Periodontal Film: A Potential Treatment Strategy for Periodontitis

Page: [184 - 195] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Periodontitis is a serious gum infection associated with inflammation of the periodontium around the teeth. Based on the etiology and pathogenesis, periodontitis has several conventional treatment strategies. Treatment with antibiotics and antimicrobials is the most common therapy. However, the development of drug resistance and the manifestation of side effects make conventional strategies ineffective. In recent decades, local drug delivery in the periodontal pocket has gained significant attention as a novel strategy. Sustained drug release at the target site (periodontal pocket) for a prolonged period is the main advantage over conventional therapy. Bioadhesive periodontal films are mostly used. They are thin films made up of unique mixtures of bioadhesive polymers, binders, plasticizers, and drug release modifiers. They can be loaded with antibiotics, metal nanoparticles, metal oxide nanoparticles, or a combination. The dried film is cut into a suitable size and inserted into the periodontal pocket for direct delivery of therapeutic agents. Thus, a smaller dose is required, and systemic side effects are avoided. In this manuscript, the pathophysiology of periodontitis, the role of biofilm formation, development of periodontal film loaded with antibiotics and nanoparticles have been reviewed, and the future aspects have been discussed.

Keywords: Periodontitis, biofilm, antibiotics, nanoparticles, gum infection, periodontal film.

Graphical Abstract

[1]
Shawky, H.A.; Basha, S.M.; Batouti, G.A. El; Kassem, A.A. Evaluation of clinical and antimicrobial efficacy of silver nanoparticles and tetracycline films in the treatment of periodontal pockets. IOSR J. Dent. Med. Sci. Ver. I, 2015, 14(7), 2279-2861.
[http://dx.doi.org/10.9790/0853-1471113123]
[2]
Shaddox, L.M.; Walker, C.B. Treating chronic periodontitis: Current status, challenges, and future directions. Clin. Cosmet. Investig. Dent., 2010, 2, 79-91.
[http://dx.doi.org/10.2147/CCIDE.S7712] [PMID: 23662085]
[3]
Eke, P.; Genco, R. CDC periodontal disease surveillance project: Background, objectives, and progress report. J. Periodontol., 2007, 78(7s), 1366-1371.
[http://dx.doi.org/10.1902/jop.2007.070134]
[4]
Curtis, M.A.; Diaz, P.I.; Van Dyke, T.E. The role of the microbiota in periodontal disease. Periodontol. 2000, 2020, 83(1), 14-25.
[http://dx.doi.org/10.1111/prd.12296] [PMID: 32385883]
[5]
Chakraborty, P.; Paul, P.; Kumari, M.; Bhattacharjee, S.; Singh, M.; Maiti, D.; Dastidar, D.G.; Akhter, Y.; Kundu, T.; Das, A.; Tribedi, P. Attenuation of Pseudomonas aeruginosa biofilm by thymoquinone: An individual and combinatorial study with tetrazine-capped silver nanoparticles and tryptophan. Folia Microbiol. , 2021, 66(2), 255-271.
[http://dx.doi.org/10.1007/s12223-020-00841-1] [PMID: 33411249]
[6]
Gupta, P.; Sarkar, S.; Das, B.; Bhattacharjee, S.; Tribedi, P. Biofilm, pathogenesis and prevention--a journey to break the wall: A review. Arch. Microbiol., 2016, 198(1), 1-15.
[http://dx.doi.org/10.1007/s00203-015-1148-6] [PMID: 26377585]
[7]
Chakraborty, P.; Joardar, S.; Ray, S.; Biswas, P.; Maiti, D.; Tribedi, P. 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: A potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation. Folia Microbiol. , 2018, 63(6), 763-772.
[http://dx.doi.org/10.1007/s12223-018-0620-5] [PMID: 29855854]
[8]
Sharma, G.; Rao, S.; Bansal, A.; Dang, S.; Gupta, S.; Gabrani, R. Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals, 2014, 42(1), 1-7.
[http://dx.doi.org/10.1016/j.biologicals.2013.11.001 ] [PMID: 24309094]
[9]
Garrett, T.R.; Bhakoo, M.; Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci., 2008, 18(9), 1049-1056.
