving voice to a silent epidemic. Nat Rev Neurol 2013; 9(4): 186-7.
[http://dx.doi.org/10.1038/nrneurol.2013.38] [PMID: 23478463]
[2]
Bertozzi G, Maglietta F, Sessa F, et al. Traumatic brain injury: A forensic approach: A literature review. Curr Neuropharmacol 2020; 18(6): 538-0.
[http://dx.doi.org/10.2174/1570159X17666191101123145] [PMID: 31686630]
[3]
Brazinova A, Rehorcikova V, Taylor MS, et al. Epidemiology of traumatic brain injury in Europe: A living systematic review. J Neurotrauma 2021; 38(10): 1411-40.
[http://dx.doi.org/10.1089/neu.2015.4126] [PMID: 26537996]
[4]
De Silva MJ, Roberts I, Perel P, et al. Patient outcome after traumatic brain injury in high-, middle- and low-income countries: Analysis of data on 8927 patients in 46 countries. Int J Epidemiol 2009; 38(2): 452-8.
[http://dx.doi.org/10.1093/ije/dyn189] [PMID: 18782898]
[5]
Andlin-Sobocki P, Jönsson B, Wittchen H-U, Olesen J, Gulacsi L, Knapp M, et al. Costs of disorders of the brain in europe peer review panel. Eur J Neurol 2005 Jun;; 12 (Suppl. 1): 1-27.
[6]
Mckee AC, Daneshvar DH. The neuropathology of traumatic brain injury. Handb Clin Neurol 2015; 127: 45-66.
[http://dx.doi.org/10.1016/B978-0-444-52892-6.00004-0] [PMID: 25702209]
[7]
Frati A, Cerretani D, Fiaschi AI, et al. Diffuse axonal injury and oxidative stress: A comprehensive review. Int J Mol Sci 2017; 18(12): 2600.
[http://dx.doi.org/10.3390/ijms18122600]
[8]
Aromatario M, Torsello A, D’Errico S, et al. Traumatic epidural and subdural hematoma: Epidemiology, outcome, and dating. Medicina (Kaunas) 2021; 57(2): 1-16.
[http://dx.doi.org/10.3390/medicina57020125] [PMID: 33535407]
[9]
Payne WN, De Jesus O, Payne AN. Contrecoup brain injury Stat Pearls. 2021. Available from 'https://www.ncbi.nlm.nih.gov/books/NBK536965/]'
[10]
Su E, Bell M. Diffuse In: Translational Research in Traumatic Brain Injury. Boca Raton (FL): CRC Press/Taylor and Francis Group; 2016. AxonalInjury EncyclNeurolSci 2016; 998.
[11]
Ng SY, Lee AYW. Traumatic brain injuries: Pathophysiology and potential therapeutic targets. Front Cell Neurosci 2019; 13: 528.
[http://dx.doi.org/10.3389/fncel.2019.00528] [PMID: 31827423]
[12]
Lotocki G, de Rivero Vaccari JP, Perez ER, et al. Alterations in blood-brain barrier permeability to large and small molecules and leuko-cyte accumulation after traumatic brain injury: Effects of post-traumatic hypothermia. J Neurotrauma 2009; 26(7): 1123-34.
[http://dx.doi.org/10.1089/neu.2008.0802] [PMID: 19558276]
[13]
Perlman JM. Pathogenesis of hypoxic-ischemic brain injury. J Perinatol 2007; 27(8): S39-46.
[14]
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014; 121(8): 799-817.
[http://dx.doi.org/10.1007/s00702-014-1180-8] [PMID: 24578174]
[15]
Haydon PG. Autophagy in Neurotrauma: Good, bad, orDysregulated. Cells 2001; 8(7): 693.
[16]
Kania E, Roest G, Vervliet T, Parys JB, Bultynck G. IP3 Receptor-Mediated calcium signaling and its role in autophagy in cancer. Front Oncol 2017; 7(JUL): 140.
