A Review of the Construction of the Nanomaterial & Nanocomposite Based Biosensor for Different Applications

Article ID: e180622206158 Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

The heightened attention to food and health safety has prompted researchers to conduct extensive research on biosensors that quickly detect foodborne microbial toxins and pathogens. Biosensors are a blessing due to their simple, cost-effective technique, but there are still some drawbacks with detection time, detection limit, and resilience. Incorporating functionalized nanomaterials into developing biosensors as catalytic tools, immobilization platforms, or optical or electroactive labels has added a new dimension to addressing these challenges. This review paper aims to discuss the construction of different types of nanomaterial-based biosensors in food safety, exosome detection and finally, cancer detection, as well as highlights the advantages of these biosensors over traditional techniques. In addition, a comparative study between the nanomaterial-based biosensors taking into account the linear range and limits of detection in these mentioned applications was also conducted. Hence, this paper provides key insights into designing and fabricating biosensors utilizing nanomaterials and opens new avenues in disease and food safety research.

Keywords: Electrochemical biosensor, colorimetric biosensors, fluorescent biosensors, nanomaterial, nanocomposite

[1]
Jurado-Sánchez, B. Nanoscale biosensors based on self-propelled objects. Biosensors (Basel), 2018, 8(3), 1-15.
[http://dx.doi.org/10.3390/bios8030059] [PMID: 29941799]
[2]
Jianrong, C.; Yuqing, M.; Nongyue, H.; Xiaohua, W.; Sijiao, L. Nanotechnology and biosensors. Biotechnol. Adv., 2004, 22(7), 505-518.
[http://dx.doi.org/10.1016/j.biotechadv.2004.03.004] [PMID: 15262314]
[3]
Wei, F.; Yang, J.; Wong, D.T.W. Detection of exosomal biomarker by Electric Field-Induced Release and Measurement (EFIRM). Biosens. Bioelectron., 2013, 44(1), 115-121.
[http://dx.doi.org/10.1016/j.bios.2012.12.046] [PMID: 23402739]
[4]
Zhu, X.; Chen, H.; Zhou, Y.; Wu, J.; Ramakrishna, S.; Peng, X.; Nanda, H.S.; Zhou, Y. Recent advances in biosensors for detection of exosomes. Curr. Opin. Biomed. Eng., 2021, 18, 100280.
[http://dx.doi.org/10.1016/j.cobme.2021.100280]
[5]
Zhou, Q.; Rahimian, A.; Son, K.; Shin, D.S.; Patel, T.; Revzin, A. Development of an aptasensor for electrochemical detection of exosomes. Methods, 2016, 97, 88-93.
[http://dx.doi.org/10.1016/j.ymeth.2015.10.012] [PMID: 26500145]
[6]
Zhou, Y.G.; Mohamadi, R.M.; Poudineh, M.; Kermanshah, L.; Ahmed, S.; Safaei, T.S.; Stojcic, J.; Nam, R.K.; Sargent, E.H.; Kelley, S.O. Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles. Small, 2016, 12(6), 727-732.
[http://dx.doi.org/10.1002/smll.201502365] [PMID: 26707703]
[7]
Jiang, Y.; Shi, M.; Liu, Y.; Wan, S.; Cui, C.; Zhang, L.; Tan, W. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew. Chem. Int. Ed. Engl., 2017, 56(39), 11916-11920.
[http://dx.doi.org/10.1002/anie.201703807] [PMID: 28834063]
[8]
Liu, W.; Li, J.; Wu, Y.; Xing, S.; Lai, Y.; Zhang, G. Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity. Biosens. Bioelectron., 2018, 102, 204-210.
[http://dx.doi.org/10.1016/j.bios.2017.11.033] [PMID: 29145073]
[9]
Maiolo, D.; Paolini, L.; Di Noto, G.; Zendrini, A.; Berti, D.; Bergese, P.; Ricotta, D. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal. Chem., 2015, 87(8), 4168-4176.
[http://dx.doi.org/10.1021/ac504861d] [PMID: 25674701]
[10]
Xia, Y.; Wang, L.; Li, J.; Chen, X.; Lan, J.; Yan, A.; Lei, Y.; Yang, S.; Yang, H.; Chen, J. A ratiometric fluorescent bioprobe based on carbon dots and acridone derivate for signal amplification detection exosomal microRNA. Anal. Chem., 2018, 90(15), 8969-8976.
[http://dx.doi.org/10.1021/acs.analchem.8b01143] [PMID: 29973048]
[11]
Shi, L.; Ba, L.; Xiong, Y.; Peng, G. A hybridization chain reaction based assay for fluorometric determination of exosomes using magnetic nanoparticles and both aptamers and antibody as recognition elements. Mikrochim. Acta, 2019, 186(12), 796.
[http://dx.doi.org/10.1007/s00604-019-3823-9] [PMID: 31734770]
[12]
Qiu, G.; Thakur, A.; Xu, C.; Ng, S.P.; Lee, Y.; Wu, C.M.L. Detection of glioma- derived exosomes with the biotinylated antibody-functionalized titanium nitride plasmonic biosensor. Adv. Funct. Mater., 2019, 29(9), 1-10.
[http://dx.doi.org/10.1002/adfm.201806761]
[13]
Duraichelvan, R.; Srinivas, B.; Badilescu, S.; Ouellette, R.; Ghosh, A.; Packirisamy, M. Exosomes detection by a label-free localized surface plasmonic resonance method. ECS Trans., 2016, 75(17), 11-17.