[http://dx.doi.org/10.1016/j.pnsc.2008.04.001]
[10]
Davey, M.E.; O’toole, G.A. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev., 2000, 64(4), 847-867.
[http://dx.doi.org/10.1128/MMBR.64.4.847-867.2000 ] [PMID: 11104821]
[11]
Mulcahy, H.; Sibley, C.D.; Surette, M.G.; Lewenza, S. Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo . PLoS Pathog., 2011, 7(10), e1002299.
[http://dx.doi.org/10.1371/journal.ppat.1002299] [PMID: 21998591]
[12]
Vieira Colombo, A.P.; Magalhães, C.B.; Hartenbach, F.A. Martins do Souto, R.; Maciel da Silva-Boghossian, C. Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microb. Pathog., 2016, 94, 27-34.
[http://dx.doi.org/10.1016/j.micpath.2015.09.009] [PMID: 26416306]
[13]
Ricucci, D.; Siqueira, J.F.J., Jr Biofilms and apical periodontitis: Study of prevalence and association with clinical and histopathologic findings. J. Endod., 2010, 36(8), 1277-1288.
[http://dx.doi.org/10.1016/j.joen.2010.04.007] [PMID: 20647081]
[14]
Overman, P.R. Biofilm: A new view of plaque. J. Contemp. Dent. Pract., 2000, 1(3), 18-29.
[http://dx.doi.org/10.5005/jcdp-1-3-37] [PMID: 12167880]
[15]
Lamont, R.J.; Jenkinson, H.F. Life below the gum line: Pathogenic mechanisms of Porphyromonas gingivalis. Microbiol. Mol. Biol. Rev., 1998, 62(4), 1244-1263.
[http://dx.doi.org/10.1128/MMBR.62.4.1244-1263.1998] [PMID: 9841671]
[16]
Kokare, C.R.; Kadam, S.S.; Mahadik, K.R.; Chopade, B.A. Studies on bioemulsifier production from marine streptomyces Sp. S1 Indian J. Biotechnol., 2007, 6(1), 78-84.
[17]
Singh, I.; Dastidar, D.G.; Ghosh, D.; Sengupta, A.; Ajala, T.O.; Odeku, O.A.; Singh, B.P.; Sharma, M. Dastidar, D. G.; Ghosh, D.; Sengupta, A.; Ajala, T. O.; Odeku, O. A.; Sharma, B. P. S. and M. Bioadhesive films as drug delivery systems. Drug Deliv. Lett., 2021, 11(1), 2-15.
[http://dx.doi.org/10.2174/2210303110999201105154422]
[18]
M., V. Periodontal film for the treatment of periodontal disease J. Pharm. Sci. Res., 2019, 11(7), 2579-2584.
[19]
Schwach-Abdellaoui, K.; Vivien-Castioni, N.; Gurny, R. Local delivery of antimicrobial agents for the treatment of periodontal diseases. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft fur Pharm. Verfahrenstechnik, 2000, 50(1), 83-99.
[http://dx.doi.org/10.1016/S0939-6411(00)00086-2]
[20]
Prakash, J.; Kumar, T.S.; Venkataprasanna, K.S.; Niranjan, R.; Kaushik, M.; Samal, D.B.; Venkatasubbu, G.D. PVA/Alginate/Hydroxyapatite films for controlled release of amoxicillin for the treatment of periodontal defects. Appl. Surf. Sci., 2019, 495(July), 143543.
[http://dx.doi.org/10.1016/j.apsusc.2019.143543]
[21]
Elkayam, R.; Friedman, M.; Stabholz, A.; Soskolne, A.W.; Sela, M.N.; Golub, L. Sustained release device containing minocycline for local treatment of periodontal disease. J. Control. Release, 1988, 7(3), 231-236.
[http://dx.doi.org/10.1016/0168-3659(88)90055-7]
[22]
Nastri, L.; De Rosa, A.; De Gregorio, V.; Grassia, V.; Donnarumma, G. A new controlled-release material containing metronidazole and doxycycline for the treatment of periodontal and peri-implant diseases: Formulation and in vitro testing. Int. J. Dent., 2019, 2019, 9374607.
