Recent Advancements in Development of Radical Silylation Reactions

Page: [920 - 960] Pages: 41

  • * (Excluding Mailing and Handling)

Abstract

Transition metal-free radical hydrosilylation of alkynes and factionalized alkenes to vinylsilanes, organosilanes from alkenes, radical silylative cyclizations for sila heterocycles, aromatic dehydrogenative radical silylation, sila-amino acids, silyl hydroperoxides by using transition metal-free reaction conditions such as peroxides, photocatalyst, hydrogen atom transfer catalyst, radical initiators have become one of the most important and useful methodologies for the construction of C-Si bonds for their synthetic applications. In order to demonstrate the growth in this area, this review highlights the last twenty years of success in the fields of silylation of aromatics, silylative cyclizations of sila heterocycles, synthesis of vinylsilanes by hydrosilylation of alkynes, and functionalized alkenes, organosilanes from alkenes and dehydrogenative approaches for vinylsilanes involving radical mechanisms. We believe that summarizing these methods would be very useful for the chemists who are interested in the synthesis of organosilicon compounds for drug discovery or the development of silicon-based materials for industrial applications.

Keywords: Hydrosilylation, radical silylation, alkenylsilanes, sila-heterocycles, transition-metal, industrial applications.

Graphical Abstract

[1]
Barraza, S.J.; Denmark, S.E. Synthesis, reactivity, functionalization, and ADMET properties of Silicon-containing Nitrogen heterocycles. J. Am. Chem. Soc., 2018, 140(21), 6668-6684.
[http://dx.doi.org/10.1021/jacs.8b03187] [PMID: 29763323]
[2]
Rémond, E.; Martin, C.; Martinez, J.; Cavelier, F. Silicon-containing amino acids: Synthetic aspects, conformational studies, and applications to bioactive peptides. Chem. Rev., 2016, 116(19), 11654-11684.
[http://dx.doi.org/10.1021/acs.chemrev.6b00122] [PMID: 27529497]
[3]
Han, J.L.; Qin, Y.; Zhao, D.C. (sp3)–H Bond Arylation and Amidation of Si-Bound Methyl Group via Directing Group Strategy. ACS Catal., 2019, 9(7), 6020-6026.
[http://dx.doi.org/10.1021/acscatal.9b00771]
[4]
Mills, J.S.; Showell, G.A. Exploitation of silicon medicinal chemistry in drug discovery. Expert Opin. Investig. Drugs, 2004, 13(9), 1149-1157.
[http://dx.doi.org/10.1517/13543784.13.9.1149] [PMID: 15330746]
[5]
(a) Gao, R.; Pahls, D.R.; Cundari, T.R.; Yi, C.S. Experimental and computational studies of the ruthenium-catalyzed hydrosilylation of alkynes: Mechanistic insights into the regio-and stereoselective formation of vinylsilanes. Organometallics, 2014, 33(23), 6937-6944.
[http://dx.doi.org/10.1021/om501019j]
(b) Na, Y.; Chang, S. Highly stereoselective and efficient hydrosilylation of terminal alkynes catalyzed by [RuCl2 (p-cymene)] 2. Org. Lett., 2000, 2(13), 1887-1889.
[http://dx.doi.org/10.1021/ol0059697] [PMID: 10891183]
(c) Zhao, X.; Yang, D.; Zhang, Y.; Wang, B.; Qu, J. Highly β( Z)-selective hydrosilylation of terminal alkynes catalyzed by Thiolate-Bridged Dirhodium Complexes. Org. Lett., 2018, 20(17), 5357-5361.
[http://dx.doi.org/10.1021/acs.orglett.8b02267] [PMID: 30152700]
(d) Sato, A.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Hydrosilylation of alkynes with a cationic rhodium species formed in an anionic micellar system. Org. Lett., 2004, 6(13), 2217-2220.
[http://dx.doi.org/10.1021/ol049308b] [PMID: 15200324]
(e) Reddy, C.B.; Shil, A.K.; Guha, N.R.; Sharma, D.; Das, P. Solid supported palladium (0) nanoparticles: An efficient heterogeneous catalyst for regioselective hydrosilylation of alkynes and Suzuki coupling of β-arylvinyl iodides. Catal. Lett., 2014, 144(9), 1530-1536.
[http://dx.doi.org/10.1007/s10562-014-1311-8]
(f) Duan, Y.; Ji, G.; Zhang, S.; Chen, X.; Yang, Y. Additive-modulated switchable reaction pathway in the addition of alkynes with organosilanes catalyzed by supported Pd nanoparticles: hydrosilylation versus semihydrogenation. Catal. Sci. Technol., 2018, 8(4), 1039-1050.
[http://dx.doi.org/10.1039/C7CY02280H]
(g) Shore, G.; Organ, M.G. Gold-film-catalysed hydrosilylation of alkynes by microwave-assisted, continuous-flow organic synthesis (MACOS). Chemistry, 2008, 14(31), 9641-9646.
[http://dx.doi.org/10.1002/chem.200801610] [PMID: 18816566]
(h) Corre, Y.; Werlé, C.; Brelot-Karmazin, L.; Djukic, J.P.; Agbossou-Niedercorn, F.; Michon, C. Regioselective hydrosilylation of terminal alkynes using pentamethylcyclopentadienyl iridium (III) metallacycle catalysts. J. Mol. Catal. Chem., 2016, 423, 256-263.
[http://dx.doi.org/10.1016/j.molcata.2016.07.014]
(i) Cheng, Z. One Earth‐Abundant Cobalt Catalyst for Alkynes Double Hydrosilylation: Efficient Synthesis of Gem‐bis (silanes). Chin. J. Chem., 2019, 37(6), 632-633.
[http://dx.doi.org/10.1002/cjoc.201900129]
(j) Tamao, K.; Kobayashi, K.; Ito, Y. Nickel (0)-catalyzed cyclization of 1, 7-diynes via hydrosilation: One-step synthesis of 1, 2-dialkylidenecyclohexanes with a (Z)-vinylsilane moiety. J. Am. Chem. Soc., 1989, 111(16), 6478-6480.
[http://dx.doi.org/10.1021/ja00198a100]
(k) Ojima, I.; Zhu, J.; Vidal, E.S.; Kass, D.F. Silylcarbocyclizations of 1, 6-diynes. J. Am. Chem. Soc., 1998, 120(27), 6690-6697.
[http://dx.doi.org/10.1021/ja980907l]
(l) Itami, K.; Mitsudo, K.; Nishino, A.; Yoshida, J. Metal-catalyzed hydrosilylation of alkenes and alkynes using dimethyl(pyridyl)silane. J. Org. Chem., 2002, 67(8), 2645-2652.
[http://dx.doi.org/10.1021/jo0163389] [PMID: 11950311]
(m) Trost, B.M.; Ball, Z.T. Alkyne hydrosilylation catalyzed by a cationic ruthenium complex: Efficient and general trans addition. J. Am. Chem. Soc., 2005, 127(50), 17644-17655.
[http://dx.doi.org/10.1021/ja0528580] [PMID: 16351094]
(n) Trost, B.M.; Ball, Z.T. Addition of metalloid hydrides to alkynes: hydrometallation with Boron, Silicon, and Tin. Synthesis, 2005, 2005(6), 853-887.
[http://dx.doi.org/10.1055/s-2005-861874]
(o) Denmark, S.E.; Neuville, L.; Christy, M.E.; Tymonko, S.A. A qualitative examination of the effects of silicon substituents on the efficiency of cross-coupling reactions. J. Org. Chem., 2006, 71(22), 8500-8509.
[http://dx.doi.org/10.1021/jo061481t] [PMID: 17064026]
(p) Alonso, F.; Buitrago, R.; Moglie, Y.; Ruiz-Martínez, J.; Sepúlveda-Escribano, A.; Yus, M. Hydrosilylation of alkynes catalysed by platinum on titania. J. Organomet. Chem., 2011, 696(1), 368-372.
[http://dx.doi.org/10.1016/j.jorganchem.2010.09.068]
(q) Miller, Z.D.; Li, W.; Belderrain, T.R.; Montgomery, J. Regioselective allene hydrosilylation catalyzed by N-heterocyclic carbene complexes of nickel and palladium. J. Am. Chem. Soc., 2013, 135(41), 15282-15285.
[http://dx.doi.org/10.1021/ja407749w] [PMID: 24079389]
(r) Xie, H.; Zhao, L.; Yang, L.; Lei, Q.; Fang, W.; Xiong, C. Mechanisms and origins of switchable regioselectivity of palladium-and nickel-catalyzed allene hydrosilylation with N-heterocyclic carbene ligands: A theoretical study. J. Org. Chem., 2014, 79(10), 4517-4527.
[http://dx.doi.org/10.1021/jo500557w] [PMID: 24779730]
(s) Xu, Y.H.; Wu, L.H.; Wang, J.; Loh, T.P. Synthesis of multi-substituted vinylsilanes via copper(I)-catalyzed hydrosilylation reactions of allenes and propiolate derivatives with silylboronates. Chem. Commun. (Camb.), 2014, 50(54), 7195-7197.
[http://dx.doi.org/10.1039/C4CC01722F] [PMID: 24867646]
(t) Kidonakis, M.; Stratakis, M. Ligandless regioselective hydrosilylation of allenes catalyzed by gold nanoparticles. Org. Lett., 2015, 17(18), 4538-4541.
[http://dx.doi.org/10.1021/acs.orglett.5b02236] [PMID: 26331196]
(u) Wilkinson, J.R.; Nuyen, C.E.; Carpenter, T.S.; Harruff, S.R.; Van Hoveln, R. Copper-catalyzed carbon–silicon bond formation. ACS Catal., 2019, 9(10), 8961-8979.
