Construction of C-S and C-Se Bonds Mediated by Hypervalent Iodine Reagents Under Metal-Free Conditions

Page: [1935 - 1953] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

In the past few decades, the chemistry of hypervalent iodine reagents has undergone a flourishing development in synthetic organic chemistry owing to their mild oxidative, low toxicity, air and moisture stability, and environmentally benign features. A plethora of oxidative coupling reactions have been conducted using hypervalent iodine reagents as nonmetallic oxidants. In particular, the C-S and C-Se bond-forming reactions mediated by hypervalent iodine reagents have emerged as a powerful approach in the construction of Scontaining and Se-containing heterocycles or building blocks. In these reactions, hypervalent iodine reagents behave as strong oxidants or electrophiles and activate the S-containing or Secontaining species to form more electrophilic cationic or radical intermediates, which participate in subsequent coupling reactions. It is anticipated that this review summarizes all C–S and C-Se bonds forming reactions enabled by hypervalent iodine reagents under metal-free conditions.

Keywords: Hypervalent iodine reagent, oxidative coupling, C-S bond formation, C-Se bond formation, metal-free conditions, organic transformation, iodine chemistry.

Graphical Abstract

[1]
Zhdankin, V.V.; Stang, P.J. Chemistry of polyvalent iodine. Chem. Rev., 2008, 108(12), 5299-5358.
[http://dx.doi.org/10.1021/cr800332c] [PMID: 18986207]
[2]
Zhdankin, V.V. Hypervalent iodine compounds: Reagents of the future. ARKIVOC, 2020, 1-11.
[http://dx.doi.org/10.24820/ark.5550190.p011.145]
[3]
Zhdankin, V.V.; Stang, P.J. Recent developments in the chemistry of polyvalent iodine compounds. Chem. Rev., 2002, 102(7), 2523-2584.
[http://dx.doi.org/10.1021/cr010003+] [PMID: 12105935]
[4]
Duan, Y.A.; Jiang, S.; Han, Y.C.; Sun, B.; Zhang, C. Recent advances in hypervalent iodine chemistry. Youji Huaxue, 2016, 36(9), 1973-1984.
[http://dx.doi.org/10.6023/cjoc201605007]
[5]
Merritt, E.A.; Olofsson, B. Synthesis of a range of iodine(III) compounds directly from iodoarenes. Eur. J. Org. Chem., 2011, 2011(20-21), 3690-3694.
[http://dx.doi.org/10.1002/ejoc.201100360]
[6]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[7]
Wirth, T. Hypervalent iodine chemistry in synthesis: Scope and new directions. Angew. Chem. Int. Ed., 2005, 44(24), 3656-3665.
[http://dx.doi.org/10.1002/anie.200500115] [PMID: 15828037]
[8]
Gayen, K.S.; Chatterjee, N.; Khamarui, S.; Tarafdar, P.K. Recent advances in iodosobenzene-mediated construction of heterocyclic scaffolds: Transition-metal-free approaches and scope. Eur. J. Org. Chem., 2018, 2018(4), 425-439.
[http://dx.doi.org/10.1002/ejoc.201701306]
[9]
Hu, T.; Xu, K.; Ye, Z.; Zhu, K.; Wu, Y.; Zhang, F. Two-in-one strategy for the Pd(II)-catalyzed tandem C-H arylation/decarboxylative annulation involved with cyclic diaryliodonium salts. Org. Lett., 2019, 21(18), 7233-7237.
[http://dx.doi.org/10.1021/acs.orglett.9b02429] [PMID: 31479281]
[10]
Mironova, I.A.; Postnikov, P.S.; Yusubova, R.Y.; Yoshimura, A.; Wirth, T.; Zhdankin, V.V.; Nemykin, V.N.; Yusubov, M.S. Preparation and X-ray structure of 2-Iodoxybenzenesulfonic acid (IBS) - a powerful hypervalent iodine(V) oxidant. Beilstein J. Org. Chem., 2018, 14, 1854-1858.
[http://dx.doi.org/10.3762/bjoc.14.159] [PMID: 30112090]
[11]
Tellitu, I.; Dominguez, E. The application of [bis(trifluoroacetoxy)iodo] benzene (PIFA) in the synthesis of nitrogen-containing heterocycles. Synlett, 2012, (15), 2165-2175.
