Identification of Neural Progenitor Cell-associated Chemoradiotherapy Resistance Gene Set (ARL4C, MSN, TNFAIP6) for Prognosis of Glioma

Page: [2189 - 2202] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Glioma is the most common malignant intracranial tumor with high lethality. Despite surgery combined with chemoradiotherapy, the prognosis for patients with glioma remains poor. This is primarily due to acquired chemoradiotherapy resistance. Therefore, to improve the prognosis of glioma, further study into the mechanism of chemoradiotherapy resistance is needed.

Objective: This study aimed to (1) evaluate the prognosis of patients with glioma by using a prognostic risk score model constructed by chemoradiotherapy resistance genes, (2) provide new targets and directions for precise treatment of glioma, and (3) discuss the tumor heterogeneity of tumor cells.

Methods: According to therapy class and overall survival (OS), we identified 53 genes associated with glioma chemoradiotherapy resistance in The Cancer Genome Atlas Glioblastoma (TCGA GBM) database. Considering the important role of chemoradiotherapy resistance-related genes in the prognosis of glioma, we preliminarily screened and identified vital prognostic factors among these genes by using the Cox regression model of absolute contraction and selection operators in the TCGA GBM lower-grade glioma (TCGA GBMLGG) dataset. Next, the heterogeneity of the chemoradiotherapy resistance-associated genes in different glioma cells was revealed by single-cell sequencing in the GSE117891 cohort.

Results: A prognostic risk score model consisting of three genes (ARL4C, MSN, TNFAIP6) was constructed. The expression of this model was high in glioma neural progenitor cells (NPCs) and low in glioma oligodendrocytes. The OS rates were significantly lower in the high- vs. low-risk group.

Conclusion: Our 3 gene risk score complements the current glioma diagnosis and provides a novel insight into chemoradiotherapy resistance mechanisms for the prognosis of patients with glioma.

Keywords: Glioma, chemoradiotherapy resistance, neural progenitor cells, prognostic power, TCGA, tissue microarray, single-cell sequencing.