[http://dx.doi.org/10.1021/acscatal.9b02762]
(v) Yang, Y.; Song, R.J.; Li, Y.; Ouyang, X.H.; Li, J.H.; He, D.L. Oxidative radical divergent Si-incorporation: Facile access to Si-containing heterocycles. Chem. Commun. (Camb.), 2018, 54(12), 1441-1444.
[http://dx.doi.org/10.1039/C7CC08964C] [PMID: 29328345]
[6]
(a) Bokka, A.; Jeon, J. Regio-and stereoselective dehydrogenative silylation and hydrosilylation of vinylarenes catalyzed by ruthenium alkylidenes. Org. Lett., 2016, 18(20), 5324-5327.
[http://dx.doi.org/10.1021/acs.orglett.6b02642] [PMID: 27732000]
(b) Sprengers, J.W.; Agerbeek, M.J.; Elsevier, C.J.; Kooijman, H.; Spek, A.L. Synthesis and Crystal Structures of Zerovalent Platinum η2-Fumarate Bis (norbornene) Complexes and Their Application as Hydrosilylation Catalysts. Organometallics, 2004, 23(13), 3117-3125.
[http://dx.doi.org/10.1021/om049913i]
(c) Stradiotto, M.; Cipot, J.; McDonald, R. A catalytically active, charge-neutral Rh(I) zwitterion featuring a P,N-substituted “naked” indenide ligand. J. Am. Chem. Soc., 2003, 125(19), 5618-5619.
[http://dx.doi.org/10.1021/ja034543v] [PMID: 12733885]
(d) Seki, Y.; Takeshita, K.; Kawamoto, K.; Murai, S.; Sonoda, N. Single-operation synthesis of vinylsilanes from alkenes and hydrosilanes with the aid of Ru3(CO)12. J. Org. Chem., 1986, 51(20), 3890-3895.
[http://dx.doi.org/10.1021/jo00370a026]
(e) McAtee, J.R.; Krause, S.B.; Watson, D.A. Simplified Preparation of Trialkylvinylsilanes via the Silyl-heck reaction utilizing a second generation catalyst. Adv. Synth. Catal., 2015, 357(10), 2317-2321.
[http://dx.doi.org/10.1002/adsc.201500436] [PMID: 27325912]
(f) Mazzacano, T.J.; Mankad, N.P. Dehydrogenative borylation and silylation of styrenes catalyzed by copper-carbenes. ACS Catal., 2017, 7(1), 146-149.
[http://dx.doi.org/10.1021/acscatal.6b02594]
(g) Kakiuchi, F.; Tanaka, Y.; Chatani, N.; Murai, S. Completely selective synthesis of (E)-β-(triethylsilyl) styrenes by Fe3(CO)12-catalyzed reaction of styrenes with triethylsilane. J. Organomet. Chem., 1993, 456(1), 45-47.
[http://dx.doi.org/10.1016/0022-328X(93)83315-M]
(h) Pan, J.L.; Chen, C.; Ma, Z.G.; Zhou, J.; Wang, L.R.; Zhang, S.Y. Stereoselective synthesis of z-vinylsilanes via palladium-catalyzed direct intermolecular silylation of C (sp2)–H bonds. Org. Lett., 2017, 19(19), 5216-5219.
[http://dx.doi.org/10.1021/acs.orglett.7b02486] [PMID: 28933860]
(i) Lu, B.; Falck, J.R. Iridium-catalyzed (Z)-trialkylsilylation of terminal olefins. J. Org. Chem., 2010, 75(5), 1701-1705.
[http://dx.doi.org/10.1021/jo902678p] [PMID: 20136153]
[7]
Jiang, W.; Zhang, Y.; Su, Y.; Bao, X.; Fu, Y.; Huo, C. Oxidative dehydrogenative silylation‐alkenation reaction of alkyl aromatics with silanes. Chin. J. Chem., 2020, 38(10), 1065-1069.
[http://dx.doi.org/10.1002/cjoc.202000118]
[8]
(a) Yamashita, H.; Hayashi, T.; Kobayashi, T.; Tanaka, M.; Goto, M. Oxidative addition of halosilanes to zero-valent platinum complexes. J. Am. Chem. Soc., 1988, 110(13), 4417-4418.
[http://dx.doi.org/10.1021/ja00221a053]
(b) Yamashita, H.; Tanaka, M.; Goto, M. Oxidative Addition of Silicon− Halogen Bonds to Platinum (0) complexes and reactivities of the resulting Silylplatinum species. Organometallics, 1997, 16(21), 4696-4704.
[http://dx.doi.org/10.1021/om970214y]
(c) Itami, K.; Nokami, T.; Ishimura, Y.; Mitsudo, K.; Kamei, T.; Yoshida, J. Diversity-oriented synthesis of multisubstituted olefins through the sequential integration of palladium-catalyzed cross-coupling reactions. 2-pyridyldimethyl(vinyl)silane as a versatile platform for olefin synthesis. J. Am. Chem. Soc., 2001, 123(47), 11577-11585.
[http://dx.doi.org/10.1021/ja016790+] [PMID: 11716711]
(d) Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. Synthesis of (arylalkenyl)silanes by palladium-catalyzed regiospecific and stereoselective allyl transfer from silyl-substituted homoallyl alcohols to aryl halides. J. Am. Chem. Soc., 2007, 129(42), 12650-12651.
[http://dx.doi.org/10.1021/ja0755111] [PMID: 17902673]
(e) Martin, S.E.; Watson, D.A. Preparation of vinyl silyl ethers and disiloxanes via the silyl-Heck reaction of silyl ditriflates. J. Am. Chem. Soc., 2013, 135(36), 13330-13333.
[http://dx.doi.org/10.1021/ja407748z] [PMID: 23984876]
[9]
Hilt, G.; Lüers, S.; Schmidt, F. Cobalt (I)-catalyzed Diels-Alder, 1, 4-hydrovinylation and 1, 4-hydrosilylation reactions of non-activated starting materials on a large scale. Synthesis, 2004, 2004(4), 634-638.
[http://dx.doi.org/10.1055/s-2003-44373]
[10]
(a) Bart, S.C.; Lobkovsky, E.; Bill, E.; Chirik, P.J. Synthesis and hydrogenation of bis (imino) pyridine iron imides. J. Am. Chem. Soc., 2004, 126, 13794-13807.
[http://dx.doi.org/10.1021/ja046753t] [PMID: 15493939]
(b) Konno, T.; Taku, K.; Yamada, S.; Moriyasu, K.; Ishihara, T. Remarkable access to fluoroalkylated trisubstituted alkenes via highly stereoselective cobalt-catalyzed hydrosilylation reaction of fluoroalkylated alkynes. Org. Biomol. Chem., 2009, 7(6), 1167-1170.
[http://dx.doi.org/10.1039/b819476a] [PMID: 19262936]
(c) Wu, J.Y.; Stanzl, B.N.; Ritter, T. A strategy for the synthesis of well-defined iron catalysts and application to regioselective diene hydrosilylation. J. Am. Chem. Soc., 2010, 132(38), 13214-13216.
[http://dx.doi.org/10.1021/ja106853y] [PMID: 20809631]
(d) Tondreau, A.M.; Atienza, C.C.H.; Weller, K.J.; Nye, S.A.; Lewis, K.M.; Delis, J.G.; Chirik, P.J. Iron catalysts for selective anti-markovnikov alkene hydrosilylation using tertiary silanes. Science, 2012, 335(6068), 567-570.
[http://dx.doi.org/10.1126/science.1214451] [PMID: 22301315]
(e) Peng, D.; Zhang, Y.; Du, X.; Zhang, L.; Leng, X.; Walter, M.D.; Huang, Z. Phosphinite-iminopyridine iron catalysts for chemoselective alkene hydrosilylation. J. Am. Chem. Soc., 2013, 135(51), 19154-19166.
[http://dx.doi.org/10.1021/ja404963f] [PMID: 24304467]
(f) Mo, Z.; Liu, Y.; Deng, L. Anchoring of silyl donors on a N-heterocyclic carbene through the cobalt-mediated silylation of benzylic C-H bonds. Angew. Chem. Int. Ed. Engl., 2013, 52(41), 10845-10849.
[http://dx.doi.org/10.1002/anie.201304596] [PMID: 23959570]
[11]
(a) Greenhalgh, M.D.; Frank, D.J.; Thomas, S.P. Iron‐catalysed chemo‐, regio‐, and stereoselective hydrosilylation of alkenes and alkynes using a bench‐stable iron (II) pre‐catalyst. Adv. Synth. Catal., 2014, 356(2-3), 584-590.
[http://dx.doi.org/10.1002/adsc.201300827]
(b) Mo, Z.; Xiao, J.; Gao, Y.; Deng, L. Regio- and stereoselective hydrosilylation of alkynes catalyzed by three-coordinate cobalt(I) alkyl and silyl complexes. J. Am. Chem. Soc., 2014, 136(50), 17414-17417.
[http://dx.doi.org/10.1021/ja510924v] [PMID: 25426965]
(c) Dierick, S.; Vercruysse, E.; Berthon-Gelloz, G.; Markó, I.E. User-friendly platinum catalysts for the highly stereoselective hydrosilylation of alkynes and alkenes. Chemistry, 2015, 21(47), 17073-17078.
[http://dx.doi.org/10.1002/chem.201502643] [PMID: 26427771]
(d) Chen, C.; Hecht, M.B.; Kavara, A.; Brennessel, W.W.; Mercado, B.Q.; Weix, D.J.; Holland, P.L. Rapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalyst. J. Am. Chem. Soc., 2015, 137(41), 13244-13247.
[http://dx.doi.org/10.1021/jacs.5b08611] [PMID: 26444496]
(e) Corey, J.Y.; Braddock-Wilking, J. Reactions of hydrosilanes with transition-metal complexes: Formation of Stable Transition-Metal Silyl Compounds. Chem. Rev., 1999, 99(1), 175-292.