[http://dx.doi.org/10.1055/s-0032-1316739]
[12]
Varvoglis, A.; Spyroudis, S. Hypervalent iodine chemistry: 25 years of development at the University of Thessaloniki. Synlett, 1998, (3), 221-232.
[http://dx.doi.org/10.1055/s-1998-1619]
[13]
Zhdankin, V.V.; Arbit, R.M.; Lynch, B.J.; Kiprof, P. Structure and chemistry of hypervalent iodine heterocycles: Acid-catalyzed rearrangement of benziodazol-3-ones to 3-iminiumbenziodoxoles. J. Org. Chem., 1998, 63(19), 6590-6596.
[http://dx.doi.org/10.1021/jo980745b]
[14]
Li, X.; Liu, T.; Zhang, B.; Zhang, D.; Shi, H.; Yu, Z.; Tao, S.; Du, Y. Formation of carbon-carbon bonds mediated by hypervalent iodine reagents under metal-free conditions. Curr. Org. Chem., 2020, 24(1), 74-103.
[http://dx.doi.org/10.2174/1385272824666200211093103]
[15]
Jalil, A.; Yang, Y.O.; Chen, Z.; Jia, R.; Bi, T.; Li, X.; Du, Y. Formation of carbon-oxygen bond mediated by hypervalent iodine reagents under metal-free conditions. Mini Rev. Org. Chem., 2021, 18(5), 540-605.
[http://dx.doi.org/10.2174/1570193X17999200807140943]
[16]
Yang, Y.O.; Wang, X.; Xiao, J.; Li, Y.; Sun, F.; Du, Y. Formation of carbon-nitrogen bond mediated by hypervalent iodine reagents under metal-free conditions. Curr. Org. Chem., 2021, 25(1), 68-132.
[http://dx.doi.org/10.2174/1385272822999201117154919]
[17]
Charpentier, J.; Früh, N.; Togni, A. Electrophilic trifluoromethylation by use of hypervalent iodine reagents. Chem. Rev., 2015, 115(2), 650-682.
[http://dx.doi.org/10.1021/cr500223h] [PMID: 25152082]
[18]
Li, Y.; Hari, D.P.; Vita, M.V.; Waser, J. Cyclic hypervalent iodine reagents for atom-transfer reactions: Beyond trifluoromethylation. Angew. Chem. Int. Ed. Engl., 2016, 55(14), 4436-4454.
[http://dx.doi.org/10.1002/anie.201509073] [PMID: 26880486]
[19]
Brand, J.P.; Fernández González, D.; Nicolai, S.; Waser, J. Benziodoxole-based hypervalent iodine reagents for atom-transfer reactions. Chem. Commun. (Camb.), 2011, 47(1), 102-115.
[http://dx.doi.org/10.1039/C0CC02265A] [PMID: 20820531]
[20]
Zhdankin, V.V.; Maydanovych, O.; Bruno, J.; Herschbach, J.; Zefirov, N.S. Preparation, structure, and chemistry of phosphoranyl derived iodanes. Abstr. Pap. Am. Chem. S., 2002, 223, B184-B184.
[21]
Stirling, A. Assessing hypervalency in iodanes. Chemistry, 2018, 24(7), 1709-1713.
[http://dx.doi.org/10.1002/chem.201705285] [PMID: 29160953]
[22]
Yoshimura, A.; Yusubov, M.S.; Zhdankina, V.V. Iodonium imides in organic synthesis. ARKIVOC, 2019, 228-255.
[http://dx.doi.org/10.24820/ark.5550190.p010.975]
[23]
Yu, B.; Guo, C.X.; Zhong, C.L.; Diao, Z.F.; He, L.N. Metal-free chemoselective oxidation of sulfides by in situ generated Koser’s reagent in aqueous media. Tetrahedron Lett., 2014, 55(10), 1818-1821.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.116]
[24]
Ladziata, U.; Zhdankin, V.V. Hypervalent iodine (V) reagents in organic synthesis. ARKIVOC, 2006, 26-58.
[http://dx.doi.org/10.3998/ark.5550190.0007.903]
[25]
Macikenas, D.; Skrzypczak-Jankun, E.; Protasiewicz, J.D. Redirecting secondary bonds to control molecular and crystal properties of an iodosyl- and an iodylbenzene. Angew. Chem. Int. Ed. Engl., 2000, 39(11), 2007-2010.