[http://dx.doi.org/10.1149/07517.0011ecst]
[14]
de Boer, E.; Beumer, R.R. Methodology for detection and typing of foodborne microorganisms. Int. J. Food Microbiol., 1999, 50(1-2), 119-130.
[http://dx.doi.org/10.1016/S0168-1605(99)00081-1] [PMID: 10488848]
[15]
Gupta, R.; Raza, N.; Bhardwaj, S.K.; Vikrant, K.; Kim, K.H.; Bhardwaj, N. Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. J. Hazard. Mater., 2021, 401, 123379.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123379] [PMID: 33113714]
[16]
Scott, P.M.; Lawrence, J.W.; van Walbeek, W. Detection of mycotoxins by thin-layer chromatography: Application to screening of fungal extracts. Appl. Microbiol., 1970, 20(5), 839-842.
[http://dx.doi.org/10.1128/am.20.5.839-842.1970] [PMID: 5485087]
[17]
Téren, J.; Varga, J.; Hamari, Z.; Rinyu, E.; Kevei, F. Immunochemical detection of ochratoxin A in black Aspergillus strains. Mycopathologia, 1996, 134(3), 171-176.
[http://dx.doi.org/10.1007/BF00436726] [PMID: 8981783]
[18]
Chen, Y.; Yang, Y.; Wang, Y.; Peng, Y.; Nie, J.; Gao, G.; Zhi, J. Development of an Escherichia coli-based electrochemical biosensor for mycotoxin toxicity detection. Bioelectrochemistry, 2020, 133, 107453.
[http://dx.doi.org/10.1016/j.bioelechem.2019.107453] [PMID: 31972449]
[19]
Evtugyn, G.; Hianik, T. Electrochemical immuno- and aptasensors for mycotoxin determination. Chemosensors, 2019, 7(1), 10.
[http://dx.doi.org/10.3390/chemosensors7010010]
[20]
Zhang, W.; Dixon, M.B.; Saint, C.; Teng, K.S.; Furumai, H. Electrochemical biosensing of algal toxins in water: The current state-of-the-art. ACS Sens., 2018, 3(7), 1233-1245.
[http://dx.doi.org/10.1021/acssensors.8b00359] [PMID: 29974739]
[21]
Zhang, W.; Jia, B.; Furumai, H. Fabrication of graphene film composite electrochemical biosensor as a pre-screening algal toxin detection tool in the event of water contamination. Sci. Rep., 2018, 8(1), 10686.
[http://dx.doi.org/10.1038/s41598-018-28959-w] [PMID: 30013209]
[22]
Setterington, E.B.; Alocilja, E.C. Electrochemical biosensor for rapid and sensitive detection of magnetically extracted bacterial pathogens. Biosensors, 2012, 2(1), 15-31.
[http://dx.doi.org/10.3390/bios2010015] [PMID: 25585629]
[23]
Vu, Q.K. A label-free electrochemical biosensor based on screen-printed electrodes modified with gold nanoparticles for quick detection of bacterial pathogens. Mater. Today Commun, 2020, 26(2020), 101726.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101726]
[24]
Özcan, M. Sesal, N.C.; Şener, M.K.; Koca, A. An alternative strategy to detect bacterial contamination in milk and water: A newly designed electrochemical biosensor. Eur. Food Res. Technol., 2020, 246(6), 1317-1324.
[http://dx.doi.org/10.1007/s00217-020-03491-2]
[25]
Nandakumar, V.; Bishop, D.; Alonas, E.; LaBelle, J.; Joshi, L.; Alford, T.L.A. Low- Cost Electrochemical Biosensor for Rapid Bacterial Detection. IEEE Sens. J., 2011, 11(1), 210-216.
[http://dx.doi.org/10.1109/JSEN.2010.2055847]
[26]
Wang, Y.; Alocilja, E.C. Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J. Biol. Eng., 2015, 9(1), 16.
[http://dx.doi.org/10.1186/s13036-015-0014-z] [PMID: 26435738]
[27]
Muniandy, S.; Teh, S.J.; Thong, K.L.; Thiha, A.; Dinshaw, I.J.; Lai, C.W.; Ibrahim, F.; Leo, B.F. Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection. Crit. Rev. Anal. Chem., 2019, 49(6), 510-533.
[http://dx.doi.org/10.1080/10408347.2018.1561243] [PMID: 30648398]
[28]
Afkhami, A.; Hashemi, P.; Bagheri, H.; Salimian, J.; Ahmadi, A.; Madrakian, T. Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. Biosens. Bioelectron., 2017, 93, 124-131.
[http://dx.doi.org/10.1016/j.bios.2016.09.059] [PMID: 27665169]
[29]
Shi, Z.Y.; Zheng, Y.T.; Zhang, H.B.; He, C.H.; Da Wu, W.; Bin, Zhang H. DNA Electrochemical Aptasensor for Detecting Fumonisins B1 Based on Graphene and Thionine Nanocomposite. Electroanalysis, 2015, 27(5), 1097-1103.
[http://dx.doi.org/10.1002/elan.201400504]
[30]
Lu, L.; Seenivasan, R.; Wang, Y.C.; Yu, J.H.; Gunasekaran, S. An electrochemical immunosensor for rapid and sensitive detection of mycotoxins fumonisin B1 and deoxynivalenol. Electrochim. Acta, 2016, 213, 89-97.
[http://dx.doi.org/10.1016/j.electacta.2016.07.096]
[31]
Cheng, Y.X.; Liu, Y.J.; Huang, J.J.; Feng, Z.; Xian, Y.Z.; Wu, Z.R.; Zhang, W.; Jin, L.T. Platinum nanoparticles modified electrode for rapid electrochemical detection of Escherichia coli. Chin. J. Chem., 2008, 26(2), 302-306.