[http://dx.doi.org/10.1021/cr9701086] [PMID: 11848982]
(f) Horn, K.A. Regio-and stereochemical aspects of the palladium-catalyzed reactions of silanes. Chem. Rev., 1995, 95(5), 1317-1350.
[http://dx.doi.org/10.1021/cr00037a009]
(g) Braunstein, P.; Knorr, M. Reactivity of the metal-silicon bond in organometallic chemistry. J. Organomet. Chem., 1995, 500(1-2), 21-38.
[http://dx.doi.org/10.1016/0022-328X(95)00530-4]
(h) Marciniec, B.; Guliński, J. Recent advances in catalytic hydrosilylation. J. Organomet. Chem., 1993, 446(1-2), 15-23.
[http://dx.doi.org/10.1016/0022-328X(93)80030-F]
(i) Peng, J.; Bai, Y.; Li, J.; La, G. Recent progress in transition metal complexes catalyzed hydrosilylation of carbon-carbon multiple bonds. Curr. Org. Chem., 2011, 15(16), 2802-2815.
[http://dx.doi.org/10.2174/138527211796378415]
(j) Pagliaro, M.; Ciriminna, R.; Pandarus, V.; Béland, F. Platinum‐based heterogeneously catalyzed hydrosilylation. Eur. J. Org. Chem., 2013, 2013(28), 6227-6235.
[http://dx.doi.org/10.1002/ejoc.201300290]
(k) Roy, A.K. A review of recent progress in catalyzed homogeneous hydrosilation (hydrosilylation). Adv. Organomet. Chem., 2007, 55, 1-59.
[http://dx.doi.org/10.1016/S0065-3055(07)55001-X]
(l) Buch, F.; Brettar, J.; Harder, S. Hydrosilylation of alkenes with early main-group metal catalysts. Angew. Chem. Int. Ed., 2006, 45(17), 2741-2745.
[http://dx.doi.org/10.1002/anie.200504164] [PMID: 16548043]
(m) Dong, H.; Jiang, Y.; Berke, H. Rhenium-mediated dehydrogenative silylation and highly regioselective hydrosilylation of nitrile substituted olefins. J. Organomet. Chem., 2014, 750, 17-22.
[http://dx.doi.org/10.1016/j.jorganchem.2013.10.052]
[12]
(a) Fang, H.; Guo, L.; Zhang, Y.; Yao, W.; Huang, Z. A pincer ruthenium complex for regioselective C–H silylation of heteroarenes. Org. Lett., 2016, 18(21), 5624-5627.
[http://dx.doi.org/10.1021/acs.orglett.6b02857] [PMID: 27754687]
(b) Klare, H.F.; Oestreich, M.; Ito, J.; Nishiyama, H.; Ohki, Y.; Tatsumi, K. Cooperative catalytic activation of Si-H bonds by a polar Ru-S bond: Regioselective low-temperature C-H silylation of indoles under neutral conditions by a Friedel-Crafts mechanism. J. Am. Chem. Soc., 2011, 133(10), 3312-3315.
[http://dx.doi.org/10.1021/ja111483r] [PMID: 21341748]
(c) Lu, B.; Falck, J.R. Efficient iridium-catalyzed C-H functionalization/silylation of heteroarenes. Angew. Chem. Int. Ed. Engl., 2008, 47(39), 7508-7510.
[http://dx.doi.org/10.1002/anie.200802456] [PMID: 18698661]
(d) Skoda-Földes, R.; Kollár, L.; Heil, B. Homogeneous catalytic hydrosilylation of the C-C double bond in the presence of transition metalcatalysts. J. Organomet. Chem., 1991, 408(3), 297-304.
[http://dx.doi.org/10.1016/0022-328X(91)83201-E]
[13]
Toutov, A.A.; Liu, W.B.; Betz, K.N.; Fedorov, A.; Stoltz, B.M.; Grubbs, R.H. Silylation of C-H bonds in aromatic heterocycles by an Earth-abundant metal catalyst. Nature, 2015, 518(7537), 80-84.
[http://dx.doi.org/10.1038/nature14126] [PMID: 25652999]
[14]
(a) Königs, C.D.F.; Müller, M.F.; Aiguabella, N.; Klare, H.F.; Oestreich, M. Catalytic dehydrogenative Si-N coupling of pyrroles, indoles, carbazoles as well as anilines with hydrosilanes without added base. Chem. Commun. (Camb.), 2013, 49(15), 1506-1508.
[http://dx.doi.org/10.1039/c3cc38900f] [PMID: 23328998]
(b) Bähr, S.; Oestreich, M. Elektrophile aromatische Substitution mit Siliciumelektrophilen: Die katalytische Friedel‐Crafts‐C‐H‐Silylierung. Angew. Chem., 2017, 129(1), 52-59.
[http://dx.doi.org/10.1002/ange.201608470]
[15]
(a) Murai, M.; Nishinaka, N.; Takai, K. Iridium-catalyzed sequential silylation and borylation of heteroarenes based on regioselective C-H bond activation. Angew. Chem. Int. Ed. Engl., 2018, 57(20), 5843-5847.
[http://dx.doi.org/10.1002/anie.201801229] [PMID: 29573532]
(b) Yonekura, K.; Iketani, Y.; Sekine, M.; Tani, T.; Matsui, F.; Kamakura, D.; Tsuchimoto, T. Zinc-catalyzed dehydrogenative silylation of indoles. Organometallics, 2017, 36(17), 3234-3249.
[http://dx.doi.org/10.1021/acs.organomet.7b00382]
[16]
(a) Curless, L.D.; Clark, E.R.; Dunsford, J.J.; Ingleson, M.J.E-H. E-H (E = R3Si or H) bond activation by B(C6F5)3 and heteroarenes; Competitive dehydrosilylation, hydrosilylation and hydrogenation. Chem. Commun. (Camb.), 2014, 50(40), 5270-5272.
[http://dx.doi.org/10.1039/C3CC47372D] [PMID: 24301227]
(b) Yin, Q.; Klare, H.F.; Oestreich, M. Friedel-crafts-type intermolecular C-H silylation of electron-rich arenes initiated by base-metal salts. Angew. Chem. Int. Ed. Engl., 2016, 55(9), 3204-3207.
[http://dx.doi.org/10.1002/anie.201510469] [PMID: 26821860]
(c) Ma, Y.; Wang, B.; Zhang, L.; Hou, Z. Boron-catalyzed aromatic C–H bond silylation with hydrosilanes. J. Am. Chem. Soc., 2016, 138(11), 3663-3666.
[http://dx.doi.org/10.1021/jacs.6b01349] [PMID: 26959863]
(d) Chen, Q.A.; Klare, H.F.; Oestreich, M. Brønsted acid-promoted formation of stabilized silylium ions for catalytic Friedel–Crafts C–H silylation. J. Am. Chem. Soc., 2016, 138(25), 7868-7871.
[http://dx.doi.org/10.1021/jacs.6b04878] [PMID: 27303857]
(e) Sollott, G.P.; Peterson, W.R. Silylation of ferrocene by chloro-and aminosilanes under Friedel-Crafts conditions. J. Am. Chem. Soc., 1967, 89(19), 5054-5056.
[http://dx.doi.org/10.1021/ja00995a048]
(f) Olah, G.A.; Bach, T.; Prakash, G.S. Aromatic substitution. 56. Observation of aluminum trichloride-catalyzed trialkylsilylation of benzene and toluene with chlorotrialkylsilanes in the presence of Huenig bases. J. Org. Chem., 1989, 54(16), 3770-3771.
[http://dx.doi.org/10.1021/jo00277a005]
(g) Han, Y.; Zhang, S.; He, J.; Zhang, Y. (C6F5)3-Catalyzed (convergent) disproportionation reaction of indoles. J. Am. Chem. Soc., 2017, 139(21), 7399-7407.
[http://dx.doi.org/10.1021/jacs.7b03534] [PMID: 28481517]
(h) Furukawa, S.; Kobayashi, J.; Kawashima, T. Development of a sila-Friedel-Crafts reaction and its application to the synthesis of dibenzosilole derivatives. J. Am. Chem. Soc., 2009, 131(40), 14192-14193.
[http://dx.doi.org/10.1021/ja906566r] [PMID: 19807175]
(i) Curless, L.D.; Ingleson, M.J. B(C6F5)3-catalyzed synthesis of benzofused-siloles. Organometallics, 2014, 33(24), 7241-7246.
[http://dx.doi.org/10.1021/om501033p]
(j) Omann, L.; Oestreich, M. A catalytic SEAr approach to dibenzosiloles functionalized at both benzene cores. Angew. Chem. Int. Ed. Engl., 2015, 54(35), 10276-10279.
[http://dx.doi.org/10.1002/anie.201504066] [PMID: 26177933]
(k) Ihara, H.; Suginome, M. Easily attachable and detachable ortho-directing agent for arylboronic acids in ruthenium-catalyzed aromatic C-H silylation. J. Am. Chem. Soc., 2009, 131(22), 7502-7503.
[http://dx.doi.org/10.1021/ja902314v] [PMID: 19435323]
(l) Simmons, E.M.; Hartwig, J.F. Iridium-catalyzed arene ortho-silylation by formal hydroxyl-directed C-H activation. J. Am. Chem. Soc., 2010, 132(48), 17092-17095.
[http://dx.doi.org/10.1021/ja1086547] [PMID: 21077625]
(m) Oyamada, J.; Nishiura, M.; Hou, Z. Scandium-catalyzed silylation of aromatic C-H bonds. Angew. Chem. Int. Ed. Engl., 2011, 50(45), 10720-10723.