[http://dx.doi.org/10.3389/fonc.2017.00140] [PMID: 28725634]
[17]
Sessa F, Salerno M, Cipolloni L, et al. Anabolic-androgenic steroids and brain injury: miRNA evaluation in users compared to cocaine abusers and elderly people. Aging (Albany NY) 2020; 12(15): 15314-27.
[http://dx.doi.org/10.18632/aging.103512] [PMID: 32756006]
[18]
Glovaci I, Chapman CA. Activation of phosphatidylinositol-linked dopamine receptors induces a facilitation of glutamate-mediated synap-tic transmission in the lateral Entorhinal Cortex. PLoS One 2015; 10(7): e0131948.
[http://dx.doi.org/10.1371/journal.pone.0131948] [PMID: 26133167]
[19]
Girouard H, Wang G, Gallo EF, et al. NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci 2009; 29(8): 2545-52.
[http://dx.doi.org/10.1523/JNEUROSCI.0133-09.2009] [PMID: 19244529]
[20]
Norat P, Soldozy S, Sokolowski JD, Gorick CM, Kumar JS, Chae Y, et al. Mitochondrial dysfunction in neurologica ldisorders: Exploring mitochondrial transplantation. Available from: https://doi.org/10.1038/s41536-020-00107-x.
[http://dx.doi.org/10.1038/s41536-020-00107-x]
[21]
Norenberg MD, Rao KVR. The mitochondrial permeability transition in neurologic disease. Neurochem Int 2007; 50(7-8): 983-97.
[http://dx.doi.org/10.1016/j.neuint.2007.02.008] [PMID: 17397969]
[22]
Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 2012; 167(4): 699-719.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02025.x] [PMID: 23003569]
[23]
Falabella M, Vernon HJ, Hanna MG, Claypool SM, Pitceathly RDS. Cardiolipin, mitochondria, and neurological disease. Trends Endocrinol Metab 2021; 32(4): 224-37.
[http://dx.doi.org/10.1016/j.tem.2021.01.006]
[24]
Ayala A, Muñoz MF, Argüelles S. Lipid Peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4- Hydroxy-2-Nonenal. Oxid Med Cell Longev 2014. Available from: /pmc/articles/PMC4066722/
[25]
Wu J, Lipinski MM. Autophagy in Neurotrauma: Good, bad, or dysregulated. Cells 2019; 8(7): 693.
[http://dx.doi.org/10.3390/cells8070693] [PMID: 31295858]
[26]
Sessa F, Maglietta F, Bertozzi G, et al. Human brain injury and miRNAs: An experimental study. Int J Mol Sci 2019; 20(7): E1546.
[http://dx.doi.org/10.3390/ijms20071546] [PMID: 30934805]
[27]
Neri M, Frati A, Turillazzi E, et al. Immunohistochemical evaluation of Aquaporin-4 and its correlation with CD68, IBA-1, HIF-1α, GFAP, and CD15 expressions in fatal traumatic brain injury. Int J Mol Sci 2018; 19(11): 3544.
[http://dx.doi.org/10.3390/ijms19113544]
[28]
Jogia T, Ruitenberg MJ. Traumatic spinal cordi njury and the gut microbiota: Current insights and future challenges. Front Immunol 2020; 11: 704.
[http://dx.doi.org/10.3389/fimmu.2020.00704] [PMID: 32528463]
[29]
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474(11): 1823-36.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[30]
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reportings stematic reviews. Syst Rev 2021; 10(1): 1-11.
[31]
Weaver JL. The brain-gut axis: A prime therapeutic target in traumatic brain injury. Brain Res 2021; 1753: 147225.
[http://dx.doi.org/10.1016/j.brainres.2020.147225] [PMID: 33359374]
[32]
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14(8): e1002533.
[http://dx.doi.org/10.1371/journal.pbio.1002533]
[33]
Chernevskaya E, Klimenko N, Pautova A, Buyakova I, Tyakht A, Beloborodova N. Host-Microbiota interactions mediated by phenolic metabolites in chronically critically ill patients. Metab 2021; 11(2): 122.
