Aberrant Connection Formation and Glia Involvement in the Progression of Pharmacoresistant Mesial Temporal Lobe Epilepsy

Page: [2283 - 2297] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Epilepsy is the most common chronic neurological disease, affecting approximately 65 million people worldwide, with mesial temporal lobe epilepsy (mTLE) being the most common type, characterized by the presence of focal seizures that begin in the hippocampus, and subsequently generalize to structures such as the cerebral cortex. It is estimated that approximately 40% of patients with mTLE develop drug resistance (DR), whose pathophysiological mechanisms remain unclear. The neuronal network hypothesis is one attempt to understand the mechanisms underlying resistance to antiepileptic drugs (AEDs), since recurrent seizure activity generates excitotoxic damage and activation of neuronal death and survival pathways that, in turn, promote the formation of aberrant neuronal networks. This review addresses the mechanisms that are activated, perhaps as compensatory mechanisms in response to the neurological damage caused by epileptic seizures, but that affect the formation of aberrant connections that allow the establishment of inappropriate circuits. On the other hand, glia seems to have a relevant role in post-seizure plasticity, thus supporting the hypothesis of the neuronal network in drug-resistant epilepsy, which has been proposed for ELT.

Keywords: Mesial temporal lobe epilepsy, drug resistance, mossy fiber sprouting, hippocampus, cerebral cortex, aberrant connections, astrogliosis.

[1]
Helmers SL, Thurman DJ, Durgin TL, et al. Descriptive epidemiology of epilepsy in the U.S. population: A different approach. Epilepsia 2015; 56(6): 942-8.
[http://dx.doi.org/10.1111/epi.13001]
[2]
Devinsky O, Vezzani A, O’Brien TJ, et al. Epilepsy. Nat Rev Dis Primers 2018; 4: 18024.
[http://dx.doi.org/10.1038/nrdp.2018.24]
[3]
Zhang C, Kwan P. The concept of drug-resistant epileptogenic zone. Front Neurol 2019; 10: 558.
[http://dx.doi.org/10.3389/fneur.2019.00558] [PMID: 31214106]
[4]
Téllez-Zenteno JF, Hernández-Ronquillo L. A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat 2012; 2012: 630853.
[http://dx.doi.org/10.1155/2012/630853] [PMID: 22957234]
[5]
Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. Review N Engl J Med 2011; 365(10): 919-26.
[http://dx.doi.org/10.1056/NEJMra1004418]
[6]
Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010; 51(6): 1069-77.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02397.x] [PMID: 19889013]
[7]
Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 2001; 345(5): 311-8.
[http://dx.doi.org/10.1056/NEJM200108023450501] [PMID: 11484687]
[8]
Banerjee PN, Filippi D, Allen Hauser W. The descriptive epidemiology of epilepsy-a review. Epilepsy Res 2009; 85(1): 31-45.
[http://dx.doi.org/10.1016/j.eplepsyres.2009.03.003] [PMID: 19369037]
[9]
Ngugi AK, Kariuki SM, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Incidence of epilepsy: A systematic review and meta-analysis. Neurology 2011; 77(10): 1005-12.
[http://dx.doi.org/10.1212/WNL.0b013e31822cfc90] [PMID: 21893672]
[10]
Schmidt D, Sillanpaa M. Evidence-based review on the natural history of the epilepsies. Curr Opin Neurol 2012; 25: 159-63.
[http://dx.doi.org/10.1097/WCO.0b013e3283507e73]
[11]
Feigin VL, Abajobir AA, Abate KH, et al. Global, regional, and national burden of neurological disorders during 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 2017; 16(11): 877-97.
[http://dx.doi.org/10.1016/S1474-4422(17)30299-5] [PMID: 28931491]
[12]
Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342(5): 314-9.
[http://dx.doi.org/10.1056/NEJM200002033420503] [PMID: 10660394]
[13]
Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia 2018; 59(12): 2179-93.
[http://dx.doi.org/10.1111/epi.14596] [PMID: 30426482]
[14]
Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia 2014; 55(4): 475-82.
[http://dx.doi.org/10.1111/epi.12550] [PMID: 24730690]
[15]
Galovic M, van Dooren VQH, Postma TS, et al. Progressive cortical thinning in patients with focal epilepsy. JAMA Neurol 2019; 76(10): 1230-9.
[http://dx.doi.org/10.1001/jamaneurol.2019.1708] [PMID: 31260004]
[16]
Elliott CA, Gross DW, Wheatley BM, Beaulieu C, Sankar T. Progressive contralateral hippocampal atrophy following surgery for medically refractory temporal lobe epilepsy. Epilepsy Res 2016; 125: 62-71.
[http://dx.doi.org/10.1016/j.eplepsyres.2016.06.007] [PMID: 27394376]
[17]
West S, Nolan SJ, Newton R. Surgery for epilepsy: A systematic review of current evidence. Epileptic Disord 2016; 18(2): 113-21.
[http://dx.doi.org/10.1684/epd.2016.0825] [PMID: 27193634]
[18]
Kwan P, Brodie MJ. Refractory epilepsy: Mechanisms and solutions. Expert Rev Neurother 2006; 6(3): 397-406.
[http://dx.doi.org/10.1586/14737175.6.3.397] [PMID: 16533143]
[19]
French JA. Refractory epilepsy: Clinical overview. Epilepsia 2007; 48(1): 3-7.
[http://dx.doi.org/10.1111/j.1528-1167.2007.00992.x]
[20]
Malikova H, Kramska L, Vojtech Z, et al. Different surgical approaches for mesial temporal epilepsy: Resection extent, seizure, and neuropsychological outcomes. Stereotact Funct Neurosurg 2014; 92(6): 372-80.
[http://dx.doi.org/10.1159/000366003] [PMID: 25359168]
[21]
Simasathien T, Vadera S, Najm I, Gupta A, Bingaman W, Jehi L. Improved outcomes with earlier surgery for intractable frontal lobe epilepsy. Ann Neurol 2013; 73(5): 646-54.
[http://dx.doi.org/10.1002/ana.23862] [PMID: 23494550]
[22]
Olesen J, Gustavsson A, Svensson M, Wittchen HU, Jönsson B. The economic cost of brain disorders in Europe. Eur J Neurol 2012; 19(1): 155-62.
[http://dx.doi.org/10.1111/j.1468-1331.2011.03590.x] [PMID: 22175760]
[23]
Eadie MJ. Shortcomings in the current treatment of epilepsy. Expert Rev Neurother 2012; 12(12): 1419-27.
[http://dx.doi.org/10.1586/ern.12.129] [PMID: 23237349]
[24]
Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: Experimental approaches and translational research. Pharmacol Rev 2010; 62(4): 668-700.
[http://dx.doi.org/10.1124/pr.110.003046] [PMID: 21079040]
[25]
Pitkänen A, Engel J Jr. Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics 2014; 11(2): 231-41.