[http://dx.doi.org/10.1002/cjoc.200890059]
[32]
Xu, M.; Wang, R.; Li, Y. An electrochemical biosensor for rapid detection of E. coli O157:H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes. Analyst, 2016, 141(18), 5441-5449.
[http://dx.doi.org/10.1039/C6AN00873A] [PMID: 27358917]
[33]
Waswa, J.; Irudayaraj, J.; DebRoy, C. Direct detection of E. coli O157:H7 in selected food systems by a surface plasmon resonance biosensor. Lebensm. Wiss. Technol., 2007, 40(2), 187-192.
[http://dx.doi.org/10.1016/j.lwt.2005.11.001]
[34]
Li, Y.; Mustapha, A. Simultaneous detection of Escherichia coli O157:H7, Salmonella, and Shigella in apple cider and produce by a multiplex PCR. J. Food Prot., 2004, 67(1), 27-33.
[http://dx.doi.org/10.4315/0362-028X-67.1.27] [PMID: 14717347]
[35]
Li, H.; Yang, D.; Li, P.; Zhang, Q.; Zhang, W.; Ding, X.; Mao, J.; Wu, J. Palladium nanoparticles-based fluorescence resonance energy transfer aptasensor for highly sensitive detection of aflatoxin M1 in milk. Toxins (Basel), 2017, 9(10), E318.
[http://dx.doi.org/10.3390/toxins9100318] [PMID: 29027938]
[36]
Wu, Z.; Xu, E.; Jin, Z.; Irudayaraj, J. An ultrasensitive aptasensor based on fluorescent resonant energy transfer and exonuclease-assisted target recycling for patulin detection. Food Chem., 2018, 249, 136-142.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.025] [PMID: 29407916]
[37]
Obana, H.; Okihashi, M.; Akutsu, K.; Kitagawa, Y.; Hori, S. Determination of acetamiprid, imidacloprid, and nitenpyram residues in vegetables and fruits by high-performance liquid chromatography with diode-array detection. J. Agric. Food Chem., 2002, 50(16), 4464-4467.
[http://dx.doi.org/10.1021/jf025539q] [PMID: 12137461]
[38]
Di Muccio, A.; Fidente, P.; Barbini, D.A.; Dommarco, R.; Seccia, S.; Morrica, P. Application of solid-phase extraction and liquid chromatography-mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables. J. Chromatogr. A, 2006, 1108(1), 1-6.
[http://dx.doi.org/10.1016/j.chroma.2005.12.111] [PMID: 16448655]
[39]
Mateu-Sánchez, M.; Moreno, M.; Arrebola, F.J.; Martínez Vidal, J.L. Analysis of acetamiprid in vegetables using gas chromatography-tandem mass spectrometry. Anal. Sci., 2003, 19(5), 701-704.
[http://dx.doi.org/10.2116/analsci.19.701] [PMID: 12769368]
[40]
Xu, Q.; Du, S.; di Jin, G.; Li, H.; Hu, X.Y. Determination of acetamiprid by a colorimetric method based on the aggregation of gold nanoparticles. Mikrochim. Acta, 2011, 173(3-4), 323-329.
[http://dx.doi.org/10.1007/s00604-011-0562-y]
[41]
Park, J.H.; Byun, J.Y.; Mun, H.; Shim, W.B.; Shin, Y.B.; Li, T.; Kim, M.G. A regeneratable, label-free, Localized Surface Plasmon Resonance (LSPR) aptasensor for the detection of ochratoxin A. Biosens. Bioelectron., 2014, 59, 321-327.
[http://dx.doi.org/10.1016/j.bios.2014.03.059] [PMID: 24747570]
[42]
Test, C.E.A. What is a CEA test? Johns Hopkins Med. Lett. Health After 50, 1998, 10(8), 8.
[PMID: 9766185]
[43]
Shu, H.; Wen, W.; Xiong, H.; Zhang, X.; Wang, S. Novel electrochemical aptamer biosensor based on gold nanoparticles signal amplification for the detection of carcinoembryonic antigen. Electrochem. Commun., 2013, 37, 15-19.
[http://dx.doi.org/10.1016/j.elecom.2013.09.018]
[44]
Li, G.; Xue, Q.; Feng, J.; Sui, W. Electrochemical biosensor based on nanocomposites film of thiol graphene-thiol chitosan/nano gold for the detection of carcinoembryonic antigen. Electroanalysis, 2015, 27(5), 1245-1252.
[http://dx.doi.org/10.1002/elan.201400524]
[45]
Zhang, G.; Liu, Z.; Fan, L.; Guo, Y. Electrochemical prostate specific antigen aptasensor based on hemin functionalized graphene-conjugated palladium nanocomposites. Mikrochim. Acta, 2018, 185(3), 159.
[http://dx.doi.org/10.1007/s00604-018-2686-9] [PMID: 29594519]
[46]
Sattarahmady, N.; Rahi, A.; Heli, H. A signal-on built in-marker electrochemical aptasensor for human prostate-specific antigen based on a hairbrush-like gold nanostructure. Sci. Rep., 2017, 7(1), 11238.
[http://dx.doi.org/10.1038/s41598-017-11680-5] [PMID: 28894225]
[47]
Yang, Y.; Yan, Q.; Liu, Q.; Li, Y.; Liu, H.; Wang, P.; Chen, L.; Zhang, D.; Li, Y.; Dong, Y. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped Au@Ag-Cu2O nanoparticles for prostate specific antigen detection. Biosens. Bioelectron., 2018, 99, 450-457.