[http://dx.doi.org/10.3390/metabo11020122]
[34]
Chernevskaya EA, Meglei AY, Buyakova IV, et al. Taxonomic dysbiosis of gutmicrobiota and serum biomarkers reflect severity of cen-tral nervous system injury. Bull Russ State Med Univ 2020; (5): 54-61.
[http://dx.doi.org/10.24075/brsmu.2020.053]
[35]
Stower H. Depression linked to the microbiota. Depression linked to the microbiota 2019; 25(3): 358-8.
[http://dx.doi.org/10.1038/s41591-019-0396-4]
[36]
Shao A, Lin D, Wang L, Tu S, Lenahan C, Zhang J. Oxidative stress at the crossroads of aging, stroke and depression. Aging Dis 2020; 11(6): 1537-66.
[http://dx.doi.org/10.14336/AD.2020.0225] [PMID: 33269106]
[37]
Li Z, Zhu H, Zhang L, Qin C. The intestinal microbiome and Alzheimer’s disease: A review. Animal Model Exp Med 2018; 1(3): 180-8.
[http://dx.doi.org/10.1002/ame2.12033] [PMID: 30891563]
[38]
Galley JD, Nelson MC, Yu Z, et al. Exposure to a social stress or disrupts the community structure of the colonic mucosa-associatedmicrobiota. BMC Microbiol 2014; 14(1): 1-13.
[http://dx.doi.org/10.1186/1471-2180-14-189]
[39]
Bajaj JS, Sharma A, Dudeja PK, et al. Targeting gut microbiota interactions in service-related gastrointestinal and liver diseases of veterans. Gastroenterology 2019; 157(5): 1180-3.
[40]
Bertozzi G, Maiese A, Passaro G, et al. Neutropenic enterocolitis and sepsis: Towards the definition of a pathologic profile. Medicina (Kaunas) 2021; 57(6): 638.
[http://dx.doi.org/10.3390/medicina57060638] [PMID: 34203105]
[41]
Fineschi V, Viola RV, La Russa R, Santurro A, Frati P. A controversial medicolegal issue: Timing the onset of perinatal hypoxic-ischemic brain injury. Mediators Inflamm 2017; 2017: 6024959.
[http://dx.doi.org/10.1155/2017/6024959] [PMID: 28883688]
[42]
Pinchi E, Frati A, Cantatore S, et al. Acute spinal cord injury: A systematic review investigating miRNA families involved. Int J Mol Sci 2019; 20(8): 1841.
[http://dx.doi.org/10.3390/ijms20081841]
[43]
Wen L, You W, Wang Y, Zhu Y, Wang H, Yang X. Investigating alterations in caecum microbiota after traumatic brain injury in mice. J Vis Exp 2019; 2019(151): e59410.
[http://dx.doi.org/10.3791/59410] [PMID: 31609323]
[44]
Norins LC. The beehive theory: Role of microorganisms in late sequelae of traumatic brain injury and chronic traumatic encephalopathy. Med Hypotheses 2019; 128: 1-5.
[http://dx.doi.org/10.1016/j.mehy.2019.04.019] [PMID: 31203899]
[45]
Ochoa-Repáraz J, Mielcarz DW, Begum-Haque S, Kasper LH. Gut, bugs, and brain: Role of commensal bacteria in the control of central nervous system disease. Ann Neurol 2011; 69(2): 240-7.
[http://dx.doi.org/10.1002/ana.22344] [PMID: 21387369]
[46]
Houlden A, Goldrick M, Brough D, et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 2016; 57: 10-20.
[http://dx.doi.org/10.1016/j.bbi.2016.04.003] [PMID: 27060191]
[47]
Treangen TJ, Wagner J, Burns MP, Villapol S. Traumatic brain injury in mice induces acute bacterial dysbiosis within the fecal microbi-ome. Front Immunol 2018; 9(NOV): 2757.