[http://dx.doi.org/10.1007/s13311-014-0257-2] [PMID: 24492975]
[26]
Kubova H, Lukasiuk K, Pitkänen A. New insight on the mechanisms of epileptogenesis in the developing brain. Adv Tech Stand Neurosurg 2012; 39: 3-44.
[http://dx.doi.org/10.1007/978-3-7091-1360-8_1] [PMID: 23250835]
[27]
Behr C, Lévesque M, Stroh T, Avoli M. Time-dependent evolution of seizures in a model of mesial temporal lobe epilepsy. Neurobiol Dis 2017; 106: 205-13.
[http://dx.doi.org/10.1016/j.nbd.2017.07.008] [PMID: 28709992]
[28]
Chen CL, Shih YC, Liou HH, Hsu YC, Lin FH, Tseng WI. Premature white matter aging in patients with right mesial temporal lobe epilepsy: A machine learning approach based on diffusion MRI data. Neuroimage Clin 2019; 24: 102033.
[http://dx.doi.org/10.1016/j.nicl.2019.102033] [PMID: 31795060]
[29]
McCormick DA, Contreras D. On the cellular and network bases of epileptic seizures. Annu Rev Physiol 2001; 63: 815-46. 2. Clark S, Wilson WA. Mechanisms of epileptogenesis. Adv Neurol 1999; 79: 607-30.
[30]
Fisher RS, Cross JH, D’Souza C, et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 2017; 58(4): 531-42.
[http://dx.doi.org/10.1111/epi.13671] [PMID: 28276064]
[31]
Chang BS, Lowenstein DH. Epilepsy. Review N Engl J Med 2003; 349(13): 1257-66.
[http://dx.doi.org/10.1056/NEJMra022308]
[32]
Trevelyan AJ, Sussillo D, Watson BO, Yuste R. Modular propagation of epileptiform activity: Evidence for an inhibitory veto in neocortex. J Neurosci 2006; 26(48): 12447-55.
[http://dx.doi.org/10.1523/JNEUROSCI.2787-06.2006] [PMID: 17135406]
[33]
Bragin A, Wilson CL, Fields T, Fried I, Engel J Jr. Analysis of seizure onset on the basis of wideband EEG recordings. Epilepsia 2005; 46(Suppl. 5): 59-63.
[http://dx.doi.org/10.1111/j.1528-1167.2005.01010.x] [PMID: 15987255]
[34]
Bragin A, Azizyan A, Almajano J, Wilson CL, Engel J Jr. Analysis of chronic seizure onsets after intrahippocampal kainic acid injection in freely moving rats. Epilepsia 2005; 46(10): 1592-8.
[http://dx.doi.org/10.1111/j.1528-1167.2005.00268.x] [PMID: 16190929]
[35]
Sanabria GER, da Silva V, Spreafico R. Damage, reorganization, and abnormal neocortical hyperexcitability in the pilocarpine model of temporal lobe epilepsy. Epilepsia 2002; 43(Suppl. 5): 96-106.
[http://dx.doi.org/10.1046/j.1528-1157.43.s.5.31.x]
[36]
Cavalheiro EA. The pilocarpine model of epilepsy. Ital J Neurol Sci 1995; 16(1-2): 33-7.
[http://dx.doi.org/10.1007/BF02229072] [PMID: 7642349]
[37]
Engel J Jr. Introduction to temporal lobe epilepsy. Epilepsy Res 1996; 26: 141-50.
[http://dx.doi.org/10.1016/S0920-1211(96)00043-5]
[38]
Nakasato N, Otsuki T, Yoshimoto T, et al. Temporal lobe epilepsy with extrahippocampal structural lesions. J Psychiatry Neurol 1993; 47: 245-8.
[http://dx.doi.org/10.1111/j.1440-1819.1993.tb02060.x]
[39]
Badawy RAB, Harvey AS, Macdonell RAL. Cortical hyperexcitability and epileptogenesis: Understanding the mechanisms of epilepsy - part 2. J Clin Neurosci 2009; 16(4): 485-500.
[http://dx.doi.org/10.1016/j.jocn.2008.10.001] [PMID: 19230676]
[40]
Badawy RAB, Harvey AS, Macdonell RAL. Cortical hyperexcitability and epileptogenesis: Understanding the mechanisms of epilepsy - part 1. J Clin Neurosci 2009; 16(3): 355-65.
[http://dx.doi.org/10.1016/j.jocn.2008.08.026] [PMID: 19124246]
[41]
Perucca P, Mula M. Antiepileptic drug effects on mood and behavior: Molecular targets. Review Epilepsy Behav 2013; 26(3): 440-9.
[http://dx.doi.org/10.1016/j.yebeh.2012.09.018] [PMID: 23092694]
[42]
Avoli M, Jefferys JG, Jefferys JGR. Models of drug-induced epileptiform synchronization in vitro. Review J Neurosci Methods 2016; 260: 26-32.
[http://dx.doi.org/10.1016/j.jneumeth.2015.10.006] [PMID: 26484784]
[43]
Blümcke I, Suter B, Behle K, et al. Loss of hilar mossy cells in Ammon’s horn sclerosis. Epilepsia 2000; 41(6): S174-80.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb01577.x]
[44]
Amaral DG, Witter MP. The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience 1989; 31(3): 571-91.
[http://dx.doi.org/10.1016/0306-4522(89)90424-7] [PMID: 2687721]
[45]
Parent JM, Murphy GG. Mechanisms and functional significance of aberrant seizure-induced hippocampal neurogenesis. Epilepsia 2008; 49(5)(Suppl. 5): 19-25.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01634.x] [PMID: 18522597]
[46]
Schmeiser B, Zentner J, Prinz M, Brandt A, Freiman TM. Extent of mossy fiber sprouting in patients with mesiotemporal lobe epilepsy correlates with neuronal cell loss and granule cell dispersion. Epilepsy Res 2017; 129: 51-8.
[http://dx.doi.org/10.1016/j.eplepsyres.2016.11.011] [PMID: 27907826]
[47]
Cavarsan CF, Malheiros J, Hamani C, et al. Is mossy fiber sprouting a potential therapeutic target for epilepsy? Review Front Neurol 2018; 9: 1023.
[http://dx.doi.org/10.3389/fneur.2018.01023]
[48]
Ogren JA, Wilson CL, Bragin A, et al. Three-dimensional surface maps link local atrophy and fast ripples in human epileptic hippocampus. Ann Neurol 2009; 66(6): 783-91.
[http://dx.doi.org/10.1002/ana.21703] [PMID: 20035513]
[49]
Bonilha L, Elm JJ, Edwards JC, et al. How common is brain atrophy in patients with medial temporal lobe epilepsy? Epilepsia 2010; 51(9): 1774-9.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02576.x] [PMID: 20412283]
[50]
Koyama R, Ikegaya Y. The molecular and cellular mechanisms of axon guidance in mossy fiber sprouting. Review Front Neurol 2018; 9: 382.
[http://dx.doi.org/10.3389/fneur.2018.00382]
[51]
Sloviter RS, Zappone CA, Harvey BD, et al. “Dormant basket cell” hypothesis revisited: Relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. J Comp Neurol 2003; 459(1): 44-76.