[http://dx.doi.org/10.1002/1521-3773(20000602)39:11<2007::AID-ANIE2007>3.0.CO;2-Z] [PMID: 10941012]
[26]
Chaudhari, S.S. 2-Iodoxybenzoic acid (IBX) and Dess-Martin Periodinane (DMP). Synlett, 2000, (2), 278-278.
[http://dx.doi.org/10.1055/s-2000-6505]
[27]
Frigerio, M.; Santagostino, M.; Sputore, S. A user-friendly entry to 2-Iodoxybenzoic acid (IBX). J. Org. Chem., 1999, 64(12), 4537-4538.
[http://dx.doi.org/10.1021/jo9824596]
[28]
Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr., 2006, 136(6)(Suppl.), 1636S-1640S.
[http://dx.doi.org/10.1093/jn/136.6.1636S] [PMID: 16702333]
[29]
Guo, W.; Wang, D.Y.; Chen, Q.; Fu, Y. Advances of organosulfur materials for rechargeable metal batteries. Adv. Sci. (Weinh.), 2022, 9(4), e2103989.
[http://dx.doi.org/10.1002/advs.202103989] [PMID: 34825523]
[30]
Kirsch, P.; Lenges, M.; Kuhne, D.; Wanczek, K.P. Synthesis and structural characterization of highly fluorinated sulfimides and sulfoximides as functional building blocks for materials science. Eur. J. Org. Chem., 2005, 2005(5), 797-802.
[http://dx.doi.org/10.1002/ejoc.200400702]
[31]
Pogrebniak, A.; Hasmann, M.; Schemainda, I.; Pelka-Fleischer, R.; Nuessler, V. Cytoprotective features of selenazofurin in hematopoietic cells. Int. J. Clin. Pharmacol. Ther., 2002, 40(8), 368-375.
[http://dx.doi.org/10.5414/CPP40368] [PMID: 12467305]
[32]
Franchetti, P.; Cappellacci, L.; Grifantini, M.; Jayaram, H.N.; Goldstein, B.M. C-nucleoside analogs of tiazofurin and selenazofurin as inosine 5'-monophosphate dehydrogenase inhibitors. ACS Symp. Ser., 2003, 839, 212-230.
[http://dx.doi.org/10.1021/bk-2003-0839.ch011]
[33]
Zheng, X.Q.; Zeng, H.H. Thioredoxin reductase inhibitor ethaselen inhibits cancer metastasis. Free Radic. Biol. Med., 2018, 120, S139-S139.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.458]
[34]
Santi, C.; Scimmi, C.; Sancineto, L. Ebselen and analogues: Pharmacological properties and synthetic strategies for their preparation. Molecules, 2021, 26(14), 4230.
[http://dx.doi.org/10.3390/molecules26144230] [PMID: 34299505]
[35]
Sarkar, C.; Abdalla, M.; Mondal, M.; Khalipha, A.B.R.; Ali, N. Ebselen suitably interacts with the potential SARS-CoV-2 targets: An in-silico approach. J. Biomol. Struct. Dyn., 2021, 1-16.
[http://dx.doi.org/10.1080/07391102.2021.1971562] [PMID: 34459720]
[36]
Sun, L.Y.; Chen, C.; Su, J.; Li, J.Q.; Jiang, Z.; Gao, H.; Chigan, J.Z.; Ding, H.H.; Zhai, L.; Yang, K.W. Ebsulfur and ebselen as highly potent scaffolds for the development of potential SARS-CoV-2 antivirals. Bioorg. Chem., 2021, 112, 104889.
[http://dx.doi.org/10.1016/j.bioorg.2021.104889] [PMID: 33915460]
[37]
Zhang, H.; Wu, J.; Yuan, J.; Li, H.; Zhang, Y.; Wu, W.; Chen, W.; Wang, C.; Meng, S.; Chen, S.; Huo, M.; He, Y.; Zhang, C. Ethaselen synergizes with oxaliplatin in tumor growth inhibition by inducing ROS production and inhibiting TrxR1 activity in gastric cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 260.
[http://dx.doi.org/10.1186/s13046-021-02052-z] [PMID: 34412665]
[38]
Dibbern, D.A., Jr; Montanaro, A. Allergies to sulfonamide antibiotics and sulfur-containing drugs. Ann. Allergy Asthma Immunol., 2008, 100(2), 91-100.