[http://dx.doi.org/10.3389/fimmu.2018.02757] [PMID: 30546361]
[48]
Matharu D, Dhotre D, Balasubramanian N, Pawar N, Sagarkar S, Sakharkar A. Repeated mild traumatic brain injury affects microbial di-versity in rat jejunum. J Biosci 2019; 44(5): 1-2.
[http://dx.doi.org/10.1007/s12038-019-9940-0]
[49]
Urban RJ, Pyles RB, Stewart CJ, et al. Altered fecal microbiome years after traumatic brain injury. Brain Inj 2020; 37(8): 1037-51.home.liebertpub.com/neu
[http://dx.doi.org/10.1089/neu.2019.6688] [PMID: 31868094]
[50]
Pathare N, Sushilkumar S, Haley L, Jain S, Osier N. The impact of traumatic brain injury on microbiota composition. A systematic review 2020; 22(4): 495-505.
[51]
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9(5): 313-23.
[http://dx.doi.org/10.1038/nri2515]
[52]
Kawai T, Akira S. The role of pattern-recognitionreceptors in innateimmunity: Update on toll-like receptors. Nat Immunol 2010; 11(5): 373-84.
[http://dx.doi.org/10.1038/ni.1863]
[53]
Chen G, Shi J, Jin W, et al. Progesterone administration modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical contusion. Ann Clin Lab Sci 2008; 38(1): 65-74.. http://www.anncli-nlabsci.org/content/38/1/65.short
[PMID: 18316784]
[54]
Caricilli AM, Castoldi A, Câmara NOS. Intestinal barrier: A gentlemen’s agreement between microbiota and immunity. World J Gastrointest Pathophysiol 2014; 5(1): 18-32.
[http://dx.doi.org/10.4291/wjgp.v5.i1.18] [PMID: 24891972]
[55]
Singh V, Roth S, Llovera G, et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci 2016; 36(28): 7428-40.
[http://dx.doi.org/10.1523/JNEUROSCI.1114-16.2016] [PMID: 27413153]
[56]
Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014; 6(263): 263ra158.
[http://dx.doi.org/10.1126/scitranslmed.3009759] [PMID: 25411471]
[57]
Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood–brain barrier pathophysiology in Traumatic Brain Injury. Transl Stroke res 2011; 2(4): 492-516.
[http://dx.doi.org/10.1007/s12975-011-0125-x]
[58]
Tyler Patterson T, Grandhi R. Gut microbiota and neurologic diseases and injuries. Adv Exp Med Biol 2020; 1238: 73-91.
[http://dx.doi.org/10.1007/978-981-15-2385-4_6] [PMID: 32323181]
[59]
Sundman MH, Chen NK, Subbian V, Chou YH. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun 2017; 66: 31-44.
[http://dx.doi.org/10.1016/j.bbi.2017.05.009] [PMID: 28526435]
[60]
Giannoni P, Claeysen S, Noe F, Marchi N. Peripheral routes to neurodegeneration: Passing through the blood-brain barrier. Front Aging Neurosci 2020; 12: 3.
[http://dx.doi.org/10.3389/fnagi.2020.00003] [PMID: 32116645]
[61]
Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7): 965-77.
[http://dx.doi.org/10.1038/nn.4030]
[62]
Wolf SA, Boddeke HW, Kettenmann H. Microglia in Physiology and Disease. Annu Rev Physiol 2017; 79(1): 619-43.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034406] [PMID: 27959620]
[63]
Kim HJ, Leeds P, Chuang D-M. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem 2009; 110(4): 1226-40.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06212.x] [PMID: 19549282]
[64]
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2020; 11(2): 135-57.