[http://dx.doi.org/10.1002/anie.201105636] [PMID: 21932221]
(n) Zarate, C.; Martin, R. A mild Ni/Cu-catalyzed silylation via C-O cleavage. J. Am. Chem. Soc., 2014, 136(6), 2236-2239.
[http://dx.doi.org/10.1021/ja412107b] [PMID: 24476124]
(o) Cheng, C.; Hartwig, J.F. Rhodium-catalyzed intermolecular C-H silylation of arenes with high steric regiocontrol. Science, 2014, 343(6173), 853-857.
[http://dx.doi.org/10.1126/science.1248042] [PMID: 24558154]
(p) Cheng, C.; Hartwig, J.F. Iridium-catalyzed silylation of aryl C-H bonds. J. Am. Chem. Soc., 2015, 137(2), 592-595.
[http://dx.doi.org/10.1021/ja511352u] [PMID: 25514197]
(q) Komiyama, T.; Minami, Y.; Hiyama, T. Aryl(triethyl)silanes for biaryl and teraryl synthesis by copper(II)-catalyzed cross-coupling reaction. Angew. Chem. Int. Ed. Engl., 2016, 55(51), 15787-15791.
[http://dx.doi.org/10.1002/anie.201608667] [PMID: 27860116]
(r) Elsby, M.R.; Johnson, S.A. Nickel-catalyzed C–H silylation of arenes with vinylsilanes: Rapid and reversible β-Si elimination. J. Am. Chem. Soc., 2017, 139(27), 9401-9407.
[http://dx.doi.org/10.1021/jacs.7b05574] [PMID: 28613902]
(s) Kuninobu, Y.; Yamauchi, K.; Tamura, N.; Seiki, T.; Takai, K. Rhodium-catalyzed asymmetric synthesis of spirosilabifluorene derivatives. Angew. Chem. Int. Ed. Engl., 2013, 52(5), 1520-1522.
[http://dx.doi.org/10.1002/anie.201207723] [PMID: 23239057]
[17]
Gandhamsetty, N.; Joung, S.; Park, S.W.; Park, S.; Chang, S. Boron-catalyzed silylative reduction of quinolines: Selective sp3 C-Si bond formation. J. Am. Chem. Soc., 2014, 136(48), 16780-16783.
[http://dx.doi.org/10.1021/ja510674u] [PMID: 25412033]
[18]
(a) Wübbolt, S.; Oestreich, M. Catalytic Electrophilic C-H Silylation of Pyridines Enabled by Temporary Dearomatization. Angew. Chem. Int. Ed. Engl., 2015, 54(52), 15876-15879.
[http://dx.doi.org/10.1002/anie.201508181] [PMID: 26593854]
(b) Furukawa, S.; Kobayashi, J.; Kawashima, T. Application of the sila-Friedel-Crafts reaction to the synthesis of π-extended silole derivatives and their properties. Dalton Trans., 2010, 39(39), 9329-9336.
[http://dx.doi.org/10.1039/c0dt00136h] [PMID: 20830392]
[19]
Proctor, R.S.J.; Phipps, R.J. Recent Advances in Minisci-Type Reactions. Angew. Chem. Int. Ed. Engl., 2019, 58(39), 13666-13699.
[http://dx.doi.org/10.1002/anie.201900977] [PMID: 30888102]
[20]
Hsiao, Y.L.; Waymouth, R.M. Free-radical hydrosilylation of poly (phenylsilane): Synthesis of functional polysilanes. J. Am. Chem. Soc., 1994, 116(21), 9779-9780.
[http://dx.doi.org/10.1021/ja00100a065]
[21]
Smadja, W.; Zahouily, M.; Journet, M.; Malacria, M. Acyclic diastereofacial selection in radical addition. Tetrahedron Lett., 1991, 32(30), 3683-3686.
[http://dx.doi.org/10.1016/S0040-4039(00)79767-X]
[22]
Kopping, B.; Chatgilialoglu, C.; Zehnder, M.; Giese, B. Tris (trimethylsilyl) silane: An efficient hydrosilylating agent of alkenes and alkynes. J. Org. Chem., 1992, 57(14), 3994-4000.
[http://dx.doi.org/10.1021/jo00040a048]
[23]
Dang, H.S.; Roberts, B.P. Polarity-reversal catalysis by thiols of radical-chain hydrosilylation of alkenes. Tetrahedron Lett., 1995, 36(16), 2875-2878.
[http://dx.doi.org/10.1016/0040-4039(95)00372-J]
[24]
Haque, M.B.; Roberts, B.P. Enantioselective radical-chain hydrosilylation of prochiral alkenes using optically active thiol catalysts. Tetrahedron Lett., 1996, 37(50), 9123-9126.
[http://dx.doi.org/10.1016/S0040-4039(96)90165-3]
[25]
Matsumoto, A.; Ito, Y. New generation of organosilyl radicals by photochemically induced homolytic cleavage of silicon-boron bonds. J. Org. Chem., 2000, 65(18), 5707-5711.
[http://dx.doi.org/10.1021/jo000547w] [PMID: 10970314]
[26]
Amrein, S.; Timmermann, A.; Studer, A. Radical transfer hydrosilylation/cyclization using silylated cyclohexadienes. Org. Lett., 2001, 3(15), 2357-2360.
[http://dx.doi.org/10.1021/ol016160c] [PMID: 11463315]
[27]
Amrein, S.; Studer, A. Intramolecular radical hydrosilylation--the first radical 5-endo-dig cyclisation. Chem. Commun. (Camb.), 2002, (15), 1592-1593.
[http://dx.doi.org/10.1039/b204879e] [PMID: 12170797]
[28]
Amrein, S.; Studer, A. Silylated cyclohexadienes in radical chain hydrosilylations. Helv. Chim. Acta, 2002, 85(10), 3559-3574.
[http://dx.doi.org/10.1002/1522-2675(200210)85:10<3559::AID-HLCA3559>3.0.CO;2-6]
[29]
Tayama, O.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. The first hydroxysilylation of alkenes with triethylsilane under dioxygen catalyzed by N‐Hydroxyphthalimide. Eur. J. Org. Chem., 2003, 2003(12), 2286-2289.
[http://dx.doi.org/10.1002/ejoc.200300074]
[30]
Liu, Y.; Yamazaki, S.; Yamabe, S. Regioselective hydrosilylations of propiolate esters with tris(trimethylsilyl)silane. J. Org. Chem., 2005, 70(2), 556-561.
[http://dx.doi.org/10.1021/jo048371b] [PMID: 15651801]
[31]
Liu, Y.; Yamazaki, S.; Yamabe, S.; Nakato, Y. A mild and efficient Si (111) surface modification via hydrosilylation of activated alkynes. J. Mater. Chem., 2005, 15(46), 4906-4913.
[http://dx.doi.org/10.1039/b511535c]
[32]
Wang, J.; Zhu, Z.; Huang, W.; Deng, M.; Zhou, X. Air-initiated hydrosilylation of unactivated alkynes and alkenes and dehalogenation of halohydrocarbons by tris (trimethylsilyl) silane under solvent-free conditions. J. Organomet. Chem., 2008, 693(12), 2188-2192.
[http://dx.doi.org/10.1016/j.jorganchem.2008.03.019]
[33]
Postigo, A.; Kopsov, S.; Ferreri, C.; Chatgilialoglu, C. Radical reactions in aqueous medium using (Me3Si)3SiH. Org. Lett., 2007, 9(25), 5159-5162.
[http://dx.doi.org/10.1021/ol7020803] [PMID: 17997562]
[34]
Postigo, A.; Kopsov, S.; Zlotsky, S.S.; Ferreri, C.; Chatgilialoglu, C. Hydrosilylation of C−C multiple bonds using (Me3Si)3SiH in water. Comparative study of the radical initiation step. Organometallics, 2009, 28(11), 3282-3287.
[http://dx.doi.org/10.1021/om900086m]
[35]
Postigo, A.; Nudelman, N.S. Different radical initiation techniques of hydrosilylation reactions of multiple bonds in water: dioxygen initiation. J. Phys. Org. Chem., 2010, 23(10), 910-914.
[http://dx.doi.org/10.1002/poc.1703]
[36]
Palframan, M.J.; Parsons, A.F.; Johnson, P. Radical addition of silanes to alkenes followed by oxidation. Synlett, 2011, 2011(19), 2811-2814.
[http://dx.doi.org/10.1055/s-0031-1289568]
[37]
Fleming, I.; Henning, R.; Parker, D.C.; Plaut, H.E.; Sanderson, P.E.J. The phenyldimethylsilyl group as a masked hydroxy group. J. Chem. Soc., Perkin Trans. 1, 1995, 4(4), 317-337.
[http://dx.doi.org/10.1039/p19950000317]
[38]
(a) Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Photocatalysis for the formation of the C-C bond. Chem. Rev., 2007, 107(6), 2725-2756.
[http://dx.doi.org/10.1021/cr068352x] [PMID: 17530909]
(b) Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev., 2009, 38(7), 1999-2011.
[http://dx.doi.org/10.1039/b714786b] [PMID: 19551179]
(c) Dondi, D.; Fagnoni, M.; Albini, A. Tetrabutylammonium decatungstate-photosensitized alkylation of electrophilic alkenes: Convenient functionalization of aliphatic C-H bonds. Chemistry, 2006, 12(15), 4153-4163.
[http://dx.doi.org/10.1002/chem.200501216] [PMID: 16521134]
(d) Tzirakis, M.D.; Orfanopoulos, M. Acyl radical reactions in fullerene chemistry: Direct acylation of [60]fullerene through an efficient decatungstate-photomediated approach. J. Am. Chem. Soc., 2009, 131(11), 4063-4069.
[http://dx.doi.org/10.1021/ja808658b] [PMID: 19292491]
(e) Yamada, K.; Okada, M.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Ryu, I. Photocatalyzed site-selective C-H to C-C conversion of aliphatic nitriles. Org. Lett., 2015, 17(5), 1292-1295.