[http://dx.doi.org/10.1002/cne.10630] [PMID: 12629666]
[52]
Freiman TM, Eismann-Schweimler J, Frotscher M. Granule cell dispersion in temporal lobe epilepsy is associated with changes in dendritic orientation and spine distribution. Exp Neurol 2011; 229(2): 332-8.
[http://dx.doi.org/10.1016/j.expneurol.2011.02.017] [PMID: 21376037]
[53]
Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989; 26(3): 321-30.
[http://dx.doi.org/10.1002/ana.410260303] [PMID: 2508534]
[54]
Bender RA, Soleymani SV, Brewster AL, et al. Enhanced expression of a specific hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) in surviving dentate gyrus granule cells of human and experimental epileptic hippocampus. J Neurosci 2003; 23(17): 6826-36.
[http://dx.doi.org/10.1523/JNEUROSCI.23-17-06826.2003] [PMID: 12890777]
[55]
Represa A, Jorquera I, Le Gal La Salle G, Ben-Ari Y. Epilepsy induced collateral sprouting of hippocampal mossy fibers: Does it induce the development of ectopic synapses with granule cell dendrites? Hippocampus 1993; 3(3): 257-68.
[http://dx.doi.org/10.1002/hipo.450030303] [PMID: 8353609]
[56]
Cronin J, Obenaus A, Houser CR, Dudek FE. Electrophysiology of dentate granule cells after kainate-induced synaptic reorganization of the mossy fibers. Brain Res 1992; 573(2): 305-10.
[http://dx.doi.org/10.1016/0006-8993(92)90777-7] [PMID: 1504768]
[57]
(a) Cadotte AJ, Mareci TH, DeMarse TB, et al. Temporal lobe epilepsy: Anatomical and effective connectivity. IEEE Trans Neural Syst Rehabil Eng 2009; 17(3): 214-23.
[http://dx.doi.org/10.1109/TNSRE.2008.2006220] [PMID: 19273040] ; (b) Koyama R, Ikegaya Y. Mossy fiber sprouting as a potential therapeutic target for epilepsy. Curr Neurovasc Res 2004; 1(1): 3-10.
[http://dx.doi.org/10.2174/1567202043480242] [PMID: 16181061]
[58]
Badawy RA, Loetscher T, Macdonell RA, Brodtmann A. Cortical excitability and neurology: Insights into the pathophysiology. Funct Neurol 2012; 27(3): 131-45.
[PMID: 23402674]
[59]
Sloviter R, Bumanglag A, Schwarcz R, et al. Abnormal dentate gyrus network circuitry in temporal lobe epilepsy Jasper’s Basic Mechanisms of the Epilepsies. Bethesda, MD: National Center for Biotechnology Information 2012.
[http://dx.doi.org/10.1093/med/9780199746545.003.0034]
[60]
Bonilha L, Rorden C, Castellano G, Cendes F, Li LM. Voxel-based morphometry of the thalamus in patients with refractory medial temporal lobe epilepsy. Neuroimage 2005; 25(3): 1016-21.
[http://dx.doi.org/10.1016/j.neuroimage.2004.11.050] [PMID: 15809001]
[61]
Marín-Padilla M, Tsai RJ, King MA, Roper SN. Altered corticogenesis and neuronal morphology in irradiation-induced cortical dysplasia: A Golgi-Cox study. J Neuropathol Exp Neurol 2003; 62(11): 1129-43.
[http://dx.doi.org/10.1093/jnen/62.11.1129] [PMID: 14656071]
[62]
Jensen FE, Baram TZ. Developmental seizures induced by common early-life insults: Short- and long-term effects on seizure susceptibility. Ment Retard Dev Disabil Res Rev 2000; 6(4): 253-7.
[63]
Salin PA, Bullier J. Corticocortical connections in the visual system: Structure and function. Physiol Rev 1995; 75(1): 107-54.
[http://dx.doi.org/10.1152/physrev.1995.75.1.107] [PMID: 7831395]
[64]
Shetty AK, Turner DA. Development of fetal hippocampal grafts in intact and lesioned hippocampus. Prog Neurobiol 1996; 50(5-6): 597-653.
[http://dx.doi.org/10.1016/S0301-0082(96)00048-2] [PMID: 9015829]
[65]
Chagnac-Amitai Y, Connors BW. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 1989; 61(4): 747-58.
[http://dx.doi.org/10.1152/jn.1989.61.4.747] [PMID: 2542471]
[66]
Avoli M. GABA-mediated synchronous potentials and seizure generation. Epilepsia 1996; 37(11): 1035-42.
[http://dx.doi.org/10.1111/j.1528-1157.1996.tb01022.x] [PMID: 8917052]
[67]
Chagnac-Amitai Y, Connors BW. Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J Neurophysiol 1989; 62(5): 1149-62.
[http://dx.doi.org/10.1152/jn.1989.62.5.1149] [PMID: 2585046]
[68]
Sloviter RS. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1991; 1(1): 41-66.
[http://dx.doi.org/10.1002/hipo.450010106] [PMID: 1688284]
[69]
Leite JP, Bortolotto ZA, Cavalheiro EA. Spontaneous recurrent seizures in rats: An experimental model of partial epilepsy. Neurosci Biobehav Rev 1990; 14(4): 511-7.
[http://dx.doi.org/10.1016/S0149-7634(05)80076-4] [PMID: 2287490]
[70]
Shah A, Fagg AH, Barto AG. Cortical involvement in the recruitment of wrist muscles. J Neurophysiol 2004; 91(6): 2445-56.
[http://dx.doi.org/10.1152/jn.00879.2003] [PMID: 14749314]
[71]
Coan AC, Appenzeller S, Bonilha L, et al. Seizure frequency and lateralization affect progression of atrophy in temporal lobe epilepsy. Neurology 2009; 73(11): 834-42.
[http://dx.doi.org/10.1212/WNL.0b013e3181b783dd]
[72]
Henshall DC, Murphy BM. Modulators of neuronal cell death in epilepsy. Curr Opin Pharmacol 2008; 8(1): 75-81.
[http://dx.doi.org/10.1016/j.coph.2007.07.005] [PMID: 17827063]
[73]
Rubio C, Mendoza C, Trejo C, et al. Activation of the extrinsic and intrinsic apoptotic pathways in cerebellum of kindled rats. Cerebellum 2019; 18(4): 750-60.
[http://dx.doi.org/10.1007/s12311-019-01030-8] [PMID: 31062284]
[74]
Wyllie AH, Kerr JF, Currie AR. Cell death: The significance of apoptosis. Int Rev Cytol 1980; 68: 251-306.
[http://dx.doi.org/10.1016/S0074-7696(08)62312-8] [PMID: 7014501]
[75]
Strasser A, O’Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem 2000; 69(1): 217-45.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.217] [PMID: 10966458]
[76]
Henshall DC, Simon RP. Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab 2005; 25(12): 1557-72.