[http://dx.doi.org/10.1155/2019/9374607] [PMID: 30956660]
[23]
Agarwal, R.K.; Robinson, D.H.; Maze, G.I.; Reinhardt, R.A. Development and characterization of tetracycline-poly(lactide/glycolide) films for the treatment of periodontitis. J. Control. Release, 1993, 23(2), 137-146.
[http://dx.doi.org/10.1016/0168-3659(93)90039-8]
[24]
Wu, W.; Chen, W.; Jin, Q. Oral mucoadhesive buccal film of ciprofloxacin for periodontitis: Preparation and characterization. Trop. J. Pharm. Res., 2016, 15(3), 447-451.
[http://dx.doi.org/10.4314/tjpr.v15i3.3]
[25]
Rani, S.; Singh, N. Formulation and characterization of periodontal films containing azithromycin and Serratiopeptidase. Asian J. Pharm. Clin. Res., 2018, 11(May), 205.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i5.23032]
[26]
Kilicarslan, M.; Ilhan, M.; Inal, O.; Orhan, K. Preparation and evaluation of clindamycin phosphate loaded chitosan/alginate polyelectrolyte complex film as mucoadhesive drug delivery system for periodontal therapy. Eur. J. Pharm. Sci., 2018, 123(March), 441-451.
[http://dx.doi.org/10.1016/j.ejps.2018.08.007] [PMID: 30086353]
[27]
Tasneem, F.; Alam, M.; Pathan, M.S.I. Preparation and evaluation of metronidazole benzoate periodontal patches. Bangladesh Pharm. J., 2015, 18(2), 97-102.
[http://dx.doi.org/10.3329/bpj.v18i2.24305]
[28]
Prabhushankar, G.L.; Sathesh, P.R. Formulation and in-vitro evaluation of periodontal films containing metronidazole. Res. J. Pharm. Dos. Forms Technol., 2010, 2(4), 2188-2193.
[29]
Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnology, 2017, 15(1), 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[30]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[31]
Li, H.; Chen, Q.; Zhao, J.; Urmila, K. Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep., 2015, 5(1), 11033.
[http://dx.doi.org/10.1038/srep11033] [PMID: 26046938]
[32]
Armentano, I.; Arciola, C.R.; Fortunati, E.; Ferrari, D.; Mattioli, S.; Amoroso, C.F.; Rizzo, J.; Kenny, J.M.; Imbriani, M.; Visai, L. The interaction of bacteria with engineered nanostructured polymeric materials: A review. ScientificWorldJournal, 2014, 2014, 410423.
[http://dx.doi.org/10.1155/2014/410423] [PMID: 25025086]
[33]
Gao, W.; Thamphiwatana, S.; Angsantikul, P.; Zhang, L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2014, 6(6), 532-547.
[http://dx.doi.org/10.1002/wnan.1282] [PMID: 25044325]
[34]
Luan, B.; Huynh, T.; Zhou, R. Complete wetting of graphene by biological lipids. Nanoscale, 2016, 8(10), 5750-5754.
[http://dx.doi.org/10.1039/C6NR00202A] [PMID: 26910517]
[35]
Xu, Y.; Wei, M-T.; Ou-Yang, H.D.; Walker, S.G.; Wang, H.Z.; Gordon, C.R.; Guterman, S.; Zawacki, E.; Applebaum, E.; Brink, P.R.; Rafailovich, M.; Mironava, T. Exposure to TiO2 nanoparticles increases Staphylococcus aureus infection of HeLa cells. J. Nanobiotechnology, 2016, 14(1), 34.
[http://dx.doi.org/10.1186/s12951-016-0184-y] [PMID: 27102228]
[36]
Cheloni, G.; Marti, E.; Slaveykova, V.I. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii . Aquat. Toxicol., 2016, 170, 120-128.
[http://dx.doi.org/10.1016/j.aquatox.2015.11.018] [PMID: 26655656]
[37]
Li, W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli . Appl. Microbiol. Biotechnol., 2010, 85(4), 1115-1122.