[http://dx.doi.org/10.1080/19490976.2019.1638722] [PMID: 31368397]
[65]
Mao XY, Yin XX, Guan QW, et al. Dietary nutrition for neurological disease therapy: Current status and future directions. Pharmacol Ther 2021; 226: 107861.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107861] [PMID: 33901506]
[66]
Liu C, Yang SY, Wang L, Zhou F. The gut microbiome: Implications for neurogenesis and neurological diseases. Neural Regen Res 2022; 17(1): 53-8.
[http://dx.doi.org/10.4103/1673-5374.315227] [PMID: 34100427]
[67]
Hou Y, Xu L, Song S, et al. Oral administration of brain protein combined with probiotics induces immune tolerance through the trypto-phan pathway. Front Mol Neurosci 2021; 14: 634631.
[http://dx.doi.org/10.3389/fnmol.2021.634631] [PMID: 34122006]
[68]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiota. Nat 2013; 505(7484): 559-63.
[http://dx.doi.org/10.1038/nature12820]
[69]
Rice MW, Pandya JD, Shear DA. Gut microbiota as a therapeutic target to ameliorate the biochemical, neuroanatomical, and behavioral effects of traumatic brain injuries. Front Neurol 2019; 10(AUG): 875.
[http://dx.doi.org/10.3389/fneur.2019.00875] [PMID: 31474930]
[70]
Molina B, Mastroianni J, Suarez E, Soni B, Forsberg E, Finley K. Treatment with bacterial biologics promotes healthy aging and traumatic brain injury responses in adult drosophila, modeling the gut–brain axis and inflammation responses. Cells 2021; 10(4): 900.
[http://dx.doi.org/10.3390/cells10040900]
[71]
Zhu CS, Grandhi R, Patterson TT, Nicholson SE. A Review of traumatic brain injury and the gut microbiota: Insights into novel mecha-nisms of secondary brain injury and promising targets for neuroprotection. Brain Sci 2018; 8(6): 113.
[http://dx.doi.org/10.3390/brainsci8060113]
[72]
Brenner LA, Forster JE, Stearns-Yoder KA, et al. Evaluation of an immunomodulatory probiotic intervention for veterans with co-occurring mild traumatic brain injury and posttraumatic stress disorder: A pilot study. Front Neurol 2020; 11: 1015.
[http://dx.doi.org/10.3389/fneur.2020.01015] [PMID: 33192959]
[73]
Bailey MT, Cryan JF. The microbiome as a key regulator of brain, behavior and immunity: Commentary on the 2017 named series. Brain Behav Immun 2017; 66: 18-22.
[http://dx.doi.org/10.1016/j.bbi.2017.08.017] [PMID: 28843452]
[74]
Maysinger D, Zhang I. Nutritional and nanotechnological modulators of microglia. Front Immunol 2016; 7(JUL): 270.
[http://dx.doi.org/10.3389/fimmu.2016.00270] [PMID: 27471505]
[75]
Mossad O, Erny D. The microbiota-microglia axis in central nervous system disorders. Brain Pathol 2020; 30(6): 1159-77.
[http://dx.doi.org/10.1111/bpa.12908] [PMID: 33073887]
[76]
Arya AK, Hu B. Brain-gut axis after stroke. Brain Circ 2018; 4(4): 165-73.
[http://dx.doi.org/10.4103/bc.bc_32_18] [PMID: 30693343]
[77]
Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp Neurol 2016; 275(03): 316.
[78]
Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP. Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 2009; 158(3): 1007-20.
[http://dx.doi.org/10.1016/j.neuroscience.2008.07.067] [PMID: 18809468]
[79]
Plesnila N. The immune system in traumatic brain injury. Curr Opin Pharmacol 2016; 26: 110-7.
[http://dx.doi.org/10.1016/j.coph.2015.10.008] [PMID: 26613129]
[80]
Zhang Y, Wang Z, Peng J, Gerner ST, Yin S, Jiang Y. Gut microbiota-brain interaction: An emerging immuno therapy for traumatic brain injury. Exp Neurol 2021.