[http://dx.doi.org/10.1038/sj.jcbfm.9600149] [PMID: 15889042]
[77]
Fujikawa DG. Prolonged seizures and cellular injury: Understanding the connection. Epilepsy Behav 2005; 7(3)(Suppl. 3): S3-S11.
[http://dx.doi.org/10.1016/j.yebeh.2005.08.003] [PMID: 16278099]
[78]
Fujikawa DG, Shinmei SS, Zhao S, et al. Caspase-dependent programmed cell death pathways are not activated in generalized seizure-induced neuronal death. Brain Res 2007; 1135(1): 206-18.
[http://dx.doi.org/10.1016/j.brainres.2006.12.029]
[79]
Fujikawa DG, Itabashi HH, Wu A, Shinmei SS. Status epilepticus-induced neuronal loss in humans without systemic complications or epilepsy. Epilepsia 2000; 41(8): 981-91.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb00283.x] [PMID: 10961625]
[80]
Vega-García A, Orozco-Suárez S, Villa A, et al. Cortical expression of IL1-β, Bcl-2, Caspase-3 and 9, SEMA-3a, NT-3 and P-glycoprotein as biological markers of intrinsic severity in drug-resistant temporal lobe epilepsy. Brain Res 2021; 1758: 147303.
[http://dx.doi.org/10.1016/j.brainres.2021.147303] [PMID: 33516813]
[81]
Henshall DC, Bonislawski DP. Formation of the Apaf-1/cytochrome c complex precedes activation of caspase-9 during seizure-induced neuronal death. Cell Death Differ 2001; 8: 1169-81.
[82]
Henshall DC, Chen J, Simon RP. Involvement of caspase-3-like protease in the mechanism of cell death following focally evoked limbic seizures. J Neurochem 2000; 74(3): 1215-23.
[http://dx.doi.org/10.1046/j.1471-4159.2000.741215.x] [PMID: 10693954]
[83]
Lorigados Pedre, Neuronal death in the neocortex of drug resistant temporal lobe epilepsy patients. Neurologia 2007; 23(9): 555-65.
[84]
Henshall DC, Bonislawski DP, Skradski SL, et al. Cleavage of bid may amplify caspase-8-induced neuronal death following focally evoked limbic seizures. Neurobiol Dis 2001; 8(4): 568-80.
[http://dx.doi.org/10.1006/nbdi.2001.0415] [PMID: 11493022]
[85]
Henshall DC, Araki T, Schindler CK, et al. Activation of Bcl-2-associated death protein and counter-response of Akt within cell populations during seizure-induced neuronal death. J Neurosci 2002; 22(19): 8458-65.
[http://dx.doi.org/10.1523/JNEUROSCI.22-19-08458.2002] [PMID: 12351720]
[86]
Ettcheto M, Junyent F, de Lemos L, et al. Mice lacking functional fas death receptors are protected from kainic acid-induced apoptosis in the hippocampus. Mol Neurobiol 2015; 52(1): 120-9.
[http://dx.doi.org/10.1007/s12035-014-8836-0] [PMID: 25119776]
[87]
Larsen BD, Sørensen CS. The caspase-activated DNase: Apoptosis and beyond. FEBS J 2017; 284(8): 1160-70.
[http://dx.doi.org/10.1111/febs.13970] [PMID: 27865056]
[88]
Ferrer I, López E, Blanco R, Rivera R, Krupinski J, Martí E. Differential c-Fos and caspase expression following kainic acid excitotoxicity. Acta Neuropathol 2000; 99(3): 245-56.
[http://dx.doi.org/10.1007/PL00007434] [PMID: 10663966]
[89]
Mielke K, Brecht S, Dorst A, Herdegen T. Activity and expression of JNK1, p38 and ERK kinases, c-Jun N-terminal phosphorylation, and c-jun promoter binding in the adult rat brain following kainate-induced seizures. Neuroscience 1999; 91(2): 471-83.
[http://dx.doi.org/10.1016/S0306-4522(98)00667-8] [PMID: 10366004]
[90]
Pozas E, Ballabriga J, Planas AM, et al. Kainic acid induced excitotoxicity is associated with a complex cFos and cJun response which does not preclude either cell death or survival. J Neurobiol 1997; 33: 23246.
[91]
Wu C, Zhang G, Chen L, et al. The role of NLRP3 and IL-1β in refractory epilepsy brain injury. Front Neurol 2020; 10: 1418.
[http://dx.doi.org/10.3389/fneur.2019.01418]
[92]
Toscano ECB, Marciano Vieira É. NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-β in sclerotic hippocampi. Brain Res 2021; 1752: 147230.
[http://dx.doi.org/10.1016/j.brainres.2020.147230]
[93]
Paudel YN, Semple BD, Jones NC, Othman I, Shaikh MF. High mobility group box 1 (HMGB1) as a novel frontier in epileptogenesis: From pathogenesis to therapeutic approaches. J Neurochem 2019; 151(5): 542-57.
[http://dx.doi.org/10.1111/jnc.14663] [PMID: 30644560]
[94]
Henshall DC. Apoptosis signalling pathways in seizure-induced neuronal death and epilepsy. Biochem Soc Trans 2007; 35(Pt 2): 421-3.
[http://dx.doi.org/10.1042/BST0350421] [PMID: 17371290]
[95]
Toscano ECB, Vieira ÉLM, Portela ACDC, et al. Bcl-2/Bax ratio increase does not prevent apoptosis of glia and granular neurons in patients with temporal lobe epilepsy. Neuropathology 2019; 39(5): 348-57.
[http://dx.doi.org/10.1111/neup.12592] [PMID: 31392787]
[96]
Engel T, Henshal DC. Apoptosis, Bcl-2 family proteins and caspases: The ABCs of seizure-damage and epileptogenesis? Int J Physiol Pathophysiol Pharmacol 2009; 1(2): 97-115.
[97]
Sloviter RS, Lowenstein DH. Heat shock protein expression in vulnerable cells of the rat hippocampus as an indicator of excitation-induced neuronal stress. J Neurosci 1992; 12(8): 3004-9.
[http://dx.doi.org/10.1523/JNEUROSCI.12-08-03004.1992] [PMID: 1494943]
[98]
Gualtieri F, Nowakowska M, von Rüden EL, Seiffert I, Potschka H. Epileptogenesis-associated alterations of heat shock protein 70 in a rat post-status epilepticus model. Neuroscience 2019; 415(415): 44-58.
[http://dx.doi.org/10.1016/j.neuroscience.2019.06.031] [PMID: 31319099]
[99]
Chang CC, Chen SD, Lin TK, et al. Heat shock protein 70 protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus via inhibition of nuclear factor-κB activation-induced nitric oxide synthase II expression. Neurobiol Dis 2014; 62: 241-9.
[http://dx.doi.org/10.1016/j.nbd.2013.10.012] [PMID: 24141017]
[100]
von Rüden EL, Wolf F, Keck M, et al. Genetic modulation of HSPA1A accelerates kindling progression and exerts pro-convulsant effects. Neuroscience 2018; 386(386): 108-20.