[1]
Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol 2016; 131(6): 803-20.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[2]
Weller M, Wick W, Aldape K, et al. Glioma. Nat Rev Dis Primers 2015; 1: 15017.
[http://dx.doi.org/10.1038/nrdp.2015.17] [PMID: 27188790]
[3]
Reifenberger G, Wirsching H-G, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas - implications for classification and therapy. Nat Rev Clin Oncol 2017; 14(7): 434-52.
[http://dx.doi.org/10.1038/nrclinonc.2016.204] [PMID: 28031556]
[4]
Delgado-López PD, Corrales-García EM, Martino J, Lastra-Aras E, Dueñas-Polo MT. Diffuse low-grade glioma: A review on the new molecular classification, natural history and current management strategies. Clin Transl Oncol 2017; 19(8): 931-44.
[http://dx.doi.org/10.1007/s12094-017-1631-4] [PMID: 28255650]
[5]
Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet 2018; 392(10145): 432-46.
[http://dx.doi.org/10.1016/S0140-6736(18)30990-5] [PMID: 30060998]
[6]
Hanna C, Lawrie TA, Rogozińska E, et al. Treatment of newly diagnosed glioblastoma in the elderly: A network meta-analysis. Cochrane Database Syst Rev 2020; 3: CD013261.
[http://dx.doi.org/10.1002/14651858.CD013261.pub2] [PMID: 32202316]
[7]
Wick W, Hartmann C, Engel C, et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 2009; 27(35): 5874-80.
[http://dx.doi.org/10.1200/JCO.2009.23.6497] [PMID: 19901110]
[8]
Wick W, Roth P, Hartmann C, et al. Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro-oncol 2016; 18(11): 1529-37.
[http://dx.doi.org/10.1093/neuonc/now133] [PMID: 27370396]
[9]
Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10): 987-96.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[10]
Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: A clinical review. JAMA 2013; 310(17): 1842-50.
[http://dx.doi.org/10.1001/jama.2013.280319] [PMID: 24193082]
[11]
Hameed NUF, Qiu T, Zhuang D, et al. Transcortical insular glioma resection: Clinical outcome and predictors. J Neurosurg 2018; 131(3): 706-16.
[http://dx.doi.org/10.3171/2018.4.JNS18424] [PMID: 30485243]
[12]
Griveau A, Seano G, Shelton SJ, et al. A glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell 2018; 33(5): 874-889.e7.
[http://dx.doi.org/10.1016/j.ccell.2018.03.020] [PMID: 29681511]
[13]
Shergalis A, Bankhead A III, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev 2018; 70(3): 412-45.
[http://dx.doi.org/10.1124/pr.117.014944] [PMID: 29669750]
[14]
Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344(6190): 1396-401.
[http://dx.doi.org/10.1126/science.1254257] [PMID: 24925914]
[15]
Suvà ML, Tirosh I. The glioma stem cell model in the era of single-cell genomics. Cancer Cell 2020; 37(5): 630-6.
[http://dx.doi.org/10.1016/j.ccell.2020.04.001] [PMID: 32396858]
[16]
Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: Lessons from the tumor hierarchy in a lethal cancer. Genes Dev 2019; 33(11-12): 591-609.
[http://dx.doi.org/10.1101/gad.324301.119] [PMID: 31160393]
[17]
Gravendeel LAM, Kouwenhoven MCM, Gevaert O, et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 2009; 69(23): 9065-72.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2307] [PMID: 19920198]
[18]
Bowman RL, Wang Q, Carro A, Verhaak RGW, Squatrito M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro-oncol 2017; 19(1): 139-41.
[http://dx.doi.org/10.1093/neuonc/now247] [PMID: 28031383]
[19]
Guo R, Berry LD, Aisner DL, et al. MET IHC is a poor screen for MET amplification or MET Exon 14 mutations in lung adenocarcinomas: Data from a tri-institutional cohort of the lung cancer mutation consortium. J Thorac Oncol 2019; 14(9): 1666-71.
[http://dx.doi.org/10.1016/j.jtho.2019.06.009] [PMID: 31228623]
[20]
Paschalis A, Sheehan B, Riisnaes R, et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur Urol 2019; 76(4): 469-78.
[http://dx.doi.org/10.1016/j.eururo.2019.06.030] [PMID: 31345636]
[21]
Peng J, Sun B-F, Chen C-Y, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res 2019; 29(9): 725-38.
[http://dx.doi.org/10.1038/s41422-019-0195-y] [PMID: 31273297]
[22]
Venteicher AS, Tirosh I, Hebert C, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 2017; 355(6332): eaai8478.
[http://dx.doi.org/10.1126/science.aai8478] [PMID: 28360267]
[23]
Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: A “state of the science” review. Neuro-oncol 2014; 16(7): 896-913.
[http://dx.doi.org/10.1093/neuonc/nou087] [PMID: 24842956]
[24]
Pace A, Dirven L, Koekkoek JAF, et al. European Association for Neuro-Oncology (EANO) guidelines for palliative care in adults with glioma. Lancet Oncol 2017; 18(6): e330-40.
[http://dx.doi.org/10.1016/S1470-2045(17)30345-5] [PMID: 28593859]
[25]
Friedman HS, Kerby T, Calvert H. Temozolomide and treatment of malignant glioma. Clin Cancer Res 2000; 6(7): 2585-97.
[PMID: 10914698]
[26]
Yan Y, Zeng S, Gong Z, Xu Z. Clinical implication of cellular vaccine in glioma: Current advances and future prospects. J Exp Clin Cancer Res 2020; 39(1): 257.
[http://dx.doi.org/10.1186/s13046-020-01778-6] [PMID: 33228738]
[27]
Tang T, Chang B, Zhang M, Sun T. Nanoprobe-mediated precise imaging and therapy of glioma. Nanoscale Horiz 2021; 6(8): 634-50.
[http://dx.doi.org/10.1039/D1NH00182E] [PMID: 34110340]
[28]
Gagliardi F, De Domenico P, Snider S, et al. Gamma Knife radiosurgery as primary treatment of low-grade brainstem gliomas: A systematic review and metanalysis of current evidence and predictive factors. Crit Rev Oncol Hematol 2021; 168: 103508.
[http://dx.doi.org/10.1016/j.critrevonc.2021.103508] [PMID: 34678323]
[29]
Li Y, Jia Q, Zhang J, et al. Combination therapy with Gamma Knife radiosurgery and antisense EGFR for malignant glioma in vitro and orthotopic xenografts. Oncol Rep 2010; 23(6): 1585-91.
[PMID: 20428813]
[30]
Galstyan A, Markman JL, Shatalova ES, et al. Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nat Commun 2019; 10(1): 3850.
[http://dx.doi.org/10.1038/s41467-019-11719-3] [PMID: 31462642]
[31]
Wang J, Tang W, Yang M, et al. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials 2021; 273: 120784.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120784] [PMID: 33848731]
[32]
Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444(7120): 756-60.
[http://dx.doi.org/10.1038/nature05236] [PMID: 17051156]
[33]
Oldrini B, Vaquero-Siguero N, Mu Q, et al. MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas. Nat Commun 2020; 11(1): 3883.
[http://dx.doi.org/10.1038/s41467-020-17717-0] [PMID: 32753598]
[34]
Chen J, Li Y, Yu T-S, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012; 488(7412): 522-6.
[http://dx.doi.org/10.1038/nature11287] [PMID: 22854781]
[35]
Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 2007; 67(19): 8994-9000.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1045] [PMID: 17908999]
[36]
Qin EY, Cooper DD, Abbott KL, et al. Neural precursor-derived pleiotrophin mediates subventricular zone invasion by glioma. Cell 2017; 170(5): 845-859.e19.
[http://dx.doi.org/10.1016/j.cell.2017.07.016] [PMID: 28823557]
[37]
Liu Y, Zeng R, Wang Y, et al. Mesenchymal stem cells enhance microglia M2 polarization and attenuate neuroinflammation through TSG-6. Brain Res 2019; 1724: 146422.
[http://dx.doi.org/10.1016/j.brainres.2019.146422] [PMID: 31472111]
[38]
Chen Q, Fu W-J, Tang X-P, et al. ADP-ribosylation factor like GTPase 4C (ARL4C) augments stem-like traits of glioblastoma cells by upregulating ALDH1A3. J Cancer 2021; 12(3): 818-26.
[http://dx.doi.org/10.7150/jca.45052] [PMID: 33403039]