[http://dx.doi.org/10.1021/acs.orglett.5b00282] [PMID: 25692554]
(f) Ryu, I.; Tani, A.; Fukuyama, T.; Ravelli, D.; Montanaro, S.; Fagnoni, M. Efficient C-H/C-N and C-H/C-CO-N conversion via decatungstate-photoinduced alkylation of diisopropyl azodicarboxylate. Org. Lett., 2013, 15(10), 2554-2557.
[http://dx.doi.org/10.1021/ol401061v] [PMID: 23651042]
(g) Halperin, S.D.; Fan, H.; Chang, S.; Martin, R.E.; Britton, R. A convenient photocatalytic fluorination of unactivated C-H bonds. Angew. Chem. Int. Ed. Engl., 2014, 53(18), 4690-4693.
[http://dx.doi.org/10.1002/anie.201400420] [PMID: 24668727]
[39]
Lalevée, J.; Blanchard, N.; Tehfe, M.A.; Fouassier, J.P. Decatungstate (W10O32(4-))/silane: A new and promising radical source under soft light irradiation. Macromol. Rapid Commun., 2011, 32(11), 838-843.
[http://dx.doi.org/10.1002/marc.201100099] [PMID: 21491537]
[40]
Qrareya, H.; Dondi, D.; Ravelli, D.; Fagnoni, M. Decatungstate‐photocatalyzed Si−H/C−H activation in silyl hydrides: Hydrosilylation of electron‐poor alkenes. Chem.Cat., 2015, 7(20), 3350-3357.
[http://dx.doi.org/10.1002/cctc.201500562]
[41]
Yang, X.; Wang, C. Dichotomy of manganese catalysis via organometallic or radical mechanism: Stereodivergent hydrosilylation of alkynes. Angew. Chem. Int. Ed. Engl., 2018, 57(4), 923-928.
[http://dx.doi.org/10.1002/anie.201710206] [PMID: 29205747]
[42]
Yang, X.; Wang, C. Diverse fates of β‐silyl radical under manganese catalysis: Hydrosilylation and dehydrogenative silylation of alkenes. Chin. J. Chem., 2018, 36(11), 1047-1051.
[http://dx.doi.org/10.1002/cjoc.201800367]
[43]
Zhang, L.; Hang, Z.; Liu, Z.Q. A free-radical-promoted stereospecific decarboxylative silylation of α,β-unsaturated acids with silanes. Angew. Chem. Int. Ed. Engl., 2016, 55(1), 236-239.
[http://dx.doi.org/10.1002/anie.201509537] [PMID: 26582425]
[44]
(a) Fu, W.; Zhu, M.; Zou, G.; Xu, C.; Wang, Z.; Ji, B. Visible-light-mediated radical aryldifluoroacetylation of alkynes with ethyl bromodifluoroacetate for the synthesis of 3-difluoroacetylated coumarins. J. Org. Chem., 2015, 80(9), 4766-4770.
[http://dx.doi.org/10.1021/acs.joc.5b00305] [PMID: 25843358]
(b) Yan, K.; Yang, D.; Wei, W.; Wang, F.; Shuai, Y.; Li, Q.; Wang, H. Silver-mediated radical cyclization of alkynoates and α-keto acids leading to coumarins via cascade double C-C bond formation. J. Org. Chem., 2015, 80(3), 1550-1556.
[http://dx.doi.org/10.1021/jo502474z] [PMID: 25562802]
(c) Mi, X.; Wang, C.; Huang, M.; Wu, Y.; Wu, Y. Preparation of 3-acyl-4-arylcoumarins via metal-free tandem oxidative acylation/cyclization between alkynoates with aldehydes. J. Org. Chem., 2015, 80(1), 148-155.
[http://dx.doi.org/10.1021/jo502220b] [PMID: 25495248]
(d) Mi, X.; Wang, C.; Huang, M.; Zhang, J.; Wu, Y.; Wu, Y. Silver-catalyzed synthesis of 3-phosphorated coumarins via radical cyclization of alkynoates and dialkyl H-phosphonates. Org. Lett., 2014, 16(12), 3356-3359.
[http://dx.doi.org/10.1021/ol5013839] [PMID: 24921182]
(e) Li, Y.; Lu, Y.; Qiu, G.; Ding, Q. Copper-catalyzed direct trifluoromethylation of propiolates: Construction of trifluoromethylated coumarins. Org. Lett., 2014, 16(16), 4240-4243.
[http://dx.doi.org/10.1021/ol501939m] [PMID: 25084051]
(f) Wei, W.; Wen, J.; Yang, D.; Guo, M.; Wang, Y.; You, J.; Wang, H. Direct and metal-free arylsulfonylation of alkynes with sulfonylhydrazides for the construction of 3-sulfonated coumarins. Chem. Commun. (Camb.), 2015, 51(4), 768-771.
[http://dx.doi.org/10.1039/C4CC08117J] [PMID: 25421259]
(g) Mantovani, A.C.; Goulart, T.A.; Back, D.F.; Menezes, P.H.; Zeni, G. Iron(III) chloride and diorganyl diselenides-mediated 6-endo-dig cyclization of arylpropiolates and arylpropiolamides leading to 3-organoselenyl-2H-coumarins and 3-organoselenyl-quinolinones. J. Org. Chem., 2014, 79(21), 10526-10536.
[http://dx.doi.org/10.1021/jo502199q] [PMID: 25271674]
[45]
Kong, D.L.; Cheng, L.; Wu, H.R.; Li, Y.X.; Wang, D.; Liu, L. A metal-free yne-addition/1,4-aryl migration/decarboxylation cascade reaction of alkynoates with Csp(3)-H centers. Org. Biomol. Chem., 2016, 14(7), 2210-2217.
[http://dx.doi.org/10.1039/C5OB02478A] [PMID: 26740014]
[46]
Wang, C.; Wang, A.; Rueping, M. Manganese-Catalyzed C-H functionalizations: Hydroarylations and alkenylations involving an unexpected heteroaryl shift. Angew. Chem. Int. Ed. Engl., 2017, 56(33), 9935-9938.
[http://dx.doi.org/10.1002/anie.201704682] [PMID: 28646490]
[47]
(a) Pratt, S.L.; Faltynek, R.A. Hydrosilation catalysis via silylmanganese carbonyl complexes: thermal vs. photochemical activation. J. Organomet. Chem., 1983, 258(1), C5-C8.
[http://dx.doi.org/10.1016/0022-328X(83)89515-1]
(b) Hilal, H.S.; Abu-Eid, M.; Al-Subu, M.; Khalaf, S. Hydrosilylation reactions catalysed by decacarbonyldimanganese (O). J. Mol. Catal., 1987, 39(1), 1-11.
[http://dx.doi.org/10.1016/0304-5102(87)80042-1]
(c) Hilal, H.S.; Suleiman, M.A.; Jondi, W.J.; Khalaf, S.; Masoud, M.M. Poly (siloxane)-supported decacarbonyldimanganese (0) catalyst for terminal olefin hydrosilylation reactions: The effect of the support on the catalyst selectivity, activity and stability. J. Mol. Catal. Chem., 1999, 144(1), 47-59.
[http://dx.doi.org/10.1016/S1381-1169(98)00336-7]
(d) Docherty, J.H.; Peng, J.; Dominey, A.P.; Thomas, S.P. Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide. Nat. Chem., 2017, 9(6), 595-600.
[http://dx.doi.org/10.1038/nchem.2697] [PMID: 28537588]
(e) Carney, J.R.; Dillon, B.R.; Campbell, L.; Thomas, S.P. Manganese-catalyzed hydrofunctionalization of alkenes. Angew. Chem. Int. Ed. Engl., 2018, 57(33), 10620-10624.
[http://dx.doi.org/10.1002/anie.201805483] [PMID: 29894021]
(f) Peña-López, M.; Neumann, H.; Beller, M. (Enantio)selective hydrogen autotransfer: Ruthenium-catalyzed synthesis of oxazolidin-2-ones from urea and diols. Angew. Chem. Int. Ed. Engl., 2016, 55(27), 7826-7830.
[http://dx.doi.org/10.1002/anie.201600698] [PMID: 27072612]
[48]
(a) Kuninobu, Y.; Nishina, Y.; Takeuchi, T.; Takai, K. Manganese-catalyzed insertion of aldehydes into a C-H bond. Angew. Chem. Int. Ed., 2007, 46(34), 6518-6520.
[http://dx.doi.org/10.1002/anie.200702256] [PMID: 17654472]
(b) Mukherjee, A.; Nerush, A.; Leitus, G.; Shimon, L.J.; Ben David, Y.; Espinosa Jalapa, N.A.; Milstein, D. Manganese-catalyzed environmentally benign dehydrogenative coupling of alcohols and amines to form aldimines and H2: A catalytic and mechanistic study. J. Am. Chem. Soc., 2016, 138(13), 4298-4301.
[http://dx.doi.org/10.1021/jacs.5b13519] [PMID: 26924231]
(c) Yahaya, N.P.; Appleby, K.M.; Teh, M.; Wagner, C.; Troschke, E.; Bray, J.T.; Duckett, S.B.; Hammarback, L.A.; Ward, J.S.; Milani, J.; Pridmore, N.E.; Whitwood, A.C.; Lynam, J.M.; Fairlamb, I.J. Manganese(I)-catalyzed C-H activation: The key role of a 7-membered manganacycle in h-transfer and reductive elimination. Angew. Chem. Int. Ed. Engl., 2016, 55(40), 12455-12459.