[81]
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009; 1(6): a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[82]
Hang C-H, Shi J-X, Li J-S, Li W-Q, Yin H-X. Up-regulation of intestinal nuclear factor kappa B and intercellular adhesion molecule-1 following traumatic brain injury in rats. World J Gastroenterol 2005; 11(8): 1149-54.
[http://dx.doi.org/10.3748/wjg.v11.i8.1149] [PMID: 15754395]
[83]
Feighery L, Smyth A, Keely S, et al. Increased intestinal permeability in rats subjected to traumatic frontal lobe percussion brain injury. J Trauma Inj Infect Crit Care 2008; 64(1): 131-7.
[http://dx.doi.org/10.1097/TA.0b013e3181568d9f] [PMID: 18188111]
[84]
Patterson TT, Nicholson S, Wallace D, Hawryluk GWJ, Grandhi R. Complex feed-forward and feedback mechanisms underlie the relation-ship between traumatic brain injury and the gut-microbiota-brain axis. Shock 2019; 52(3): 318-25.
[http://dx.doi.org/10.1097/SHK.0000000000001278] [PMID: 30335675]
[85]
Amoo M, O’Halloran PJ, Henry J, et al. Permeability of the blood-brain barrier after traumatic brain injury: Radiological considerations. J Neurotrauma 2022; 39(1-2): 20-34.
[http://dx.doi.org/10.1089/neu.2020.7545] [PMID: 33632026]
[86]
Hines DJ, Choi HB, Hines RM, Phillips AG, MacVicar BA. Prevention of LPS-induced microglia activation, cytokine production and sick-ness behavior with TLR4 receptor interfering peptides. PLoS One 2013; 8(3): e60388.
[http://dx.doi.org/10.1371/journal.pone.0060388] [PMID: 23555964]
[87]
Sandiego CM, Gallezot JD, Pittman B, et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci USA 2015; 112(40): 12468-73.
[http://dx.doi.org/10.1073/pnas.1511003112] [PMID: 26385967]
[88]
Wen L, You W, Wang H, Meng Y, Feng J, Yang X. Polarization of microglia to the M2 phenotype in a peroxisomeproliferator-activated receptor gamma–dependent manner attenuates axonal injury induced by traumatic brain injury in Mice https://home.liebert-pub.com/neu2018
[http://dx.doi.org/10.1089/neu.2017.5540]
[89]
Dumitrescu L, Popescu-Olaru I, Cozma L, et al. Oxidative stress and themicrobiota-gut-brain axis. Oxid Med Cell Longev 2018; 2018: 2406594.
[http://dx.doi.org/10.1155/2018/2406594] [PMID: 30622664]
[90]
Qin L, Wu X, Block ML, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007; 55(5): 453-62.
[http://dx.doi.org/10.1002/glia.20467] [PMID: 17203472]
[91]
Kumar A, Stoica BA, Loane DJ, et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflammation 2017; 14(1): 1-17.
[http://dx.doi.org/10.1186/s12974-017-0819-4]
[92]
Reddy VP, Aryal P, Robinson S, Rafiu R, Obrenovich M, Perry G. Polyphenols in Alzheimer’s disease and in the gut-brain axis. Microorganisms 2020; 8(2): E199.
[http://dx.doi.org/10.3390/microorganisms8020199] [PMID: 32023969]
[93]
He X, Cai Q, Li J, Guo W. Involvement of brain-gut axis in treatment of cerebral infarctionby β-asaron and paeonol. Neurosci Lett 2018; 666: 78-84.
[94]
Ates O, Cayli S, Altinoz E, et al. Neuroprotection by resveratrol against traumatic brain injury in rats. Mol Cell Biochem 2006; 294(1): 137-44.
[http://dx.doi.org/10.1007/s11010-006-9253-0]
[95]
Wang B, Lin W, Zhu H. Minocycline improves the recovery of nerve function and alleviates blood-brain barrier damage by inhibiting endoplasmic reticulum in traumatic brain injury mice model. Eur J Inflamm 2021; 19.