[http://dx.doi.org/10.1016/S1081-1206(10)60415-2] [PMID: 18320910]
[39]
Ishitani, H.; Saito, Y.; Nakamura, Y.; Yoo, W.J.; Kobayashi, S. Knoevenagel condensation of aldehydes and ketones with alkyl nitriles catalyzed by strongly basic anion exchange resins under continuous-flow conditions. Asian J. Org. Chem., 2018, 7(10), 2061-2064.
[http://dx.doi.org/10.1002/ajoc.201800512]
[40]
Liu, G.; Link, J.T.; Pei, Z.; Reilly, E.B.; Leitza, S.; Nguyen, B.; Marsh, K.C.; Okasinski, G.F.; von Geldern, T.W.; Ormes, M.; Fowler, K.; Gallatin, M. Discovery of novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 1. Identification of an additional binding pocket based on an anilino diaryl sulfide lead. J. Med. Chem., 2000, 43(21), 4025-4040.
[http://dx.doi.org/10.1021/jm0002782] [PMID: 11052808]
[41]
Mulina, O.M.; Ilovaisky, A.I.; Parshin, V.D.; Terent’ev, A.O. Oxidative sulfonylation of multiple carbon-carbon bonds with sulfonyl hydrazides, sulfinic acids and their salts. Adv. Synth. Catal., 2020, 362(21), 4579-4654.
[http://dx.doi.org/10.1002/adsc.202000708]
[42]
Sappington, K.G. Development of aquatic life criteria for selenium: A regulatory perspective on critical issues and research needs. Aquat. Toxicol., 2002, 57(1-2), 101-113.
[http://dx.doi.org/10.1016/S0166-445X(01)00267-3] [PMID: 11879941]
[43]
Cooper, M.A.; Ward, A.D. Cyclizations using selenium chemistry for substituted 3-hydroxypiperidines and 3-hydroxypyrrolidines. Aust. J. Chem., 2011, 64(10), 1327-1338.
[http://dx.doi.org/10.1071/CH11073]
[44]
Cao, W.; Wang, L.; Xu, H.P. Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today, 2015, 10(6), 717-736.
[http://dx.doi.org/10.1016/j.nantod.2015.11.004]
[45]
Gopinath, P.; Chandrakala, R.N.; Chandrasekaran, S. A mild protocol for the regioselective ring opening of doubly activated cyclopropanes by using selenolates generated in situ: Synthesis of functionalized organoselenium compounds. Synthesis, 2015, 47(10), 1488-1498.
[http://dx.doi.org/10.1055/s-0034-1380163]
[46]
Khan, M.N.; Karamthulla, S.; Choudhury, L.H.; Faizi, M.S.H. Ultrasound assisted multicomponent reactions: A green method for the synthesis of highly functionalized selenopyridines using reusable polyethylene glycol as reaction medium. RSC Adv., 2015, 5(28), 22168-22172.
[http://dx.doi.org/10.1039/C5RA02403J]
[47]
Zhang, Y.; Shao, Y.; Gong, J.; Zhu, J.; Cheng, T.; Chen, J. Selenium-catalyzed oxidative C-H amination of (E)-3-(arylamino)-2-styrylquinazolin-4(3H)-ones: A metal-free synthesis of 1,2-diarylpyrazolo[5,1-b]quinazolin-9(1H)-ones. J. Org. Chem., 2019, 84(5), 2798-2807.
[http://dx.doi.org/10.1021/acs.joc.8b03179] [PMID: 30740976]
[48]
Osmanov, V.K.; Chipinskii, E.V.; Askerov, R.K.; Grishina, M.M.; Khrustalev, V.N.; Peregudov, A.S.; Chizhov, A.O.; Smirnova, O.N.; Borisov, A.V. 4-Phenyl-5-(2-thienylmethyl)-2,4-dihydro-3H-1,2,4-triazole-3-selone and 3,3′-di[4-phenyl-5-(2-thienylmethyl)-4H-1,2,4-triazolyl] diselenide: Synthesis, structures, and biocidal properties. Russ. J. Coord. Chem., 2021, 47(1), 32-42.
[http://dx.doi.org/10.1134/S1070328421010048]
[49]
Santi, C.; Santoro, S.; Battistelli, B. Organoselenium compounds as catalysts in nature and laboratory. Curr. Org. Chem., 2010, 14(20), 2442-2462.