[http://dx.doi.org/10.1016/j.bios.2017.08.018] [PMID: 28820986]
[48]
Zhou, X.; Yang, L.; Tan, X.; Zhao, G.; Xie, X.; Du, G. A robust electrochemical immunosensor based on hydroxyl pillar[5]arene@AuNPs@g-C3N4 hybrid nanomaterial for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron., 2018, 112, 31-39.
[http://dx.doi.org/10.1016/j.bios.2018.04.036] [PMID: 29689502]
[49]
Wang, J.; Liu, G.; Wu, H.; Lin, Y. Quantum-dot-based electrochemical immunoassay for high-throughput screening of the prostate-specific antigen. Small, 2008, 4(1), 82-86.
[http://dx.doi.org/10.1002/smll.200700459] [PMID: 18081131]
[50]
Heydari-Bafrooei, E.; Shamszadeh, N.S. Electrochemical bioassay development for ultrasensitive aptasensing of prostate specific antigen. Biosens. Bioelectron., 2017, 91, 284-292.
[http://dx.doi.org/10.1016/j.bios.2016.12.048] [PMID: 28033557]
[51]
Zhu, J.; Wang, J.F.; Li, J.J.; Zhao, J.W. Specific detection of carcinoembryonic antigen based on fluorescence quenching of Au-Ag core-shell nanotriangle probe. Sens. Actuators B Chem., 2016, 233, 214-222.
[http://dx.doi.org/10.1016/j.snb.2016.04.068]
[52]
Zhao, L.; Cheng, M.; Liu, G.; Lu, H.; Gao, Y.; Yan, X.; Liu, F.; Sun, P.; Lu, G. A fluorescent biosensor based on molybdenum disulfide nanosheets and protein aptamer for sensitive detection of carcinoembryonic antigen. Sens. Actuators B Chem., 2018, 273, 185-190.
[http://dx.doi.org/10.1016/j.snb.2018.06.004]
[53]
Chen, M.; Yeasmin Khusbu, F.; Ma, C.; Wu, K.; Zhao, H.; Chen, H.; Wang, K. A sensitive detection method of carcinoembryonic antigen based on dsDNA-templated copper nanoparticles. New J. Chem., 2018, 42(16), 13702-13707.
[http://dx.doi.org/10.1039/C8NJ02774A]
[54]
Ling, L.; Ruiyi, L.; Guangli, W.; Zhiguo, G.; Zaijun, L. Graphene quantum dots- NaYF4:Yb,Er hybrid with significant enhancement of upconversion emission for fluorescent detection of carcinoembryonic antigen with exonuclease III-aided target recycling amplification. Sens. Actuators B Chem., 2019, 285, 453-461.
[http://dx.doi.org/10.1016/j.snb.2019.01.082]
[55]
Pham, X.H.; Hahm, E.; Huynh, K.H.; Son, B.S.; Kim, H.M.; Jun, B.H. Sensitive Colorimetric Detection of Prostate Specific Antigen Using a Peroxidase-Mimicking Anti- PSA Antibody Coated Au Nanoparticle. Biochip J., 2020, 14(2), 158-168.
[http://dx.doi.org/10.1007/s13206-019-4204-5]
[56]
Su, S.; Sun, H.; Xu, F.; Yuwen, L.; Wang, L. Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles- decorated MoS2 nanosheets modified electrode. Electroanalysis, 2013, 25(11), 2523-2529.
[http://dx.doi.org/10.1002/elan.201300332]
[57]
Su, S.; Li, J.; Yao, Y.; Sun, Q.; Zhao, Q.; Wang, F.; Li, Q.; Liu, X.; Wang, L. Colorimetric analysis of carcinoembryonic antigen using highly catalytic gold nanoparticles-decorated MoS2 nanocomposites. ACS Appl. Bio Mater., 2019, 2(1), 292-298.
[http://dx.doi.org/10.1021/acsabm.8b00598] [PMID: 35016352]
[58]
Jia, Y.; Zhang, B.; Chang, H.; Yu, F.; Zhao, Z. TiO2/SnOx-Au nanocomposite catalyzed photochromic reaction for colorimetric immunoassay of tumor marker. J. Pharm. Biomed. Anal., 2019, 169, 75-81.
[http://dx.doi.org/10.1016/j.jpba.2019.02.040] [PMID: 30844625]
[59]
Xiao, L.; Zhu, A.; Xu, Q.; Chen, Y.; Xu, J.; Weng, J. Colorimetric biosensor for detection of cancer biomarker by au nanoparticle-decorated Bi2Se3 nanosheets. ACS Appl. Mater. Interfaces, 2017, 9(8), 6931-6940.
[http://dx.doi.org/10.1021/acsami.6b15750] [PMID: 28164701]
[60]
Ermini, M.L.; Chadtová Song, X.; Špringer, T.; Homola, J. Peptide functionalization of gold nanoparticles for the detection of carcinoembryonic antigen in blood plasma via SPR- based biosensor. Front Chem., 2019, 7(2), 40.
[http://dx.doi.org/10.3389/fchem.2019.00040] [PMID: 30778384]
[61]
Špringer, T.; Homola, J. Biofunctionalized gold nanoparticles for SPR-biosensor-based detection of CEA in blood plasma. Anal. Bioanal. Chem., 2012, 404(10), 2869-2875.