[http://dx.doi.org/10.1002/anie.201606236] [PMID: 27603008]
(d) Peña-López, M.; Piehl, P.; Elangovan, S.; Neumann, H.; Beller, M. Manganese-catalyzed hydrogen-autotransfer C-C bond formation: α-Alkylation of ketones with primary alcohols. Angew. Chem. Int. Ed. Engl., 2016, 55(48), 14967-14971.
[http://dx.doi.org/10.1002/anie.201607072] [PMID: 27785889]
(e) Chakraborty, S.; Das, U.K.; Ben-David, Y.; Milstein, D. Manganese catalyzed α-olefination of nitriles by primary alcohols. J. Am. Chem. Soc., 2017, 139(34), 11710-11713.
[http://dx.doi.org/10.1021/jacs.7b06993] [PMID: 28792761]
(f) Fu, S.; Shao, Z.; Wang, Y.; Liu, Q. Manganese-catalyzed upgrading of ethanol into 1-butanol. J. Am. Chem. Soc., 2017, 139(34), 11941-11948.
[http://dx.doi.org/10.1021/jacs.7b05939] [PMID: 28820246]
[49]
Zhang, X.; Liu, M.X.; Wang, T.L.; Wang, Y.Q.; Wang, X.C.; Quan, Z.J. A free-radical-promoted stereospecific denitro silylation of β-nitroalkenes with silanes. Org. Chem. Front., 2019, 6(19), 3365-3368.
[http://dx.doi.org/10.1039/C9QO00819E]
[50]
Liu, X.; Lin, E.E.; Chen, G.; Li, J.L.; Liu, P.; Wang, H. Radical hydroboration and hydrosilylation of gem-difluoroalkenes: Synthesis of α-difluorinated alkylborons and alkylsilanes. Org. Lett., 2019, 21(20), 8454-8458.
[http://dx.doi.org/10.1021/acs.orglett.9b03218] [PMID: 31600080]
[51]
Zhou, R.; Goh, Y.Y.; Liu, H.; Tao, H.; Li, L.; Wu, J. Visible-light-mediated metal-free hydrosilylation of alkenes through selective hydrogen atom transfer for Si-H activation. Angew. Chem. Int. Ed. Engl., 2017, 56(52), 16621-16625.
[http://dx.doi.org/10.1002/anie.201711250] [PMID: 29148234]
[52]
Zhu, J.; Cui, W.C.; Wang, S.; Yao, Z.J. Visible light-driven radical trans-hydrosilylation of electron-neutral and-rich alkenes with tertiary and secondary hydrosilanes. J. Org. Chem., 2018, 83(23), 14600-14609.
[http://dx.doi.org/10.1021/acs.joc.8b02409] [PMID: 30379078]
[53]
Zhu, J.; Cui, W.C.; Wang, S.; Yao, Z.J. Radical hydrosilylation of alkynes catalyzed by eosin Y and thiol under visible light irradiation. Org. Lett., 2018, 20(11), 3174-3178.
[http://dx.doi.org/10.1021/acs.orglett.8b00909] [PMID: 29763322]
[54]
Liang, H.; Ji, Y.X.; Wang, R.H.; Zhang, Z.H.; Zhang, B. Visible-light-initiated manganese-catalyzed E-Selective hydrosilylation and hydrogermylation of alkynes. Org. Lett., 2019, 21(8), 2750-2754.
[http://dx.doi.org/10.1021/acs.orglett.9b00701] [PMID: 30931573]
[55]
Schweizer, S.; Tresse, C.; Bisseret, P.; Lalevée, J.; Evano, G.; Blanchard, N. Stereodivergent hydrogermylations of α-trifluoromethylated alkynes and their applications in cross-coupling reactions. Org. Lett., 2015, 17(7), 1794-1797.
[http://dx.doi.org/10.1021/acs.orglett.5b00579] [PMID: 25811960]
[56]
(a) Bunescu, A.; Ha, T.M.; Wang, Q.; Zhu, J. Copper-catalyzed three-component carboazidation of alkenes with acetonitrile and sodium azide. Angew. Chem. Int. Ed. Engl., 2017, 56(35), 10555-10558.
[http://dx.doi.org/10.1002/anie.201705353] [PMID: 28651036]
(b) Yang, Y.; Song, R.J.; Ouyang, X.H.; Wang, C.Y.; Li, J.H.; Luo, S. Iron-catalyzed intermolecular 1,2-difunctionalization of styrenes and conjugated alkenes with silanes and nucleophiles. Angew. Chem. Int. Ed. Engl., 2017, 56(27), 7916-7919.
[http://dx.doi.org/10.1002/anie.201702349] [PMID: 28488789]
(c) Zhang, J.; Jiang, J.; Xu, D.; Luo, Q.; Wang, H.; Chen, J.; Li, H.; Wang, Y.; Wan, X. Interception of cobalt-based carbene radicals with α-aminoalkyl radicals: a tandem reaction for the construction of β-ester-γ-amino ketones. Angew. Chem. Int. Ed. Engl., 2015, 54(4), 1231-1235.
[http://dx.doi.org/10.1002/anie.201408874] [PMID: 25425423]
[57]
Hou, J.; Ee, A.; Cao, H.; Ong, H.W.; Xu, J.H.; Wu, J. Visible-light-mediated metal-free difunctionalization of alkenes with CO2 and silanes or C(sp3 )-H alkanes. Angew. Chem. Int. Ed. Engl., 2018, 57(52), 17220-17224.
[http://dx.doi.org/10.1002/anie.201811266] [PMID: 30411439]
[58]
Yu, W.L.; Luo, Y.C.; Yan, L.; Liu, D.; Wang, Z.Y.; Xu, P.F. Dehydrogenative silylation of alkenes for the synthesis of substituted allylsilanes by photoredox, hydrogen-atom transfer, and cobalt catalysis. Angew. Chem. Int. Ed. Engl., 2019, 58(32), 10941-10945.
[http://dx.doi.org/10.1002/anie.201904707] [PMID: 31166076]
[59]
(a) Rooke, D.A.; Menard, Z.A.; Ferreira, E.M. An analysis of the influences dictating regioselectivity in platinum-catalyzed hydrosilylations of internal alkynes. Tetrahedron, 2014, 70(27-28), 4232-4244.
[http://dx.doi.org/10.1016/j.tet.2014.03.012]
(b) Chabaud, L.; James, P.; Landais, Y. Allylsilanes in organic synthesis−recent developments. Eur. J. Org. Chem., 2004, 2004(15), 3173-3199.
[http://dx.doi.org/10.1002/ejoc.200300789]
(c) Yang, Z.; Peng, D.; Du, X.; Huang, Z.; Ma, S. Identifying a cobalt catalyst for highly selective hydrosilylation of allenes. Org. Chem. Front., 2017, 4(9), 1829-1832.
[http://dx.doi.org/10.1039/C7QO00497D]
(d) Wang, C.; Teo, W.J.; Ge, S. Access to stereodefined (Z)-allylsilanes and (Z)-allylic alcohols via cobalt-catalyzed regioselective hydrosilylation of allenes. Nat. Commun., 2017, 8(1), 2258.
[http://dx.doi.org/10.1038/s41467-017-02382-7] [PMID: 29273720]
(e) Asako, S.; Ishikawa, S.; Takai, K. Synthesis of linear allylsilanes via molybdenum-catalyzed regioselective hydrosilylation of allenes. ACS Catal., 2016, 6(5), 3387-3395.
[http://dx.doi.org/10.1021/acscatal.6b00627]
(f) Miller, Z.D.; Dorel, R.; Montgomery, J. Regiodivergent and stereoselective hydrosilylation of 1, 3‐disubstituted allenes. Angew. Chem. Int. Ed. Engl., 2015, 54(31), 9088-9091.
[http://dx.doi.org/10.1002/anie.201503521] [PMID: 26079290]
(g) Sudo, T.; Asao, N.; Gevorgyan, V.; Yamamoto, Y. Lewis acid catalyzed highly regio-and stereocontrolled trans-hydrosilylation of alkynes and allenes. J. Org. Chem., 1999, 64(7), 2494-2499.
[http://dx.doi.org/10.1021/jo9824293]
[60]
Cai, Y.; Zhao, W.; Wang, S.; Liang, Y.; Yao, Z.J. Access to Functionalized E-allylsilanes and E-alkenylsilanes through visible-light-driven radical hydrosilylation of mono-and disubstituted allenes. Org. Lett., 2019, 21, 9836-9840.
[http://dx.doi.org/10.1021/acs.orglett.9b03679] [PMID: 31793301]
[61]
Cui, W.C.; Zhao, W.; Gao, M.; Liu, W.; Wang, S.; Liang, Y.; Yao, Z.J. Diastereoselective synthesis of polysubstituted piperidines through visible-light-driven silylative cyclization of Aza-1,6-Dienes: Experimental and DFT studies. Chemistry, 2019, 25(72), 16506-16510.
[http://dx.doi.org/10.1002/chem.201903440] [PMID: 31544271]
[62]
Hou, H.; Xu, Y.; Yang, H.; Chen, X.; Yan, C.; Shi, Y.; Zhu, S. Visible-light mediated hydrosilylative and hydrophosphorylative cyclizations of enynes and dienes. Org. Lett., 2020, 22(5), 1748-1753.
[http://dx.doi.org/10.1021/acs.orglett.0c00024] [PMID: 32077704]
[63]
Chang, X.H.; Wang, Z.L.; Zhao, M.; Yang, C.; Li, J.J.; Ma, W.W.; Xu, Y.H. Synthesis of functionalized vinylsilanes via metal-free dehydrogenative silylation of enamides. Org. Lett., 2020, 22(4), 1326-1330.
[http://dx.doi.org/10.1021/acs.orglett.9b04645] [PMID: 31999462]
[64]
Mark, H.F.; Kroschwitz, J.I. Encyclopedia of polymer science and engineering; John Wiley & Sons, Inc., 1985.