[http://dx.doi.org/10.1007/s00253-009-2159-5] [PMID: 19669753]
[38]
Castellano, J.J.; Shafii, S.M.; Ko, F.; Donate, G.; Wright, T.E.; Mannari, R.J.; Payne, W.G.; Smith, D.J.; Robson, M.C. Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int. Wound J., 2007, 4(2), 114-122.
[http://dx.doi.org/10.1111/j.1742-481X.2007.00316.x ] [PMID: 17651227]
[39]
Polívková, M.; Valová, M.; Siegel, J.; Rimpelová, S.; Hubáček, T.; Lyutakov, O.; Švorčík, V. Antibacterial properties of palladium nanostructures sputtered on polyethylene naphthalate. RSC Advances, 2015, 5(90), 73767-73774.
[http://dx.doi.org/10.1039/C5RA09297C]
[40]
Polívková, M.; Štrublová, V.; Hubáček, T.; Rimpelová, S.; Švorčík, V.; Siegel, J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C, 2017, 72, 512-518.
[http://dx.doi.org/10.1016/j.msec.2016.11.072] [PMID: 28024615]
[41]
Leung, Y.H.; Ng, A.M.C.; Xu, X.; Shen, Z.; Gethings, L.A.; Wong, M.T.; Chan, C.M.N.; Guo, M.Y.; Ng, Y.H.; Djurišić, A.B.; Lee, P.K.H.; Chan, W.K.; Yu, L.H.; Phillips, D.L.; Ma, A.P.Y.; Leung, F.C.C. Mechanisms of antibacterial activity of MgO: Non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli . Small, 2014, 10(6), 1171-1183.
[http://dx.doi.org/10.1002/smll.201302434] [PMID: 24344000]
[42]
Johnston, H.J.; Hutchison, G.; Christensen, F.M.; Peters, S.; Hankin, S.; Stone, V. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol., 2010, 40(4), 328-346.
[http://dx.doi.org/10.3109/10408440903453074] [PMID: 20128631]
[43]
Chamundeeswari, M.; Sobhana, S.S.L.; Jacob, J.P.; Kumar, M.G.; Devi, M.P.; Sastry, T.P.; Mandal, A.B. Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnol. Appl. Biochem., 2010, 55(1), 29-35.
[http://dx.doi.org/10.1042/BA20090198] [PMID: 19929854]
[44]
Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res., 2008, 42(18), 4591-4602.
[http://dx.doi.org/10.1016/j.watres.2008.08.015] [PMID: 18804836]
[45]
Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces, 2010, 79(1), 5-18.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.029] [PMID: 20417070]
[46]
Pratap Reddy, M.; Venugopal, A.; Subrahmanyam, M. Hydroxyapatite-supported Ag-TiO2 as Escherichia coli disinfection photocatalyst. Water Res., 2007, 41(2), 379-386.
[http://dx.doi.org/10.1016/j.watres.2006.09.018] [PMID: 17137613]
[47]
Li, F.; Liu, F.; Huang, K.; Yang, S. Advancement of gallium and gallium-based compounds as antimicrobial agents. Front. Bioeng. Biotechnol., 2022, 10, 827960.
[http://dx.doi.org/10.3389/fbioe.2022.827960] [PMID: 35186906]
[48]
Escobar-Ramírez, M.C.; Castañeda-Ovando, A.; Pérez-Escalante, E.; Rodríguez-Serrano, G.M.; Ramírez-Moreno, E.; Quintero-Lira, A.; Contreras-López, E.; Añorve-Morga, J.; Jaimez-Ordaz, J.; González-Olivares, L.G. Antimicrobial activity of se-nanoparticles from bacterial biotransformation. Fermentation (Basel), 2021, 7(3), 130.
[http://dx.doi.org/10.3390/fermentation7030130]
[49]
Prodduturi, S.; Urman, K.L.; Otaigbe, J.U.; Repka, M.A. Stabilization of hot-melt extrusion formulations containing solid solutions using polymer blends. AAPS PharmSciTech, 2007, 8(2), 50.