[http://dx.doi.org/10.1007/s00216-012-6308-9] [PMID: 22895740]
[62]
Hasanzadeh, M. An innovative immunosensor for ultrasensitive detection of breast cancer specific carbohydrate (CA 15-3) in unprocessed human plasma and MCF-7 breast cancer cell lysates using gold nanospear electrochemically assembled onto thiolated graphene quantum dots. Int. J. Biol. Macromol., 2017, 1141008.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.183]
[63]
Zhao, L. Interface interaction of MoS2 nanosheets with DNA based aptameric biosensor for carbohydrate antigen 15-3 detection. Microchem. J, 2020, 155(November 2019), 104675.
[http://dx.doi.org/10.1016/j.microc.2020.104675]
[64]
Wen, W.; Huang, J.Y.; Bao, T.; Zhou, J.; Xia, H.X.; Zhang, X.H.; Wang, S.F.; Zhao, Y.D. Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: Highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen. Biosens. Bioelectron., 2016, 83, 142-148.
[http://dx.doi.org/10.1016/j.bios.2016.04.039] [PMID: 27111123]
[65]
Jin, B.; Wang, P.; Mao, H.; Hu, B.; Zhang, H.; Cheng, Z.; Wu, Z.; Bian, X.; Jia, C.; Jing, F.; Jin, Q.; Zhao, J. Multi-nanomaterial electrochemical biosensor based on label-free graphene for detecting cancer biomarkers. Biosens. Bioelectron., 2014, 55, 464-469.
[http://dx.doi.org/10.1016/j.bios.2013.12.025] [PMID: 24462797]
[66]
Alizadeh, N.; Salimi, A.; Hallaj, R. Magnetoimmunosensor for simultaneous electrochemical detection of carcinoembryonic antigen and α-fetoprotein using multifunctionalized Au nanotags. J. Electroanal. Chem., 2018, 811, 8-15.
[http://dx.doi.org/10.1016/j.jelechem.2017.12.080]
[67]
Sun, X.; Ma, Z. Highly stable electrochemical immunosensor for carcinoembryonic antigen. Biosens. Bioelectron., 2012, 35(1), 470-474.
[http://dx.doi.org/10.1016/j.bios.2012.02.061] [PMID: 22444512]
[68]
Gu, X.; She, Z.; Ma, T.; Tian, S.; Kraatz, H.B. Electrochemical detection of carcinoembryonic antigen. Biosens. Bioelectron., 2018, 102, 610-616.
[http://dx.doi.org/10.1016/j.bios.2017.12.014]
[69]
Xu, Z.; Han, R.; Liu, N.; Gao, F.; Luo, X. Electrochemical biosensors for the detection of carcinoembryonic antigen with low fouling and high sensitivity based on copolymerized polydopamine and zwitterionic polymer. Sens. Actuators B Chem., 2020, 319(5), 128253.
[http://dx.doi.org/10.1016/j.snb.2020.128253]
[70]
Liu, Q.; Yang, Y.; Liu, X.P.; Wei, Y.P.; Mao, C.J.; Chen, J.S.; Niu, H.L.; Song, J.M.; Zhang, S.Y.; Jin, B.K.; Jiang, M. A facile in situ synthesis of MIL-101-CdSe nanocomposites for ultrasensitive electrochemiluminescence detection of carcinoembryonic antigen. Sens. Actuators B Chem., 2017, 242, 1073-1078.
[http://dx.doi.org/10.1016/j.snb.2016.09.143]
[71]
Liang, K.; Zhai, S.; Zhang, Z.; Fu, X.; Shao, J.; Lin, Z.; Qiu, B.; Chen, G.N. Ultrasensitive colorimetric carcinoembryonic antigen biosensor based on hyperbranched rolling circle amplification. Analyst, 2014, 139(17), 4330-4334.
[http://dx.doi.org/10.1039/C4AN00417E] [PMID: 24996292]
[72]
Wu, S.; Tan, H.; Wang, C.; Wang, J.; Sheng, S. A Colorimetric immunoassay based on coordination polymer composite for the detection of carcinoembryonic antigen. ACS Appl. Mater. Interfaces, 2019, 11(46), 43031-43038.
[http://dx.doi.org/10.1021/acsami.9b18472] [PMID: 31675205]
[73]
Wang, K.; Yang, J.; Xu, H.; Cao, B.; Qin, Q.; Liao, X.; Wo, Y.; Jin, Q.; Cui, D. Smartphone-imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen. Anal. Bioanal. Chem., 2020, 412(11), 2517-2528.
[http://dx.doi.org/10.1007/s00216-020-02475-1] [PMID: 32067065]
[74]
Raouafi, A.; Sánchez, A.; Raouafi, N.; Villalonga, R. Electrochemical aptamer-based bioplatform for ultrasensitive detection of prostate specific antigen. Sens. Actuators B Chem., 2019, 297(July), 126762.
[http://dx.doi.org/10.1016/j.snb.2019.126762]
[75]
Sanders, M.; Lin, Y.; Wei, J.; Bono, T.; Lindquist, R.G. An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens. Bioelectron., 2014, 61, 95-101.
[http://dx.doi.org/10.1016/j.bios.2014.05.009] [PMID: 24858997]
[76]
Argoubi, W.; Sánchez, A.; Parrado, C.; Raouafi, N.; Villalonga, R. Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sens. Actuators B Chem., 2018, 255, 309-315.
[http://dx.doi.org/10.1016/j.snb.2017.08.045]
[77]
Qin, W.; Wang, K.; Xiao, K.; Hou, Y.; Lu, W.; Xu, H.; Wo, Y.; Feng, S.; Cui, D. Carcinoembryonic antigen detection with “Handing”-controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens. Bioelectron., 2017, 90, 508-515.