[http://dx.doi.org/10.2174/138527210793358231]
[50]
Rathore, V.; Jose, C.; Kumar, S. Organoselenium small molecules as catalysts for the oxidative functionalization of organic molecules. New J. Chem., 2019, 43(23), 8852-8864.
[http://dx.doi.org/10.1039/C9NJ00964G]
[51]
Rangraz, Y.; Nemati, F.; Elhampour, A. A novel magnetically recoverable palladium nanocatalyst containing organoselenium ligand for the synthesis of biaryls via Suzuki-Miyaura coupling reaction. J. Phys. Chem. Solids, 2020, 138, 109251.
[http://dx.doi.org/10.1016/j.jpcs.2019.109251]
[52]
Sinha, A.K.; Equbal, D. Thiol-ene reaction: Synthetic aspects and mechanistic studies of an anti-markovnikov-selective hydrothiolation of olefins. Asian J. Org. Chem., 2019, 8(1), 32-47.
[http://dx.doi.org/10.1002/ajoc.201800639]
[53]
Wimmer, A.; König, B. Visible-light-mediated photoredox-catalyzed N-arylation of NH-sulfoximines with electron-rich arenes. Adv. Synth. Catal., 2018, 360(17), 3277-3285.
[http://dx.doi.org/10.1002/adsc.201800607] [PMID: 30344467]
[54]
Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W.Y.; Qin, H.L. Pharmaceutical and medicinal significance of sulfur (SVI)-containing motifs for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 162, 679-734.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.017] [PMID: 30496988]
[55]
Zhang, T.; Yao, W.J.; Wan, J.P.; Liu, Y.Y. Transition-metal-free C (sp2)-H dithiocarbamation and chromone annulation cascade for 3-dithiocarbamyl chromone synthesis. Adv. Synth. Catal., 2021, 363(20), 4811-4816.
[http://dx.doi.org/10.1002/adsc.202100617]
[56]
Yu, Q.; Liu, Y.Y.; Wan, J.P. Metal-free C (sp2)-H perfluoroalkylsulfonylation and configuration inversion: Stereoselective synthesis of alpha-perfluoroalkylsulfonyl E-enaminones. Chin. Chem. Lett., 2021, 32(11), 3514-3517.
[http://dx.doi.org/10.1016/j.cclet.2021.04.037]
[57]
Wang, B.W.; Zhou, Y.J.; Luo, S.H.; Luo, X.Y.; Chen, W.Q.; Yang, S.M.; Wang, Z.Y. Research progress in C-S bond formation reaction of olefins with organic sulfur reagents under photocatalyst-free and non-electrochemical conditions. Youji Huaxue, 2021, 41(1), 171-184.
[http://dx.doi.org/10.6023/cjoc202006064]
[58]
Tian, S.H.; Wang, C.L.; Xia, J.H.; Wan, J.P.; Liu, Y.Y. Transition metal-free, free-radical sulfenylation of the alpha-C(sp3)-H bond in arylacetamides and its application toward 2-thiomethyl benzoxazoles synthesis. Adv. Synth. Catal., 2021, 363(19), 4627-4631.
[http://dx.doi.org/10.1002/adsc.202100816]
[59]
Rodrigues, J.; Saba, S.; Joussef, A.C.; Rafique, J.; Braga, A.L. KIO3-catalyzed C(sp2)-H bond selenylation/sulfenylation of (hetero)arenes: Synthesis of chalcogenated (hetero)arenes and their evaluation for anti-Alzheimer’s activity. Asian J. Org. Chem., 2018, 7(9), 1819-1824.
[http://dx.doi.org/10.1002/ajoc.201800346]
[60]
Zhong, S.S.; Liu, Y.Y.; Cao, X.J.; Wan, J.P. KIO3-catalyzed domino C(sp2)-H bond sulfenylation and C-N bond oxygenation of enaminones toward the synthesis of 3-sulfenylated chromones. ChemCatChem, 2017, 9(3), 465-468.
[http://dx.doi.org/10.1002/cctc.201601273]
[61]
Wan, J.P.; Zhong, S.; Xie, L.; Cao, X.; Liu, Y.; Wei, L. KIO3-catalyzed aerobic cross-coupling reactions of enaminones and thiophenols: Synthesis of polyfunctionalized alkenes by metal-free C-H sulfenylation. Org. Lett., 2016, 18(3), 584-587.