[http://dx.doi.org/10.1177/20587392211010898]
[96]
Buchmann Godinho D, da Silva Fiorin F, Schneider Oliveira M, Furian AF, Rechia Fighera M, Freire Royes LF. The immunological influ-ence of physical exercise on TBI-induced pathophysiology: Crosstalk between the spleen, gut, and brain. Neurosci Biobehav Rev 2021; 130: 15-30.
[http://dx.doi.org/10.1016/j.neubiorev.2021.08.006] [PMID: 34400178]
[97]
Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nat 2000; 405(6785): 458-62.
[http://dx.doi.org/10.1038/35013070]
[98]
Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nat 2002; 421(6921): 384-8.
[http://dx.doi.org/10.1038/nature01339]
[99]
Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM. The vagus nerve: A tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 2006; 131(4): 1122-30.
[http://dx.doi.org/10.1053/j.gastro.2006.08.016] [PMID: 17030182]
[100]
Baguley IJ, Slewa-Younan S, Heriseanu RE, Nott MT, Mudaliar Y, Nayyar V. The incidence of dysautonomia and its relationship with autonomic arousal following traumatic brain injury. Brain Injury 2009; 21(11): 1175-81.
[101]
Lv LQ, Hou LJ, Yu MK, et al. Risk factors related to dysautonomia after severe traumatic brain injury. J Trauma Inj Infect Crit Care 2011; 71(3): 538-42.
[http://dx.doi.org/10.1097/TA.0b013e31820ebee1] [PMID: 21427610]
[102]
Kigerl KA, Hall JCE, Wang L, Mo X, Yu Z, Popovich PG. Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med 2016; 213(12): 2603-0.
[http://dx.doi.org/10.1084/jem.20151345] [PMID: 27810921]
[103]
Patel JJ, Rosenthal MD, Miller KR, Martindale RG. The gut in trauma. Curr Opin Crit Care 2016; 22(4): 339-46.
[http://dx.doi.org/10.1097/MCC.0000000000000331] [PMID: 27314259]
[104]
Bansal V, Costantini T, Ryu SY, et al. Stimulating the central nervous system to prevent intestinal dysfunction after traumatic brain injury. J Trauma 2010; 68(5): 1059-64.
[http://dx.doi.org/10.1097/TA.0b013e3181d87373] [PMID: 20453760]
[105]
Nagahara AH, Tuszynski MH. Potentialtherapeutic uses of BDNF in neurological and psychiatricdisorders. Nat Rev Drug Discov 2011; 10(3): 209-19.
[http://dx.doi.org/10.1038/nrd3366]
[106]
Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011; 23(3): 255-e119.
[http://dx.doi.org/10.1111/j.1365-2982.2010.01620.x]
[107]
Clarke G, Grenham S, Scully P, et al. Themicrobiota-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2012; 18(6): 666-73.
[http://dx.doi.org/10.1038/mp.2012.77]
[108]
Neren D, Johnson MD, Legon W, et al. Vagus nerve stimulation and other neuromodulation methods for treatment of traumatic brain injury. Neurocritical Care 2016; 24(2): 308-19.
[http://dx.doi.org/10.1007/s12028-015-0203-0]
[109]
Zhou L, Lin J, Lin J, Kui G, Zhang J, Yu Y. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury. Neural Regen Res 2014; 9(17): 1585-91.
[http://dx.doi.org/10.4103/1673-5374.141783] [PMID: 25368644]
[110]
Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol 2014; 817: 115-33.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_5] [PMID: 24997031]
[111]
Tang Y, Dong X, Chen G, et al. Vagus nerve stimulation attenuates early traumatic brain injury by regulating the NF-κB/NLRP3 signaling pathway. Neurorehabil Neural Repair 2020; 34(9): 831-43.
[112]
Dimopoulou I, Tsagarakis S, Theodorakopoulou M, et al. Endocrine abnormalities in critical care patients with moderate-to-severe head trauma: incidence, pattern and predisposing factors. Intensive Care Med 2004; 30(6): 1051-7.