[http://dx.doi.org/10.1016/j.bios.2016.10.052] [PMID: 27825889]
[78]
Sun, Y.; Fan, J.; Cui, L.; Ke, W.; Zheng, F.; Zhao, Y. Fluorometric nanoprobes for simultaneous aptamer-based detection of carcinoembryonic antigen and prostate specific antigen. Mikrochim. Acta, 2019, 186(3), 1-10.
[79]
Xu, X.; Ji, J.; Chen, P.; Wu, J.; Jin, Y.; Zhang, L.; Du, S. Salt-induced gold nanoparticles aggregation lights up fluorescence of DNA-silver nanoclusters to monitor dual cancer markers carcinoembryonic antigen and carbohydrate antigen 125. Anal. Chim. Acta, 2020, 1125, 41-49.
[http://dx.doi.org/10.1016/j.aca.2020.05.027] [PMID: 32674779]
[80]
Wang, K.; He, M.Q.; Zhai, F.H.; He, R.H.; Yu, Y.L. A label-free and enzyme-free ratiometric fluorescence biosensor for sensitive detection of carcinoembryonic antigen based on target-aptamer complex recycling amplification. Sens. Actuators B Chem., 2017, 253, 893-899.
[http://dx.doi.org/10.1016/j.snb.2017.07.047]
[81]
Li, L.; Wang, T.; Zhang, Y.; Xu, C.; Zhang, L.; Cheng, X.; Liu, H.; Chen, X.; Yu, J. Editable TiO2 nanomaterial-modified paper in situ for highly efficient detection of carcinoembryonic antigen by photoelectrochemical method. ACS Appl. Mater. Interfaces, 2018, 10(17), 14594-14601.
[http://dx.doi.org/10.1021/acsami.8b03632] [PMID: 29638108]
[82]
Zhang, K.; Lv, S.; Zhou, Q.; Tang, D. CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction. Sens. Actuators B Chem., 2020, 307, 127631.
[http://dx.doi.org/10.1016/j.snb.2019.127631]
[83]
Chang, C.C.; Chiu, N.F.; Lin, D.S.; Chu-Su, Y.; Liang, Y.H.; Lin, C.W. High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Anal. Chem., 2010, 82(4), 1207-1212.
[http://dx.doi.org/10.1021/ac901797j] [PMID: 20102177]
[84]
Guo, C.; Su, F.; Song, Y.; Hu, B.; Wang, M.; He, L.; Peng, D.; Zhang, Z. Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for bifunctional electrochemical and SPR aptasensors toward carcinoembryonic antigen. ACS Appl. Mater. Interfaces, 2017, 9(47), 41188-41199.
[http://dx.doi.org/10.1021/acsami.7b14952] [PMID: 29112366]
[85]
Szymanska, B.; Lukaszewski, Z.; Hermanowicz-Szamatowicz, K.; Gorodkiewicz, E. An immunosensor for the determination of carcinoembryonic antigen by surface plasmon resonance imaging. Anal. Biochem., 2020, 609(9), 113964.
[http://dx.doi.org/10.1016/j.ab.2020.113964] [PMID: 32979366]
[86]
Li, R.; Feng, F.; Chen, Z.Z.; Bai, Y.F.; Guo, F.F.; Wu, F.Y.; Zhou, G. Sensitive detection of carcinoembryonic antigen using surface plasmon resonance biosensor with gold nanoparticles signal amplification. Talanta, 2015, 140, 143-149.
[http://dx.doi.org/10.1016/j.talanta.2015.03.041] [PMID: 26048836]
[87]
Chen, X.; Jia, X.; Han, J.; Ma, J.; Ma, Z. Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosens. Bioelectron., 2013, 50, 356-361.
[http://dx.doi.org/10.1016/j.bios.2013.06.054] [PMID: 23891798]
[88]
Lim, S.A.; Yoshikawa, H.; Tamiya, E.; Yasin, H.M.; Ahmed, M.U. A highly sensitive gold nanoparticle bioprobe based electrochemical immunosensor using screen printed graphene biochip. RSC Advances, 2014, 4(102), 58460-58466.
[http://dx.doi.org/10.1039/C4RA11066H]
[89]
Gao, Q.; Liu, N.; Ma, Z. Prussian blue-gold nanoparticles-ionic liquid functionalized reduced graphene oxide nanocomposite as label for ultrasensitive electrochemical immunoassay of alpha-fetoprotein. Anal. Chim. Acta, 2014, 829, 15-21.
[http://dx.doi.org/10.1016/j.aca.2014.04.045] [PMID: 24856397]
[90]
Teixeira, S.; Conlan, R.S.; Guy, O.J.; Sales, M.G.F. Label-free human chorionic gonadotropin detection at picogram levels using oriented antibodies bound to graphene screen-printed electrodes. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(13), 1852-1865.
[http://dx.doi.org/10.1039/c3tb21235a] [PMID: 32261522]
[91]
Li, L.; Zhang, L.; Yu, J.; Ge, S.; Song, X. All-graphene composite materials for signal amplification toward ultrasensitive electrochemical immunosensing of tumor marker. Biosens. Bioelectron., 2015, 71, 108-114.
[http://dx.doi.org/10.1016/j.bios.2015.04.032] [PMID: 25897879]
[92]
Yang, F.; Han, J.; Zhuo, Y.; Yang, Z.; Chai, Y.; Yuan, R. Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosens. Bioelectron., 2014, 55, 360-365.
[http://dx.doi.org/10.1016/j.bios.2013.12.040] [PMID: 24419078]
[93]
Lerner, M.B.; D’Souza, J.; Pazina, T.; Dailey, J.; Goldsmith, B.R.; Robinson, M.K.; Johnson, A.T. Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. ACS Nano, 2012, 6(6), 5143-5149.