[http://dx.doi.org/10.1016/j.neuroscience.2018.06.031] [PMID: 29964156]
[101]
Akbar MT, Lundberg AM, Liu K, et al. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death. J Biol Chem 2003; 278(22): 19956-65.
[http://dx.doi.org/10.1074/jbc.M207073200] [PMID: 12639970]
[102]
von Rüden EL, Wolf F, Gualtieri F, et al. Genetic and pharmacological targeting of heat shock protein 70 in the mouse amygdala-kindling model. ACS Chem Neurosci 2019; 10(3): 1434-44.
[http://dx.doi.org/10.1021/acschemneuro.8b00475] [PMID: 30396268]
[103]
Briellmann RS, Kalnins RM, Berkovic SF, et al. Hippocampal pathology in refractory temporal lobe epilepsy: T2-weighted signal change reflects dentate gliosis. Neurology 2002; 58(2): 265-71.
[http://dx.doi.org/10.1212/WNL.58.2.265]
[104]
Mutalik SP, Gupton SL, Gupton SL. Glycosylation in axonal guidance. Int J Mol Sci 2021; 22(10): 5143.
[http://dx.doi.org/10.3390/ijms22105143] [PMID: 34068002]
[105]
Sahay A, Kim CH, Sepkuty JP, et al. Secreted semaphorins modulate synaptic transmission in the adult hippocampus. J Neurosci 2005; 25(14): 3613-20.
[http://dx.doi.org/10.1523/JNEUROSCI.5255-04.2005] [PMID: 15814792]
[106]
Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 1994; 78(3): 409-24.
[http://dx.doi.org/10.1016/0092-8674(94)90420-0] [PMID: 8062384]
[107]
Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD. Neuropilin is a semaphorin III receptor. Cell 1997; 90(4): 753-62.
[http://dx.doi.org/10.1016/S0092-8674(00)80535-8] [PMID: 9288754]
[108]
Stoeckli E. Where does axon guidance lead us? F1000 Res 2017; 6: 78.
[http://dx.doi.org/10.12688/f1000research.10126.1]
[109]
Masukawa LM, Uruno K, Sperling M, O’Connor MJ, Burdette LJ. The functional relationship between antidromically evoked field responses of the dentate gyrus and mossy fiber reorganization in temporal lobe epileptic patients. Brain Res 1992; 579(1): 119-27.
[http://dx.doi.org/10.1016/0006-8993(92)90750-4] [PMID: 1623399]
[110]
Rudge JS, Mather PE, Pasnikowski EM, et al. Endogenous BDNF protein is increased in adult rat hippocampus after a kainic acid induced excitotoxic insult but exogenous BDNF is not neuroprotective. Exp Neurol 1998; 149(2): 398-410.
[http://dx.doi.org/10.1006/exnr.1997.6737] [PMID: 9500963]
[111]
Yang F, Wang JC, Han JL, Zhao G, Jiang W. Different effects of mild and severe seizures on hippocampal neurogenesis in adult rats. Hippocampus 2008; 18(5): 460-8.
[http://dx.doi.org/10.1002/hipo.20409] [PMID: 18240317]
[112]
Cavazos JE, Zhang P, Qazi R, Sutula TP. Ultrastructural features of sprouted mossy fiber synapses in kindled and kainic acid-treated rats. J Comp Neurol 2003; 458(3): 272-92.
[http://dx.doi.org/10.1002/cne.10581] [PMID: 12619081]
[113]
Muramatsu R, Nakahara S, Ichikawa J, Watanabe K, Matsuki N, Koyama R. The ratio of ‘deleted in colorectal cancer’ to ‘uncoordinated-5A’ netrin-1 receptors on the growth cone regulates mossy fibre directionality. Brain 2010; 133(Pt 1): 60-75.
[http://dx.doi.org/10.1093/brain/awp266] [PMID: 19858080]
[114]
Takahashi T, Fournier A, Nakamura F, et al. Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 1999; 99(1): 59-69.
[http://dx.doi.org/10.1016/S0092-8674(00)80062-8] [PMID: 10520994]
[115]
Holtmaat AJ, Gorter JA, De Wit J, et al. Transient downregulation of Sema3A mRNA in a rat model for temporal lobe epilepsy. A novel molecular event potentially contributing to mossy fiber sprouting. Exp Neurol 2003; 182(1): 142-50.
[http://dx.doi.org/10.1016/S0014-4886(03)00035-9] [PMID: 12821384]
[116]
Bouzioukh F, Daoudal G, Falk J, Debanne D, Rougon G, Castellani V. Semaphorin3A regulates synaptic function of differentiated hippocampal neurons. Eur J Neurosci 2006; 23(9): 2247-54.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04783.x] [PMID: 16706833]
[117]
Lowery LA, Van Vactor D. The trip of the tip: Understanding the growth cone machinery. Nat Rev Mol Cell Biol 2009; 10(5): 332-43.
[http://dx.doi.org/10.1038/nrm2679] [PMID: 19373241]
[118]
Kandratavicius L, Monteiro MR, Assirati JA Jr, Carlotti CG Jr, Hallak JE, Leite JP. Neurotrophins in mesial temporal lobe epilepsy with and without psychiatric comorbidities. J Neuropathol Exp Neurol 2013; 72(11): 1029-42.
[http://dx.doi.org/10.1097/NEN.0000000000000002] [PMID: 24128677]
[119]
Deng J, Xu T, Yang J, et al. Sema7A, a brain immune regulator, regulates seizure activity in PTZ-kindled epileptic rats. CNS Neurosci Ther 2020; 26(1): 101-16.
[http://dx.doi.org/10.1111/cns.13181] [PMID: 31179640]
[120]
Pasterkamp RJ, Kolk SM, Hellemons AJ, Kolodkin AL. Expression patterns of semaphorin7A and plexinC1 during rat neural development suggest roles in axon guidance and neuronal migration. BMC Dev Biol 2007; 7(1): 98.
[http://dx.doi.org/10.1186/1471-213X-7-98] [PMID: 17727705]
[121]
Bellon A, Mann F. Keeping up with advances in axon guidance. Curr Opin Neurobiol 2018; 53: 183-91.
[http://dx.doi.org/10.1016/j.conb.2018.09.004] [PMID: 30273799]
[122]
Adams B, Sazgar M, Osehobo P, et al. Nerve growth factor accelerates seizure development, enhances mossy fiber sprouting, and attenuates seizure-induced decreases in neuronal density in the kindling model of epilepsy. J Neurosci 1997. 17: 5288Y96.
[123]
Babb TL, Kupfer WR, Pretorius JK, Crandall PH, Levesque MF. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 1991; 42(2): 351-63.
[http://dx.doi.org/10.1016/0306-4522(91)90380-7] [PMID: 1716744]
[124]
Meberg PJ, Gall CM, Routtenberg A. Induction of F1/GAP-43 gene expression in hippocampal granule cells after seizures [corrected]. Brain Res Mol Brain Res 1993; 17(3-4): 295-9.