[65]
Liu, Y.J.; Liu, Y.H.; Zhang, Z.Z.; Yan, S.Y.; Chen, K.; Shi, B.F. Divergent and Stereoselective Synthesis of β-Silyl-α-Amino Acids through palladium-catalyzed intermolecular silylation of unactivated primary and secondary C-H bonds. Angew. Chem. Int. Ed. Engl., 2016, 55(44), 13859-13862.
[http://dx.doi.org/10.1002/anie.201607766] [PMID: 27678130]
[66]
Wan, Y.; Zhu, J.; Yuan, Q.; Wang, W.; Zhang, Y. Synthesis of β-Silyl α-amino acids via visible-light-mediated hydrosilylation. Org. Lett., 2021, 23(4), 1406-1410.
[http://dx.doi.org/10.1021/acs.orglett.1c00065] [PMID: 33502205]
[67]
Chatgilialoglu, C.; Woynar, H.; Ingold, K.U.; Davies, A.G. Intramolecular and intermolecular reactions of alkenylsilyl radicals. J. Chem. Soc., Perkin Trans. 2, 1983, (5), 555-561.
[http://dx.doi.org/10.1039/p29830000555]
[68]
Barton, T.J.; Revis, A. Regiochemistry of alkenylsilyl and alkenyldisilanyl radical cyclizations. J. Am. Chem. Soc., 1984, 106(13), 3802-3805.
[http://dx.doi.org/10.1021/ja00325a015]
[69]
Sarasa, J.P.; Igual, J.; Poblet, J.M. Electronic effects in the regiochemistry of the alkenylsilyl radical cyclizations. J. Chem. Soc., Perkin Trans. 2, 1986, (6), 861-865.
[http://dx.doi.org/10.1039/p29860000861]
[70]
Lamb, R.C.; Ayers, P.W.; Toney, M.K. Organic peroxides. II. The mechanism of the thermal decomposition of 6-heptenoyl peroxide in toluene. The rearrangements of the 5-hexenyl radical. J. Am. Chem. Soc., 1963, 85(21), 3483-3486.
[http://dx.doi.org/10.1021/ja00904a039]
[71]
(a) Tamao, K.; Tanaka, T.; Nakajima, T.; Sumiya, R.; Arai, H.; Ito, Y. Intramolecular hydrosilation of alkenyl alcohols: A new approach to the regioselective synthesis of 1, 2-and 1, 3-Diols. Tetrahedron Lett., 1986, 27(29), 3377-3380.
[http://dx.doi.org/10.1016/S0040-4039(00)84800-5]
(b) Tamao, K.; Nakajima, T.; Sumiya, R.; Arai, H.; Higuchi, N.; Ito, Y. Stereocontrol in intramolecular hydrosilylation of allyl and homoallyl alcohols: A new approach to the stereoselective synthesis of 1,3-diol skeletons. J. Am. Chem. Soc., 1986, 108(19), 6090-6093.
[http://dx.doi.org/10.1021/ja00279a097] [PMID: 22175405]
[72]
Bergens, S.H.; Noheda, P.; Whelan, J.; Bosnich, B. Asymmetric catalysis. Production of chiral diols by enantioselective catalytic intramolecular hydrosilation of olefins. J. Am. Chem. Soc., 1992, 114(6), 2121-2128.
[http://dx.doi.org/10.1021/ja00032a028]
[73]
Cai, Y.; Roberts, B.P. Intramolecular radical-chain hydrosilylation catalysed by thiols: Cyclisation of alkenyloxysilanes. J. Chem. Soc., Perkin Trans. 1, 1998, (3), 467-476.
[http://dx.doi.org/10.1039/a706644i]
[74]
Wang, L.; Zhu, H.; Guo, S.; Cheng, J.; Yu, J.T. TBHP-promoted sequential radical silylation and aromatisation of aryl isonitriles with silanes. Chem. Commun. (Camb.), 2014, 50(74), 10864-10867.
[http://dx.doi.org/10.1039/C4CC04773G] [PMID: 25090195]
[75]
Zhang, L.; Liu, D.; Liu, Z.Q. A free radical cascade silylarylation of activated alkenes: Highly selective activation of the Si-H/C-H bonds. Org. Lett., 2015, 17(10), 2534-2537.
[http://dx.doi.org/10.1021/acs.orglett.5b01067] [PMID: 25945943]
[76]
Gao, P.; Zhang, W.; Zhang, Z. Copper-catalyzed oxidative ipso-annulation of activated alkynes with silanes: An approach to 3-silyl azaspiro [4, 5] trienones. Org. Lett., 2016, 18(22), 5820-5823.
[http://dx.doi.org/10.1021/acs.orglett.6b02781] [PMID: 27934505]
[77]
Wu, L.J.; Tan, F.L.; Li, M.; Song, R.J.; Li, J.H. Fe-Catalyzed oxidative spirocyclization of N-arylpropiolamides with silanes and TBHP involving the formation of C–Si bonds. Org. Chem. Front., 2017, 4(3), 350-353.
[http://dx.doi.org/10.1039/C6QO00691D]
[78]
(a) Onoe, M.; Baba, K.; Kim, Y.; Kita, Y.; Tobisu, M.; Chatani, N. Rhodium-catalyzed carbon-silicon bond activation for synthesis of benzosilole derivatives. J. Am. Chem. Soc., 2012, 134(47), 19477-19488.
[http://dx.doi.org/10.1021/ja3096174] [PMID: 23126446]
(b) Ouyang, K.; Liang, Y.; Xi, Z. Construction of benzosiloles, six- and eight-membered silacyclic skeletons, via a Pd-catalyzed intramolecular Mizoroki-Heck reaction of vinylsilanes. Org. Lett., 2012, 14(17), 4572-4575.
[http://dx.doi.org/10.1021/ol302040j] [PMID: 22882135]
(c) Meng, T.; Ouyang, K.; Xi, Z. Palladium-catalyzed cleavage of the Me–Si bond in ortho-trimethylsilyl aryltriflates: Synthesis of benzosilole derivatives from ortho-trimethylsilyl aryltriflates and alkynes. RSC Advances, 2013, 3(34), 14273-14276.
[http://dx.doi.org/10.1039/c3ra42910e]
(d) Tamao, K.; Yamaguchi, S.; Shiozaki, M.; Nakagawa, Y.; Ito, Y. Thiophene-silole cooligomers and copolymers. J. Am. Chem. Soc., 1992, 114(14), 5867-5869.
[http://dx.doi.org/10.1021/ja00040a063]
(e) Palmer, W.S.; Woerpel, K.A. Stereospecific palladium-catalyzed reactions of siliranes with alkynes. Organometallics, 1997, 16(6), 1097-1099.
[http://dx.doi.org/10.1021/om960923w]
(f) Ohmura, T.; Masuda, K.; Suginome, M. Silylboranes bearing dialkylamino groups on silicon as silylene equivalents: Palladium-catalyzed regioselective synthesis of 2,4-disubstituted siloles. J. Am. Chem. Soc., 2008, 130(5), 1526-1527.
[http://dx.doi.org/10.1021/ja073896h] [PMID: 18197663]
[79]
(a) Matsuda, T.; Kadowaki, S.; Yamaguchi, Y.; Murakami, M. Gold-catalysed intramolecular trans-allylsilylation of alkynes forming 3-allyl-1-silaindenes. Chem. Commun. (Camb.), 2008, (24), 2744-2746.
[http://dx.doi.org/10.1039/b804721a] [PMID: 18688296]
(b) Tobisu, M.; Onoe, M.; Kita, Y.; Chatani, N. Rhodium-catalyzed coupling of 2-silylphenylboronic acids with alkynes leading to benzosiloles: catalytic cleavage of the carbon-silicon bond in trialkylsilyl groups. J. Am. Chem. Soc., 2009, 131(22), 7506-7507.
[http://dx.doi.org/10.1021/ja9022978] [PMID: 19438242]
(c) Matsuda, T.; Yamaguchi, Y.; Shigeno, M.; Sato, S.; Murakami, M. Gold-catalysed alkenyl-and arylsilylation reactions forming 1-silaindenes. Chem. Commun. (Camb.), 2011, 47(30), 8697-8699.
[http://dx.doi.org/10.1039/c1cc12457a] [PMID: 21725551]
(d) Liang, Y.; Geng, W.; Wei, J.; Xi, Z. Palladium-catalyzed intermolecular coupling of 2-silylaryl bromides with alkynes: Synthesis of benzosiloles and heteroarene-fused siloles by catalytic cleavage of the C(sp3)-Si bond. Angew. Chem. Int. Ed. Engl., 2012, 51(8), 1934-1937.
[http://dx.doi.org/10.1002/anie.201108154] [PMID: 22252916]
[80]
(a) Matsuda, T.; Kadowaki, S.; Goya, T.; Murakami, M. Synthesis of silafluorenes by iridium-catalyzed [2 + 2 + 2] cycloaddition of silicon-bridged diynes with alkynes. Org. Lett., 2007, 9(1), 133-136.
[http://dx.doi.org/10.1021/ol062732n] [PMID: 17192103]
(b) Mochida, K.; Shimizu, M.; Hiyama, T. Palladium-catalyzed intramolecular coupling of 2-[(2-pyrrolyl)silyl]aryl triflates through 1,2-silicon migration. J. Am. Chem. Soc., 2009, 131(24), 8350-8351.
[http://dx.doi.org/10.1021/ja901622b] [PMID: 19489555]
(c) Yabusaki, Y.; Ohshima, N.; Kondo, H.; Kusamoto, T.; Yamanoi, Y.; Nishihara, H. Versatile synthesis of blue luminescent siloles and germoles and hydrogen-bond-assisted color alteration. Chemistry, 2010, 16(19), 5581-5585.