[http://dx.doi.org/10.1021/nn300819s] [PMID: 22575126]
[94]
Zhao, C.; Lin, D.; Wu, J.; Ding, L.; Ju, H.; Yan, F. Nanogold-enriched carbon nanohorn label for sensitive electrochemical detection of biomarker on a disposable immunosensor. Electroanalysis, 2013, 25(4), 1044-1049.
[http://dx.doi.org/10.1002/elan.201200423]
[95]
Yao, T.; Gu, X.; Li, T.; Li, J.; Li, J.; Zhao, Z.; Wang, J.; Qin, Y.; She, Y. Enhancement of surface plasmon resonance signals using a MIP/GNPs/rGO nano-hybrid film for the rapid detection of ractopamine. Biosens. Bioelectron., 2016, 75, 96-100.
[http://dx.doi.org/10.1016/j.bios.2015.08.027] [PMID: 26299823]
[96]
Xiong, X.; Shi, X.; Liu, Y.; Lu, L.; You, J. An aptamer-based electrochemical biosensor for simple and sensitive detection of staphylococcal enterotoxin B in milk. Anal. Methods, 2018, 10(3), 365-370.
[http://dx.doi.org/10.1039/C7AY02452E]
[97]
Mondal, B.; Ramlal, S.; Lavu, P.S. N, B.; Kingston, J. Highly sensitive colorimetric biosensor for staphylococcal enterotoxin B by a label-free aptamer and gold nanoparticles. Front. Microbiol., 2018, 9(2), 179.
[http://dx.doi.org/10.3389/fmicb.2018.00179] [PMID: 29487580]
[98]
Zhou, D.; Xie, G.; Cao, X.; Chen, X.; Zhang, X.; Chen, H. Colorimetric determination of staphylococcal enterotoxin B via DNAzyme-guided growth of gold nanoparticles. Mikrochim. Acta, 2016, 183(10), 2753-2760.
[http://dx.doi.org/10.1007/s00604-016-1919-z]
[99]
Mousavi Nodoushan, S.; Nasirizadeh, N.; Amani, J.; Halabian, R.; Imani Fooladi, A.A. An electrochemical aptasensor for staphylococcal enterotoxin B detection based on reduced graphene oxide and gold nano-urchins. Biosens. Bioelectron., 2019, 127, 221-228.
[http://dx.doi.org/10.1016/j.bios.2018.12.021] [PMID: 30622036]
[100]
Sharma, A.; Rao, V.K.; Kamboj, D.V.; Gaur, R.; Upadhyay, S.; Shaik, M. Relative efficiency of Zinc Sulfide (ZnS) Quantum Dots (QDs) based electrochemical and fluorescence immunoassay for the detection of Staphylococcal Enterotoxin B (SEB). Biotechnol. Rep., 2015, 6, 129-136.
[http://dx.doi.org/10.1016/j.btre.2015.02.004] [PMID: 28626706]
[101]
Yang, M.; Kostov, Y.; Bruck, H.A.; Rasooly, A. Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food. Int. J. Food Microbiol., 2009, 133(3), 265-271.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.05.029] [PMID: 19540011]
[102]
Liu, X.; Wang, Y.; Chen, P.; Wang, Y.; Zhang, J.; Aili, D.; Liedberg, B. Biofunctionalized gold nanoparticles for colorimetric sensing of botulinum neurotoxin A light chain. Anal. Chem., 2014, 86(5), 2345-2352.
[http://dx.doi.org/10.1021/ac402626g] [PMID: 24484451]
[103]
Chan, C.Y.; Guo, J.; Sun, C.; Tsang, M-K.; Tian, F.; Hao, J.; Chen, S.; Yang, M. A reduced graphene oxide-Au based electrochemical biosensor for ultrasensitive detection of enzymatic activity of botulinum neurotoxin A. Sens. Actuators B Chem., 2015, 220, 131-137.
[http://dx.doi.org/10.1016/j.snb.2015.05.052]
[104]
Sorouri, R.; Bagheri, H.; Afkhami, A.; Salimian, J. Fabrication of a novel highly sensitive and selective immunosensor for botulinum neurotoxin serotype a based on an effective platform of electrosynthesized gold nanodendrites/chitosan nanoparticles. Sensors, 2017, 17(5), E1074.
[http://dx.doi.org/10.3390/s17051074] [PMID: 28486408]
[105]
Bok, S.; Korampally, V.; Darr, C.M.; Folk, W.R.; Polo-Parada, L.; Gangopadhyay, K.; Gangopadhyay, S. Femtogram-level detection of Clostridium botulinum neurotoxin type A by sandwich immunoassay using nanoporous substrate and ultra-bright fluorescent suprananoparticles. Biosens. Bioelectron., 2013, 41(1), 409-416.
[http://dx.doi.org/10.1016/j.bios.2012.08.063] [PMID: 23040876]
[106]
Yang, X.; Zhou, X.; Zhang, X.; Qing, Y.; Luo, M.; Liu, X.; Li, C.; Li, Y.; Xia, H.; Qiu, J. A highly sensitive electrochemical immunosensor for fumonisin b1 detection in corn using single-walled carbon nanotubes/chitosan. Electroanalysis, 2015, 27(11), 2679-2687.
[http://dx.doi.org/10.1002/elan.201500169]
[107]
Munawar, H.; Garcia-Cruz, A.; Majewska, M.; Karim, K.; Kutner, W.; Piletsky, S.A. Electrochemical determination of fumonisin B1 using a chemosensor with a recognition unit comprising molecularly imprinted polymer nanoparticles. Sens. Actuators B Chem., 2020, 321(6), 128552.