[http://dx.doi.org/10.1016/0169-328X(93)90014-G] [PMID: 8510501]
[125]
Lyford GL, Yamagata K, Kaufmann WE, et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton associated protein that is enriched in neuronal dendrites. Neuron 1995; 14(2): 433-45.
[http://dx.doi.org/10.1016/0896-6273(95)90299-6]
[126]
Akiyama K, Ishikawa M, Saito A. mRNA expression of activity-regulated cytoskeleton-associated protein (arc) in the amygdala-kindled rats. Brain Res 2008; 1189: 236-46.
[127]
Geddes JW, Hess EJ, Hart RA, Kesslak JP, Cotman CW, Wilson MC. Lesions of hippocampal circuitry define synaptosomal-associated protein-25 (SNAP-25) as a novel presynaptic marker. Neuroscience 1990; 38(2): 515-25.
[http://dx.doi.org/10.1016/0306-4522(90)90047-8] [PMID: 1702194]
[128]
Bugra K, Pollard H, Charton G, et al. aFGF, bFGF and flg mRNAs show distinct patterns of induction in the hippocampus following kainate-induced seizures. Eur J Neurosci 1994; 6(1): 58-66.
[http://dx.doi.org/10.1111/j.1460-9568.1994.tb00247.x]
[129]
Dugich-Djordjevic MM, Tocco G, Lapchak PA, et al. Regionally specific and rapid increases in brain-derived neurotrophic factor messenger RNA in the adult rat brain following seizures induced by systemic administration of kainic acid. Neuroscience 1992; 47(2): 303-15.
[http://dx.doi.org/10.1016/0306-4522(92)90246-X] [PMID: 1641125]
[130]
Houser CR, Miyashiro JE, Swartz BE, Walsh GO, Rich JR, Delgado-Escueta AV. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 1990; 10(1): 267-82.
[http://dx.doi.org/10.1523/JNEUROSCI.10-01-00267.1990] [PMID: 1688934]
[131]
Mingorance-Le Meur A, O’Connor TP. Neurite consolidation is an active process requiring constant repression of protrusive activity. EMBO J 2009; 28(3): 248-60.
[http://dx.doi.org/10.1038/emboj.2008.265] [PMID: 19096364]
[132]
Bender R, Heimrich B, Meyer M, Frotscher M. Hippocampal mossy fiber sprouting is not impaired in brain-derived neurotrophic factor-deficient mice. Exp Brain Res 1998; 120(3): 399-402.
[http://dx.doi.org/10.1007/s002210050413] [PMID: 9628426]
[133]
Goutan E, Martí E, Ferrer I. BDNF, and full length and truncated TrkB expression in the hippocampus of the rat following kainic acid excitotoxic damage. Evidence of complex time-dependent and cell-specific responses. Brain Res Mol Brain Res 1998; 59(2): 154-64.
[http://dx.doi.org/10.1016/s0169-328x(98)00156-9]
[134]
Cheng B, Mattson MP. NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res 1994; 640(1-2): 56-67.
[http://dx.doi.org/10.1016/0006-8993(94)91857-0] [PMID: 7911729]
[135]
Xu B, Michalski B, Racine RJ, et al. Continuous infusion of neurotrophin- 3 triggers sprouting, decreases the levels of TrkA and TrkC, and inhibits epileptogenesis and activity-dependent axonal growth in adult rats. Neuroscience 2002. 115: 1295Y308.
[http://dx.doi.org/10.1016/S0306-4522(02)00384-6]
[136]
Buckmaster PS, Zhang GF, Yamawaki R. Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci 2002; 22(15): 6650-8.
[http://dx.doi.org/10.1523/JNEUROSCI.22-15-06650.2002] [PMID: 12151544]
[137]
Mitsuya K, Nitta N, Suzuki F. Persistent zinc depletion in the mossy fiber terminals in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. Epilepsia 1979; 50(8): 1979-90.
[138]
Kinjo ER, Rodríguez PXR, Dos Santos BA, et al. New insights on temporal lobe epilepsy based on plasticity-related network changes and high-order statistics. Mol Neurobiol 2018; 55(5): 3990-8.
[http://dx.doi.org/10.1007/s12035-017-0623-2] [PMID: 28555345]
[139]
Frasca A, Aalbers M, Frigerio F, et al. Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity. Neurobiol Dis 2011; 43(2): 507-15.
[http://dx.doi.org/10.1016/j.nbd.2011.04.024] [PMID: 21575722]
[140]
Reeben M, Laurikainen A, Hiltunen JO, Castrén E, Saarma M. The messenger RNAs for both glial cell line-derived neurotrophic factor receptors, c-ret and GDNFRalpha, are induced in the rat brain in response to kainate-induced excitation. Neuroscience 1998; 83(1): 151-9.
[http://dx.doi.org/10.1016/S0306-4522(97)00361-8] [PMID: 9466405]
[141]
Binder DK, Steinhäuser C. Functional changes in astroglial cells in epilepsy. Glia 2006; 54(5): 358-68.
[http://dx.doi.org/10.1002/glia.20394] [PMID: 16886201]
[142]
Takahashi DK, Vargas JR, Wilcox KS. Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis 2010; 40(3): 573-85.
[http://dx.doi.org/10.1016/j.nbd.2010.07.018] [PMID: 20691786]
[143]
Wetherington J, Serrano G, Dingledine R. Astrocytes in the epileptic brain. Neuron 2008; 58(2): 168-78.
[http://dx.doi.org/10.1016/j.neuron.2008.04.002] [PMID: 18439402]
[144]
Seifert G, Carmignoto G, Steinhäuser C. Astrocyte dysfunction in epilepsy. Brain Res Brain Res Rev 2010; 63(1-2): 212-21.
[http://dx.doi.org/10.1016/j.brainresrev.2009.10.004] [PMID: 19883685]
[145]
Blümcke I, Otmar TM, Wiestler O. Ammon’s horn sclerosis: A maldevelopmental disorder associated with temporal lobe epilepsy. Review Brain Pathol 2002; 12(2): 199-211.
[146]
Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009; 32(12): 638-47.
[http://dx.doi.org/10.1016/j.tins.2009.08.002] [PMID: 19782411]
[147]
Blümcke I, Spreafico R. Cause matters: A neuropathological challenge to human epilepsies. Brain Pathol 2012; 22(3): 347-9.
[http://dx.doi.org/10.1111/j.1750-3639.2012.00584.x] [PMID: 22497609]
[148]
Blümcke I. Neurophatological of focal epilepsies: A critical review. Epilepsy Behav 2009; 15: 34-9.
[149]
Huang YA, Zhou B, Nabet AM, Wernig M, Südhof TC. Differential signaling mediated by ApoE2, ApoE3, and ApoE4 in human neurons parallels Alzheimer’s disease risk. J Neurosci 2019; 39(37): 7408-27.