[http://dx.doi.org/10.1021/acs.orglett.5b03608] [PMID: 26811952]
[62]
Bruno, M.; Margarita, R.; Parlanti, L.; Piancatelli, G.; Trifoni, M. Hypervalent iodine chemistry: Novel and direct thiocyanation of alkenes using [bis(acetoxy)iodo]benzene/trimethylsilyl isothiocyanate reagent combination. Synthesis of 1,2-dithiocyanates. Tetrahedron Lett., 1998, 39(22), 3847-3848.
[http://dx.doi.org/10.1016/S0040-4039(98)00629-7]
[63]
Shao, X.; Wang, X.; Yang, T.; Lu, L.; Shen, Q. An electrophilic hypervalent iodine reagent for trifluoromethylthiolation. Angew. Chem. Int. Ed. Engl., 2013, 52(12), 3457-3460.
[http://dx.doi.org/10.1002/anie.201209817] [PMID: 23355233]
[64]
Weng, S.S.; Hsieh, K.Y.; Zeng, Z.J.PhI. (OCOCF3)2 -catalyzed nucleophilic substitution of aromatic propargyl alcohols. Tetrahedron, 2015, 71(17), 2549-2554.
[http://dx.doi.org/10.1016/j.tet.2015.03.013]
[65]
Yang, X-G.; Zheng, K.; Zhang, C. Electrophilic hypervalent trifluoromethylthio-iodine(III) reagent. Org. Lett., 2020, 22(5), 2026-2031.
[http://dx.doi.org/10.1021/acs.orglett.0c00405] [PMID: 32105085]
[66]
Kita, Y.; Takada, T.; Mihara, S.; Whelan, B.A.; Tohma, H. Novel and direct nucleophilic sulfenylation and thiocyanation of phenol ethers using a hypervalent iodine(III) reagent. J. Org. Chem., 1995, 60(22), 7144-7148.
[http://dx.doi.org/10.1021/jo00127a018]
[67]
Kita, Y.; Egi, M.; Ohtsubo, M.; Saiki, T.; Takada, T.; Tohma, H. Novel and efficient synthesis of sulfur-containing heterocycles using a hypervalent iodine(III) reagent. Chem. Commun. (Camb.), 1996, (19), 2225.
[http://dx.doi.org/10.1039/cc9960002225]
[68]
Campbell, J.A.; Broka, C.A.; Gong, L.; Walker, K.A.M.; Wang, J.H. A new synthesis of 3-arylthioindoles as selective COX-2 inhibitors using PIFA. Tetrahedron Lett., 2004, 45(21), 4073-4075.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.153]
[69]
Koser, G.F.; Telu, S.; Laali, K.K. Oxidative-substitution reactions of polycyclic aromatic hydrocarbons with iodine(III) sulfonate reagents. Tetrahedron Lett., 2006, 47(39), 7011-7015.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.114]
[70]
Dohi, T.; Ito, M.; Yamaoka, N.; Morimoto, K.; Fujioka, H.; Kita, Y. Hypervalent iodine(III): Selective and efficient Single-Electron-Transfer (SET) oxidizing agent. Tetrahedron, 2009, 65(52), 10797-10815.
[http://dx.doi.org/10.1016/j.tet.2009.10.040]
[71]
Dohi, T.; Nakae, T.; Ishikado, Y.; Kato, D.; Kita, Y. New synthesis of spirocycles by utilizing in situ forming hypervalent iodine species. Org. Biomol. Chem., 2011, 9(20), 6899-6902.
[http://dx.doi.org/10.1039/c1ob06199b] [PMID: 21892505]
[72]
Rattanangkool, E.; Krailat, W.; Vilaivan, T.; Phuwapraisirisan, P.; Sukwattanasinitt, M.; Wacharasindhu, S. Hypervalent iodine(III)-promoted metal-free S-H activation: An approach for the construction of S-S, S-N, and S-C Bonds. Eur. J. Org. Chem., 2014, 2014(22), 4795-4804.
[http://dx.doi.org/10.1002/ejoc.201402180]
[73]
Mariappan, A.; Rajaguru, K.; Roja, S.S.; Muthusubramanian, S.; Bhuvanesh, N. Hypervalent iodine promoted regioselective oxidative C-H functionalization: Synthesis of N-(Pyridin-2-yl)benzo[d]thiazol-2-amines. Eur. J. Org. Chem., 2016, 2016(2), 302-307.