[http://dx.doi.org/10.1208/pt0802050] [PMID: 17622123]
[50]
Ramesh, S.; Reddy, P.G.; Reddy, R.; Chemistry, P. Design and evaluation of biodegradable periodontal films containing ciprofloxacin and ornidazole. Sch. Acad. J. Pharm., 2013, 2(2), 60-69.
[51]
Sri, R.S.; Vijetha, K.A.; Deepika, K.; Padmaja, B. Design and characterization of periodontal films of moxifloxacin hydrochloride by using basil seed gum. Int. J. Pharma. Res. Health Sci., 2017, 5(6), 2-7.
[http://dx.doi.org/10.21276/ijprhs.2017.06.13]
[52]
Ghavami-lahiji, M.; Sha, F.; Naja, F.; Erfan, M. Drug-loaded polymeric films as a promising tool for the treatment of periodontitis. J. Drug Deliv. Sci. Technol., 2019, 52(April), 122-129.
[http://dx.doi.org/10.1016/j.jddst.2019.04.034]
[53]
Ahmed, M.G.; Harish, N.M.; Charyulu, R.N.; Prabhu, P. Formulation of chitosan-based ciprofloxacin and diclofenac film for periodontitis therapy. Trop. J. Pharm. Res., 2008, 2009(8), 33-41.
[54]
Ghafar, H.; Khan, M.I.; Sarwar, H.S.; Yaqoob, S.; Hussain, S.Z.; Tariq, I.; Madni, A.U.; Shahnaz, G.; Sohail, M.F. Development and characterization of bioadhesive film embedded with lignocaine and calcium fluoride nanoparticles. AAPS PharmSciTech, 2020, 21(2), 1-2.
[http://dx.doi.org/10.1208/s12249-019-1615-5]
[55]
Umadevi, S.; Rohini, B.; Nithyapriya, S. Formulation and evaluation of ciprofloxacin dental films for periodontitis. J. Chem. Pharm. Res., 2012, 4(6), 2964-2971.
[56]
Samal, H.B.; Patra, C.N.; Boyeena, L.; Sreenivas, S.A.; Das, I.J. Design, characterization and clinical evaluation of curcumin dental film for the treatment of periodontitis. Drug Deliv. Lett., 2021, 11(1), 81-95.
[http://dx.doi.org/10.2174/2210303110999201123203946]
[57]
Samal, H.B.; Das, I.J.; Patra, C.N.; Sreenivas, S.A. Design and in vitro evaluation of curcumin dental films for the treatment of periodontitis Asian J. Pharm., 2017, 11(3), S579-S587.
[58]
Huang, J.; Ren, J.; Chen, G.; Deng, Y.; Wang, G.; Wu, X. Evaluation of the xanthan-based film incorporated with silver nanoparticles for potential application in the nonhealing infectious wound., 2017.
[http://dx.doi.org/10.1155/2017/6802397]
[59]
Mazzarino, L.; Borsali, R.; Lemos-Senna, E. Mucoadhesive films containing chitosan-coated nanoparticles: A new strategy for buccal curcumin release. J. Pharm. Sci., 2014, 103(11), 3764-3771.
[http://dx.doi.org/10.1002/jps.24142] [PMID: 25187001]
[60]
Majeed, A. United States Patent. Yeast, 2010, 2(19), 4-6.
[61]
Yang, I.R.K.; Us, N.Y.; Fuisz, R.C.; Us, V.A.; Myers, G.L.; Us, T.N.; Fuisz, J.M.; Us, V.A.; Examiner, P.; Lee, E.H.; Hoffmann, F. United States Patent. Patent No. 2010 2010, 2(12), 10.
[62]
United States Patent Date of Patent: Syst. Method Program. A Weigh. Scale Using a Key Signal to Enter a Program. 2009, 1(12), 14.
[63]
Kurihara, H.; Shinohara, H.; Yoshino, H.; Takeda, K.; Shiba, H. Neurotrophins in cultured cells from periodontal tissues. J. Periodontol., 2003, 74(1), 76-84.
[http://dx.doi.org/10.1902/jop.2003.74.1.76] [PMID: 12593600]