[http://dx.doi.org/10.1523/JNEUROSCI.2994-18.2019] [PMID: 31331998]
[150]
Ullian EM, Sapperstein SK, Christopherson KS, et al. Control of synapse number by glia. Science 2001; 291: 657-61.
[http://dx.doi.org/10.1126/science.291.5504.657]
[151]
Christopherson KS, Ullian EM, Stokes CC, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005; 120: 421-33.
[http://dx.doi.org/10.1016/j.cell.2004.12.020]
[152]
Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron 2014; 81(4): 728-39.
[http://dx.doi.org/10.1016/j.neuron.2014.02.007] [PMID: 24559669]
[153]
Stogsdill JA, Ramirez J, Liu D, et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 2017; 551(7679): 192-7.
[http://dx.doi.org/10.1038/nature24638] [PMID: 29120426]
[154]
Habas A, Hahn J, Wang X, Margeta M. Neuronal activity regulates astrocytic Nrf2 signaling. Proc Natl Acad Sci USA 2013; 110(45): 18291-6.
[http://dx.doi.org/10.1073/pnas.1208764110] [PMID: 24145448]
[155]
Nishida H, Okabe S. Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci 2007; 27: 331-40.
[http://dx.doi.org/10.1523/jneurosci]
[156]
Allen NJ, Eroglu C. Cell biology of astrocyte- synapse interactions. Neuron 2017; 96(3): 697-708.
[http://dx.doi.org/10.1016/j.neuron.2017.09.056] [PMID: 29096081]
[157]
Dallérac G, Zapata J, Rouach N. Versatile control of synaptic circuits by astrocytes: Where, when and how? Nat Rev Neurosci 2018; 19(12): 729-43.
[http://dx.doi.org/10.1038/s41583-018-0080-6] [PMID: 30401802]
[158]
Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci 1999; 22(5): 208-15.
[http://dx.doi.org/10.1016/S0166-2236(98)01349-6] [PMID: 10322493]
[159]
Sahlender DA, Savtchouk I, Volterra A. What do we know about gliotransmitter release from astrocytes? Philos Trans R Soc Lond B Biol Sci 2014; 369(1654): 20130592.
[http://dx.doi.org/10.1098/rstb.2013.0592] [PMID: 25225086]
[160]
Olsen ML, Khakh BS, Skatchkov SN, Zhou M, Lee CJ, Rouach N. New insights on astrocyte ion channels: Critical for homeostasis and neuron-glia signaling. J Neurosci 2015; 35(41): 13827-35.
[http://dx.doi.org/10.1523/JNEUROSCI.2603-15.2015] [PMID: 26468182]
[161]
Harada K, Kamiya T, Tsuboi T. Gliotransmitter release from astrocytes: Functional, developmental, and pathological implications in the brain. Front Neurosci 2016; 9: 499.
[http://dx.doi.org/10.3389/fnins.2015.00499] [PMID: 26793048]
[162]
Toth AB, Hori K, Novakovic MM, Bernstein NG, Lambot L, Prakriya M. CRAC channels regulate astrocyte Ca2+ signaling and gliotransmitter release to modulate hippocampal GABAergic transmission. Sci Signal 2019; 12(582): eaaw5450.
[http://dx.doi.org/10.1126/scisignal.aaw5450] [PMID: 31113852]
[163]
Papouin T, Dunphy J, Tolman M, et al. Astrocytic control of synaptic function. Philos Trans R Soc Lond B Biol Sci 1715; 372(1715): 20160154.
[http://dx.doi.org/10.1098/rstb.2016.0154]
[164]
Pannasch U, Rouach N. Emerging role for astroglial networks in information processing: From synapse to behavior. Trends Neurosci 2013; 36(7): 405-17.
[http://dx.doi.org/10.1016/j.tins.2013.04.004] [PMID: 23659852]
[165]
Dityatev A, Rusakov DA. Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol 2011; 21: 353-9.
[http://dx.doi.org/10.1016/j.conb.2010.12.006]
[166]
Smith AC, Scofield MD, Kalivas PW. The tetrapartite synapse: Extracellular matrix remodeling contributes to corticoaccumbens plasticity underlying drug addiction. Brain Res 2015; 1628(Pt A): 29-39.
[167]
Cope EC, Gould E. Adult neurogenesis, glia, and the extracellular matrix. Cell Stem Cell 2019; 24(5): 690-705.
[http://dx.doi.org/10.1016/j.stem.2019.03.023] [PMID: 31051133]
[168]
Adams JC, Jack Lawler J. The thrombospondins. Review Cold Spring Harb Perspect Biol 2011; 3(10): a009712.
[http://dx.doi.org/10.1101/cshperspect.a009712]
[169]
Kim S, Nabekura J, Koizumi S. Astrocyte-mediated synapse remodeling in the pathological brain. Glia 2017; 65: 1719-27.
[http://dx.doi.org/10.1002/glia.23169]
[170]
Okada-Tsuchioka M, Segawa M, Kajitani N, et al. Electroconvulsive seizure induces thrombospondin-1 in the adult rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48(48): 236-44.
[http://dx.doi.org/10.1016/j.pnpbp.2013.10.001] [PMID: 24121060]
[171]
Shen Y, Qin H, Chen J, et al. Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J Cell Biol 2016; 215(5): 719-34.
[http://dx.doi.org/10.1083/jcb.201605046] [PMID: 27920126]
[172]
Yu CY, Gui W, He HY, et al. Neuronal and astroglial TGFβ-Smad3 signaling pathways differentially regulate dendrite growth and synaptogenesis. Neuromolecular Med 2014; 16(2): 457-72.
[http://dx.doi.org/10.1007/s12017-014-8293-y] [PMID: 24519742]
[173]
Tyzack GE, Sitnikov S, Barson D, et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat Commun 2014; 5(1): 4294.
[http://dx.doi.org/10.1038/ncomms5294] [PMID: 25014177]
[174]
Li H, Graber KD, Jin S, McDonald W, Barres BA, Prince DA. Gabapentin decreases epileptiform discharges in a chronic model of neocortical trauma. Neurobiol Dis 2012; 48(3): 429-38.
[http://dx.doi.org/10.1016/j.nbd.2012.06.019] [PMID: 22766033]
[175]
Gibbons MB, Smeal RM, Takahashi DK, Vargas JR, Wilcox KS. Contributions of astrocytes to epileptogenesis following status epilepticus: Opportunities for preventive therapy? Review Neurochem Int 2013; 63(7): 660-9.
[http://dx.doi.org/10.1016/j.neuint.2012.12.008] [PMID: 23266599]
[176]
Hiragi T, Ikegaya Y, Koyama R. Microglia after seizures and in epilepsy. Cells 2018; 7(4): 26.
[http://dx.doi.org/10.3390/cells7040026]
[177]
Wyatt-Johnson SK, Herr SA, Brewster AL. Status epilepticus triggers time-dependent alterations in microglia abundance and morphological phenotypes in the hippocampus. Front Neurol 2017; 8: 700.