[http://dx.doi.org/10.1007/s00134-004-2257-x]
[113]
Roth W, Zadeh K, Vekariya R, Ge Y, Mohamadzadeh M. Tryptophan metabolism and gut-brain homeostasis. Int J Mol Sci 2021; 22(6): 2973.
[http://dx.doi.org/10.3390/ijms22062973]
[114]
Naseem M, Parvez S. Role of melatonin in traumatic brain injury and spinal cord injury. ScientificWorldJournal 2014; 2014: 586270.
[http://dx.doi.org/10.1155/2014/586270] [PMID: 25587567]
[115]
Sinz EH, Kochanek PM, Heyes MP, et al. Quinolinic acidis increased in CSF and associated with mortality after traumatic brain injury in humans. 2016; 18(6): 610-5..
[http://dx.doi.org/10.1097/00004647-199806000-00002]
[116]
Biteghe-Bi-Nzeng AP, Wei HJ, Chen X, Zhang JN. Evaluation of stress hormones in traumatic brain injury patients with gastrointestinal bleeding. Chinese J Traumatol 2010; 13(1): 25-31.
[117]
Grundy PL, Harbuz MS, Jessop DS, Lightman SL, Sharples PM. The hypothalamo-pituitary-adrenal axis response to experimental traumatic brain injury. J. Neurotrauma. 2001 Dec; 18(12): 1373-81.. https://home.liebertpub.com/neu2004
[http://dx.doi.org/10.1089/08977150152725669]
[118]
Vanuytsel T, van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014; 63(8): 1293-9.
[http://dx.doi.org/10.1136/gutjnl-2013-305690] [PMID: 24153250]
[119]
Rowe RK, Rumney BM, May HG, et al. Diffuse traumatic brain injury affects chronic corticosterone function in the rat. Endocr Connect 2016; 5(4): 152-66.
[http://dx.doi.org/10.1530/EC-16-0031] [PMID: 27317610]
[120]
Hang C-H, Shi J-X, Li J-S, Wu W, Li W-Q, Yin H-X. Levels of vasoactive intestinal peptide, cholecystokinin and calcitonin gene-related peptide in plasma and jejunum of rats following traumatic brain injury and underlying significance in gastrointestinal dysfunction. World J Gastroenterol 2004; 10(6): 875-80.
[http://dx.doi.org/10.3748/wjg.v10.i6.875] [PMID: 15040036]
[121]
Delgado M, Leceta J, Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J Leukoc Biol 2003; 73(1): 155-64.
[http://dx.doi.org/10.1189/jlb.0702372] [PMID: 12525573]
[122]
Lopez NE, Gaston L, Lopez KR, et al. Ghrelin decreases motor deficits after traumatic brain injury. J Surg Res 2014; 187(1): 230-6.
[http://dx.doi.org/10.1016/j.jss.2013.09.030] [PMID: 24176206]
[123]
DellaValle B, Hempel C, Johansen FF, Kurtzhals JAL. GLP-1 improves neuropathology after murine cold lesion brain trauma. Ann Clin Transl Neurol 2014; 1(9): 721-32.
[http://dx.doi.org/10.1002/acn3.99] [PMID: 25493285]
[124]
Rachmany L, Tweedie D, Li Y, et al. Exendin-4 induced glucagon-like peptide-1 receptor activation reverses behavioral impairments of mild traumatic brain injury in mice. AGE 2012; 35(5): 1621-36.
[http://dx.doi.org/10.1007/s11357-012-9464-0]
[125]
Li H, Sun J, Du J, et al. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil 2018; 30(5): e13260.
[http://dx.doi.org/10.1111/nmo.13260] [PMID: 29193450]
[126]
Emery DC, Shoemark DK, Batstone TE, et al. 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. Front Aging Neurosci 2017; 9(JUN): 195.
[http://dx.doi.org/10.3389/fnagi.2017.00195] [PMID: 28676754]