[http://dx.doi.org/10.1016/j.snb.2020.128552]
[108]
Wei, M.; Xin, L.; Feng, S.; Liu, Y. Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods. Mikrochim. Acta, 2020, 187(2), 102.
[http://dx.doi.org/10.1007/s00604-019-4089-y] [PMID: 31912309]
[109]
Chen, X.; Huang, Y.; Ma, X.; Jia, F.; Guo, X.; Wang, Z. Impedimetric aptamer-based determination of the mold toxin fumonisin B1. Mikrochim. Acta, 2015, 182(9-10), 1709-1714.
[http://dx.doi.org/10.1007/s00604-015-1492-x]
[110]
Gu, W.; Zhu, P.; Jiang, D.; He, X.; Li, Y.; Ji, J.; Zhang, L.; Sun, Y.; Sun, X. A novel and simple cell-based electrochemical impedance biosensor for evaluating the combined toxicity of DON and ZEN. Biosens. Bioelectron., 2015, 70, 447-454.
[http://dx.doi.org/10.1016/j.bios.2015.03.074] [PMID: 25863342]
[111]
Valera, E.; García-Febrero, R.; Elliott, C.T.; Sánchez-Baeza, F.; Marco, M.P. Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples. Anal. Bioanal. Chem., 2019, 411(9), 1915-1926.
[http://dx.doi.org/10.1007/s00216-018-1538-0] [PMID: 30610251]
[112]
Li, K.; Lai, Y.; Zhang, W.; Jin, L. Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta, 2011, 84(3), 607-613.
[http://dx.doi.org/10.1016/j.talanta.2010.12.042] [PMID: 21482257]
[113]
Zhou, C.; Zou, H.; Li, M.; Sun, C.; Ren, D.; Li, Y. Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO. Biosens. Bioelectron., 2018, 117, 347-353.
[http://dx.doi.org/10.1016/j.bios.2018.06.005] [PMID: 29935488]
[114]
Zhou, Z.; Zhang, Y.; Guo, M.; Huang, K.; Xu, W. Ultrasensitive magnetic DNAzyme-copper nanoclusters fluorescent biosensor with triple amplification for the visual detection of E. coli O157:H7. Biosens. Bioelectron., 2020, 167, 112475.
[http://dx.doi.org/10.1016/j.bios.2020.112475] [PMID: 32814209]
[115]
Sun, J.; Ji, J.; Sun, Y.; Abdalhai, M.H.; Zhang, Y.; Sun, X. DNA biosensor-based on fluorescence detection of E. coli O157:H7 by Au@Ag nanorods. Biosens. Bioelectron., 2015, 70, 239-245.
[http://dx.doi.org/10.1016/j.bios.2015.03.009] [PMID: 25829221]
[116]
Zheng, L.; Cai, G.; Wang, S.; Liao, M.; Li, Y.; Lin, J. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens. Bioelectron., 2019, 124-125, 143-149.
[http://dx.doi.org/10.1016/j.bios.2018.10.006] [PMID: 30366259]
[117]
Zhu, L.; Li, S.; Shao, X.; Feng, Y.; Xie, P.; Luo, Y.; Huang, K.; Xu, W. Colorimetric detection and typing of E. coli lipopolysaccharides based on a dual aptamer-functionalized gold nanoparticle probe. Mikrochim. Acta, 2019, 186(2), 111.
[http://dx.doi.org/10.1007/s00604-018-3212-9] [PMID: 30637507]
[118]
Geng, P.; Zhang, X.; Teng, Y.; Fu, Y.; Xu, L.; Xu, M.; Jin, L.; Zhang, W. A DNA sequence-specific electrochemical biosensor based on alginic acid-coated cobalt magnetic beads for the detection of E. coli. Biosens. Bioelectron., 2011, 26(7), 3325-3330.
[http://dx.doi.org/10.1016/j.bios.2011.01.007] [PMID: 21277764]
[119]
Boriachek, K.; Islam, M.N.; Gopalan, V.; Lam, A.K.; Nguyen, N.T.; Shiddiky, M.J.A. Quantum dot-based sensitive detection of disease specific exosome in serum. Analyst, 2017, 142(12), 2211-2219.
[http://dx.doi.org/10.1039/C7AN00672A] [PMID: 28534915]
[120]
Wang, Y.M.; Liu, J.W.; Adkins, G.B.; Shen, W.; Trinh, M.P.; Duan, L.Y.; Jiang, J.H.; Zhong, W. Enhancement of the intrinsic peroxidase-like activity of graphitic carbon nitride nanosheets by ssDNAs and its application for detection of exosomes. Anal. Chem., 2017, 89(22), 12327-12333.
[http://dx.doi.org/10.1021/acs.analchem.7b03335] [PMID: 29069893]
[121]
Wang, H.; Chen, H.; Huang, Z.; Li, T.; Deng, A.; Kong, J. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta, 2018, 184(2), 219-226.
[http://dx.doi.org/10.1016/j.talanta.2018.02.083] [PMID: 29674035]
[122]
Zhang, P.; He, M.; Zeng, Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip, 2016, 16(16), 3033-3042.
[http://dx.doi.org/10.1039/C6LC00279J] [PMID: 27045543]
[123]
Reiner, A.T.; Ferrer, N.G.; Venugopalan, P.; Lai, R.C.; Lim, S.K.; Dostálek, J. Magnetic nanoparticle-enhanced surface plasmon resonance biosensor for extracellular vesicle analysis. Analyst, 2017, 142(20), 3913-3921.
[http://dx.doi.org/10.1039/C7AN00469A] [PMID: 28920599]