[http://dx.doi.org/10.3389/fneur.2017.00700]
[178]
Borges K, Gearing M, McDermott DL, et al. Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp Neurol 2003; 182(1): 21-34.
[http://dx.doi.org/10.1016/S0014-4886(03)00086-4] [PMID: 12821374]
[179]
Stopper L, Bălşeanu TA, Cătălin B, Rogoveanu OC, Mogoantă L, Scheller A. Microglia morphology in the physiological and diseased brain - from fixed tissue to in vivo conditions. Rom J Morphol Embryol 2018; 59(1): 7-12.
[PMID: 29940606]
[180]
Benson MJ, Manzanero S, Borges K. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia 2015; 56(6): 895-905.
[http://dx.doi.org/10.1111/epi.12960] [PMID: 25847097]
[181]
Butler T, Li Y, Tsui W, et al. Transient and chronic seizure-induced inflammation in human focal epilepsy. Epilepsia 2016; 57(9): e191-4.
[http://dx.doi.org/10.1111/epi.13457] [PMID: 27381590]
[182]
Morin-Brureau M, Milior G, Royer J, et al. Microglial phenotypes in the human epileptic temporal lobe. Brain 2018; 141(12): 3343-60.
[http://dx.doi.org/10.1093/brain/awy276] [PMID: 30462183]
[183]
Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res 2016; 8(10): 4499-509.
[PMID: 27830035]
[184]
Coulter DA, Steinhäuser C. Role of astrocytes in epilepsy. Cold Spring Harb Perspect Med 2015; 5(3): a022434.
[http://dx.doi.org/10.1101/cshperspect.a022434]
[185]
Roseti C, van Vliet EA, Cifelli P, et al. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: Implications for ictogenesis. Neurobiol Dis 2015; 82: 311-20.
[http://dx.doi.org/10.1016/j.nbd.2015.07.003] [PMID: 26168875]
[186]
Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003; 302(5651): 1760-5.
[http://dx.doi.org/10.1126/science.1088417] [PMID: 14615545]
[187]
Kamali AN, Zian Z, Bautista JM, et al. The potential role of pro-inflammatory and anti-inflammatory cytokines in epilepsy pathogenesis. Endocr Metab Immune Disord Drug Targets 2021; 21(10): 1760-74.
[http://dx.doi.org/10.2174/1871530320999201116200940] [PMID: 33200702]
[188]
Nemeth DP, Quan N. Modulation of neural networks by interleukin-1. Brain Plast 2021; 7(1): 17-32.
[http://dx.doi.org/10.3233/BPL-200109] [PMID: 34631418]
[189]
Takeuchi H, Jin S, Wang J, et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 2006; 281(30): 21362-8.
[http://dx.doi.org/10.1074/jbc.M600504200] [PMID: 16720574]
[190]
Levin SG, Godukhin OV. Modulating effect of cytokines on mechanisms of synaptic plasticity in the brain. Biochemistry (Mosc) 2017; 82(3): 264-74.
[http://dx.doi.org/10.1134/S000629791703004X] [PMID: 28320267]
[191]
Pun RY, Rolle IJ, Lasarge CL, et al. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron 2012; 75(6): 1022-34.
[http://dx.doi.org/10.1016/j.neuron.2012.08.002] [PMID: 22998871]
[192]
Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019; 15(8): 459-72.
[http://dx.doi.org/10.1038/s41582-019-0217-x] [PMID: 31263255]
[193]
Xu ZH, Wang Y, Tao AF, et al. Interleukin-1 receptor is a target for adjunctive control of diazepam-refractory status epilepticus in mice. Neuroscience 2016; 328(328): 22-9.
[http://dx.doi.org/10.1016/j.neuroscience.2016.04.036] [PMID: 27133574]
[194]
Jyonouchi H, Geng L. Intractable epilepsy (IE) and responses to anakinra, a human recombinant IL-1 receptor antagonist (IL-1Ra): Case reports. J Clin Cell Immunol 2016; 7(5): 456-60.
[http://dx.doi.org/10.4172/2155-9899.1000456]
[195]
Dilena R, Mauri E, Aronica E, et al. Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection-related epilepsy syndrome. Epilepsia Open 2019; 4(2): 344-50.
[http://dx.doi.org/10.1002/epi4.12317]
[196]
Kenney-Jung DL, Vezzani A, Kahoud RJ, et al. Febrile infection-related epilepsy syndrome treated with anakinra. Ann Neurol 2016; 80(6): 939-45.
[http://dx.doi.org/10.1002/ana.24806] [PMID: 27770579]
[197]
DeSena AD, Do T, Schulert GS. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J Neuroinflammation 2018; 15(1): 38.
[http://dx.doi.org/10.1186/s12974-018-1063-2] [PMID: 29426321]
[198]
Sa M, Singh R, Pujar S, et al. Centromedian thalamic nuclei deep brain stimulation and Anakinra treatment for FIRES - Two different outcomes. Eur J Paediatr Neurol 2019; 23(5): 749-54.
[http://dx.doi.org/10.1016/j.ejpn.2019.08.001] [PMID: 31446001]
[199]
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res 2013; 103(1): 2-30.
[http://dx.doi.org/10.1016/j.eplepsyres.2012.10.001] [PMID: 23219031]
[200]
Terrone G, Salamone A, Vezzani A. Inflammation and epilepsy: Preclinical findings and potential clinical translation. Curr Pharm Des 2017; 23(37): 5569-76.
[http://dx.doi.org/10.2174/1381612823666170926113754] [PMID: 28950818]
[201]
van Vliet EA, Aronica E, Vezzani A, Ravizza T. Review: Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: Emerging evidence from preclinical and clinical studies. Neuropathol Appl Neurobiol 2018; 44(1): 91-111.
[http://dx.doi.org/10.1111/nan.12444] [PMID: 28977690]
[202]
Jung KH, Chu K, Lee ST, et al. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis 2006; 23(2): 237-46.
[http://dx.doi.org/10.1016/j.nbd.2006.02.016] [PMID: 16806953]
[203]
Zhu X, Yao Y, Yang J, et al. COX-2-PGE2 signaling pathway contributes to hippocampal neuronal injury and cognitive impairment in PTZ-kindled epilepsy mice. Int Immunopharmacol 2020; 87: 106801.
[http://dx.doi.org/10.1016/j.intimp.2020.106801] [PMID: 32702600]
[204]
Tanaka S, Nakamura T, Sumitani K, et al. Stage- and region-specific cyclooxygenase expression and effects of a selective COX-1 inhibitor in the mouse amygdala kindling model. Neurosci Res 2009; 65(1): 79-87.
[http://dx.doi.org/10.1016/j.neures.2009.05.013] [PMID: 19523994]
[205]
Toledo A, Orozco-Suárez S, Rosetti M, et al. Temporal lobe epilepsy: Evaluation of central and systemic immune-inflammatory features associated with drug resistance. Seizure 2021; 91: 447-55.
[http://dx.doi.org/10.1016/j.seizure.2021.07.028] [PMID: 34340190]