[http://dx.doi.org/10.1002/ejoc.201501202]
[74]
Guo, W.S.; Gong, H.; Zhang, Y.A.; Wen, L.R.; Li, M. Fast construction of 1,3-benzothiazepines by direct intramolecular dehydrogenative C-S bond formation of thioamides under metal-free conditions. Org. Lett., 2018, 20(20), 6394-6397.
[http://dx.doi.org/10.1021/acs.orglett.8b02697] [PMID: 30284832]
[75]
Tumula, N.; Palakodety, R.K.; Balasubramanian, S.; Nakka, M. Hypervalent iodine(III)-mediated solvent-free, regioselective synthesis of 3,4-disubstituted 5-imino-1,2,4-thiadiazoles and 2-aminobenzo[d]thiazoles. Adv. Synth. Catal., 2018, 360(15), 2806-2812.
[http://dx.doi.org/10.1002/adsc.201800353]
[76]
Xu, B.; Li, D.Z.; Lu, L.; Wang, D.C.; Hu, Y.H.; Shen, Q.L. Radical fluoroalkylthiolation of aldehydes with PhSO2SRf (Rf = CF3, C2F5, CF2H or CH2F): A general protocol for the preparation of fluoroalkylthioesters. Org. Chem. Front., 2018, 5(14), 2163-2166.
[http://dx.doi.org/10.1039/C8QO00327K]
[77]
Choudhuri, K.; Maiti, S.; Mal, P. Iodine(III) enabled dehydrogenative aryl CS coupling by in situ generated sulfenium ion. Adv. Synth. Catal., 2019, 361(5), 1092-1101.
[http://dx.doi.org/10.1002/adsc.201801510]
[78]
Xing, L.; Zhang, Y.; Li, B.; Du, Y. In situ formation of RSCl/ArSeCl and their application to the synthesis of 4-chalcogenylisocumarins/pyrones from o-(1-alkynyl)benzoates and (Z)-2-alken-4-ynoates. Org. Lett., 2019, 21(10), 3620-3624.
[http://dx.doi.org/10.1021/acs.orglett.9b01046] [PMID: 31050294]
[79]
Shang, Z.H.; Chen, Q.Y.; Xing, L.L.; Zhang, Y.L.; Wait, L.; Du, Y.F. In situ formation of RSCl/ArSeCl and their oxidative coupling with enaminone derivatives under transition-metal free conditions. Adv. Synth. Catal., 2019, 361(21), 4926-4932.
[http://dx.doi.org/10.1002/adsc.201900940]
[80]
Ai, Z.K.; Xiao, J.X.; Li, Y.D.; Guo, B.Y.; Du, Y.F.; Zhao, K. Metal-free synthesis of 3-chalcogenyl chromones from alkynyl aryl ketones and diorganyl diselenides/disulfides mediated by PIFA. Org. Chem. Front., 2020, 7(23), 3935-3940.
[http://dx.doi.org/10.1039/D0QO01175D]
[81]
Sundaravelu, N.; Guha, S.; Sekar, G. Iodonium ion-catalyzed domino synthesis of Z-selective α,β-diphenylthio enones from easily accessible secondary alcohols. J. Org. Chem., 2020, 85(9), 5895-5906.
[http://dx.doi.org/10.1021/acs.joc.0c00183] [PMID: 32272834]
[82]
Tao, S.Q.; Xiao, J.X.; Li, Y.D.; Sun, F.X.; Du, Y.F. PhICl2/NH4SCN-mediated oxidative regioselective thiocyanation of pyridin-2(1H)-ones. Chin. J. Chem., 2021, 39(9), 2536-2546.
[http://dx.doi.org/10.1002/cjoc.202100278]
[83]
Ochiai, M.; Nagaoka, T.; Sueda, T.; Yan, J.; Chen, D.W.; Miyamoto, K. Synthesis of 1-alkynyl(diphenyl)onium salts of group 16 elements via heteroatom transfer reaction of 1-alkynyl(phenyl)-lambda 3-iodanes. Org. Biomol. Chem., 2003, 1(9), 1517-1521.
[http://dx.doi.org/10.1039/b212512a] [PMID: 12926281]
[84]
Frei, R.; Wodrich, M.D.; Hari, D.P.; Borin, P.A.; Chauvier, C.; Waser, J. Fast and highly chemoselective alkynylation of thiols with hypervalent iodine reagents enabled through a low energy barrier concerted mechanism. J. Am. Chem. Soc., 2014, 136(47), 16563-16573.
[http://dx.doi.org/10.1021/ja5083014] [PMID: 25365776]
[85]
Mishra, A.K.; Tessier, R.; Hari, D.P.; Waser, J. Amphiphilic iodine(III) reagents for the lipophilization of peptides in water. Angew. Chem. Int. Ed. Engl., 2021, 60(33), 17963-17968.
[http://dx.doi.org/10.1002/anie.202106458] [PMID: 34038604]
[86]
Margarita, R.; Mercanti, C.; Parlanti, L.; Piancatelli, G. Hypervalent iodine-induced multi-component reactions: Novel thiocyano- and isothiocyano-phenylselenenylating reaction of alkenes. Eur. J. Org. Chem., 2000, 2000(10), 1865-1870.
[http://dx.doi.org/10.1002/(SICI)1099-0690(200005)2000:10<1865::AID-EJOC1865>3.0.CO;2-I]
[87]
Kamlar, M.; Vesely, J. Highly enantioselective organocatalytic α-selenylation of aldehydes using hypervalent iodine compounds. Tetrahedron Asymmetry, 2013, 24(5-6), 254-259.
[http://dx.doi.org/10.1016/j.tetasy.2013.02.008]
[88]
Zhang, Y.K.; Wu, S.X.; Yan, J.E. PhI catalyzed acetoxyselenylation and formyloxyselenylation of alkenes. Helv. Chim. Acta, 2017, 100(3), e1600306.
[http://dx.doi.org/10.1002/hlca.201600306]
[89]
Liang, Z.P.; Yi, W.; Wang, P.F.; Liu, G.Q.; Ling, Y. Iodosobenzene-mediated three-component selenofunctionalization of olefins. J. Org. Chem., 2021, 86(7), 5292-5304.
[http://dx.doi.org/10.1021/acs.joc.1c00257] [PMID: 33706517]
[90]
Wang, P.F.; Yi, W.; Ling, Y.; Ming, L.; Liu, G.Q.; Zhao, Y. Preparation of selenofunctionalized heterocycles via iodosobenzene-mediated intramolecular selenocyclizations of olefins with diselenides. Chin. Chem. Lett., 2021, 32(8), 2587-2591.
[http://dx.doi.org/10.1016/j.cclet.2021.02.050]
[91]
Zhang, P.F.; Chen, Z.C. Hypervalent iodine in synthesis 50: A novel method of synthesis of selenazoles by cyclocondensation of selenoamides and alkynyl(phenyl)iodonium salts. J. Heterocycl. Chem., 2001, 38(2), 503-505.
[http://dx.doi.org/10.1002/jhet.5570380233]
[92]
Panunzi, B.; Rotiroti, L.; Tingoli, M. Solvent directed electrophilic iodination and phenylselenenylation of activated alkyl aryl ketones. Tetrahedron Lett., 2003, 44(49), 8753-8756.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.037]
[93]
Song, Z.; Ding, C.; Wang, S.; Dai, Q.; Sheng, Y.; Zheng, Z.; Liang, G. Metal-free regioselective C-H chalcogenylation of coumarins/(hetero)arenes at ambient temperature. Chem. Commun. (Camb.), 2020, 56(12), 1847-1850.
[http://dx.doi.org/10.1039/C9CC09001K] [PMID: 31950956]
[94]
Li, X.X.; Zhang, B.B.; Yu, Z.Y.; Zhang, D.K.; Shi, H.F.; Xu, L.Z.; Du, Y.F. Divergent synthesis of chalcogenylated quinolin-2-ones and spiro[4,5]trienones via intramolecular cyclization of N-Aryl-propynamides mediated by diselenides/disulfides and PhICl2. Synthesis, 2022, 54(05), 1375-1387.
[http://dx.doi.org/10.1055/s-0041-1737291]
[95]
Das, J.P.; Roy, U.K.; Roy, S. Synthesis of alkynyl and vinyl selenides via selenodecarboxylation of arylpropiolic and cinnamic acids. Organometallics, 2005, 24(25), 6136-6140.
[http://dx.doi.org/10.1021/om050504b]