[http://dx.doi.org/10.1002/chem.200903408] [PMID: 20373312]
(d) Liang, Y.; Zhang, S.; Xi, Z. Palladium-catalyzed synthesis of benzosilolo[2,3-b]indoles via cleavage of a C(sp3)-Si bond and consequent intramolecular C(sp2)-Si coupling. J. Am. Chem. Soc., 2011, 133(24), 9204-9207.
[http://dx.doi.org/10.1021/ja2024959] [PMID: 21517096]
(e) Shibata, T.; Uchiyama, T.; Yoshinami, Y.; Takayasu, S.; Tsuchikama, K.; Endo, K. Highly enantioselective synthesis of silahelicenes using Ir-catalyzed [2+2+2] cycloaddition. Chem. Commun. (Camb.), 2012, 48(9), 1311-1313.
[http://dx.doi.org/10.1039/C1CC16762F] [PMID: 22158937]
(f) Zhang, Q. W.; An, K.; He, W. Rhodium-catalyzed tandem cyclization/si-c activation reaction for the synthesis of siloles. 2014, 126, 5773-5777.
[81]
Xu, L.; Zhang, S.; Li, P. Synthesis of silafluorenes and silaindenes via silyl radicals from arylhydrosilanes: intramolecular cyclization and intermolecular annulation with alkynes. Org. Chem. Front., 2015, 2(5), 459-463.
[http://dx.doi.org/10.1039/C5QO00012B]
[82]
Leifert, D.; Studer, A. 9-Silafluorenes via base-promoted homolytic aromatic substitution (BHAS)-the electron as a catalyst. Org. Lett., 2015, 17(2), 386-389.
[http://dx.doi.org/10.1021/ol503574k] [PMID: 25536028]
[83]
Yang, C.; Wang, J.; Li, J.; Ma, W.; An, K.; He, W.; Jiang, C. Visible‐light induced radical silylation for the synthesis of dibenzosiloles via dehydrogenative cyclization. Adv. Synth. Catal., 2018, 360(16), 3049-3054.
[http://dx.doi.org/10.1002/adsc.201800417]
[84]
Yan, Z.; Xie, J.; Zhu, C. Copper‐catalyzed radical silylarylation of ynones with silanes: En Route to silyl‐functionalized indenones. Adv. Synth. Catal., 2017, 359(23), 4153-4157.
[http://dx.doi.org/10.1002/adsc.201700926]
[85]
(a) Capaldo, L.; Ravelli, D. Hydrogen atom transfer (HAT): A versatile strategy for substrate activation in photocatalyzed organic synthesis. Eur. J. Org. Chem., 2017, 2017(15), 2056-2071.
[http://dx.doi.org/10.1002/ejoc.201601485] [PMID: 30147436]
(b) Margrey, K.A.; Nicewicz, D.A. A general approach to catalytic alkene anti-Markovnikov hydrofunctionalization reactions via acridinium photoredox catalysis. Acc. Chem. Res., 2016, 49(9), 1997-2006.
[http://dx.doi.org/10.1021/acs.accounts.6b00304] [PMID: 27588818]
(c) Protti, S.; Fagnoni, M.; Ravelli, D. Photocatalytic C-H activation by hydrogen‐atom transfer in synthesis. ChemCatChem, 2015, 7(10), 1516-1523.
[http://dx.doi.org/10.1002/cctc.201500125]
[86]
(a) Le, C.; Chen, T.Q.; Liang, T.; Zhang, P.; MacMillan, D.W.C. A radical approach to the copper oxidative addition problem: Trifluoromethylation of bromoarenes. Science, 2018, 360(6392), 1010-1014.
[http://dx.doi.org/10.1126/science.aat4133] [PMID: 29853683]
(b) Zhang, P.; Le, C.C.; MacMillan, D.W. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: A unique pathway for cross-electrophile coupling. J. Am. Chem. Soc., 2016, 138(26), 8084-8087.
[http://dx.doi.org/10.1021/jacs.6b04818] [PMID: 27263662]
[87]
Xu, N.X.; Li, B.X.; Wang, C.; Uchiyama, M. Sila- and Germacarboxylic Acids: Precursors for the Corresponding Silyl and Germyl Radicals. Angew. Chem. Int. Ed. Engl., 2020, 59(26), 10639-10644.
[http://dx.doi.org/10.1002/anie.202003070] [PMID: 32219934]
[88]
Gu, J.; Cai, C. Stereoselective synthesis of vinylsilanes via copper-catalyzed silylation of alkenes with silanes. Chem. Commun. (Camb.), 2016, 52(71), 10779-10782.
[http://dx.doi.org/10.1039/C6CC05509E] [PMID: 27514280]
[89]
Josien, H.; Bom, D.; Curran, D.P.; Zheng, Y.H.; Chou, T.C. 7-Silylcamptothecins (Silatecans): A new family of camptothecin antitumor agents. Bioorg. Med. Chem. Lett., 1997, 7(24), 3189-3194.
[http://dx.doi.org/10.1016/S0960-894X(97)10181-0]
[90]
Bom, D.D.W.; Garbarda, A.; Curran, D.P.; Chavan, A.J.; Kruszewski, S; Zimmer, S.G.; Fraley, K.A.; Bingcang, A.L.; Wallace, V.P.; Tromberg, B.J.; Burke, T.G. Clin. Cancer Res., 1999, 5, 560.
[91]
Du, W.; Kaskar, B.; Blumbergs, P.; Subramanian, P.K.; Curran, D.P. Semisynthesis of DB-67 and other silatecans from camptothecin by thiol-promoted addition of silyl radicals. Bioorg. Med. Chem., 2003, 11(3), 451-458.
[http://dx.doi.org/10.1016/S0968-0896(02)00437-6] [PMID: 12517440]
[92]
Liu, W.B.; Schuman, D.P.; Yang, Y.F.; Toutov, A.A.; Liang, Y.; Klare, H.F.T.; Nesnas, N.; Oestreich, M.; Blackmond, D.G.; Virgil, S.C.; Banerjee, S.; Zare, R.N.; Grubbs, R.H.; Houk, K.N.; Stoltz, B.M. Potassium tert-butoxide-catalyzed dehydrogenative C–H silylation of heteroaromatics: A combined experimental and computational mechanistic study. J. Am. Chem. Soc., 2017, 139(20), 6867-6879.
[http://dx.doi.org/10.1021/jacs.6b13031] [PMID: 28403611]
[93]
Fedorov, A.; Toutov, A.A.; Swisher, N.A.; Grubbs, R.H. Lewis-base silane activation: From reductive cleavage of aryl ethers to selective ortho-silylation. Chem. Sci. (Camb.), 2013, 4(4), 1640-1645.
[http://dx.doi.org/10.1039/c3sc22256j]
[94]
Xu, Z.; Chai, L.; Liu, Z.Q. Free-radical-promoted site-selective C–H silylation of arenes by using hydrosilanes. Org. Lett., 2017, 19(20), 5573-5576.
[http://dx.doi.org/10.1021/acs.orglett.7b02717] [PMID: 28961005]
[95]
Sakamoto, R.; Nguyen, B.N.; Maruoka, K. Transition‐metal‐free direct c−h silylation of electron‐deficient heteroarenes with hydrosilanes via a radical mechanism. Asian J. Org. Chem., 2018, 7(6), 1085-1088.
[http://dx.doi.org/10.1002/ajoc.201800282]
[96]
(a) Koubachi, J.; El Kazzouli, S.; Bousmina, M.; Guillaumet, G. Functionalization of imidazo [1, 2‐a] pyridines by means of metal‐catalyzed cross‐coupling reactions. Eur. J. Org. Chem., 2014, 2014(24), 5119-5138.
[http://dx.doi.org/10.1002/ejoc.201400065]
(b) Bagdi, A.K.; Hajra, A. Visible light promoted C-H functionalization of imidazoheterocycles. Org. Biomol. Chem., 2020, 18(14), 2611-2631.
[http://dx.doi.org/10.1039/D0OB00246A] [PMID: 32215443]
(c) Samanta, S.; Hajra, A. Mn (II)-catalyzed C–H alkylation of imidazopyridines and N-heteroarenes via decarbonylative and cross-dehydrogenative coupling. J. Org. Chem., 2019, 84(7), 4363-4371.
[http://dx.doi.org/10.1021/acs.joc.9b00366] [PMID: 30843396]
(d) Sun, B.; Xu, T.; Zhang, L.; Zhu, R.; Yang, J.; Xu, M.; Jin, C. Metal-free regioselective alkylation of imidazo [1, 2-a] pyridines with N-Hydroxyphthalimide esters under organic photoredox catalysis. Synlett, 2020, 31(4), 363-368.
[http://dx.doi.org/10.1055/s-0039-1691567]
[97]
Li, Y.; Shu, K.; Liu, P.; Sun, P. Selective C-5 oxidative radical silylation of imidazopyridines promoted by lewis acid. Org. Lett., 2020, 22(16), 6304-6307.
[http://dx.doi.org/10.1021/acs.orglett.0c02131] [PMID: 32806205]
[98]
Liu, S.; Pan, P.; Fan, H.; Li, H.; Wang, W.; Zhang, Y. Photocatalytic C-H silylation of heteroarenes by using trialkylhydrosilanes. Chem. Sci. (Camb.), 2019, 10(13), 3817-3825.
[http://dx.doi.org/10.1039/C9SC00046A] [PMID: 31015923]
[99]
Nozawa-Kumada, K.; Ojima, T.; Inagi, M.; Shigeno, M.; Kondo, Y. Di-tert-butyl peroxide (DTBP)-mediated oxysilylation of unsaturated carboxylic acids for the synthesis of silyl lactones. Org. Lett., 2020, 22(24), 9591-9596.
[http://dx.doi.org/10.1021/acs.orglett.0c03640] [PMID: 33269934]
[100]
Chu, C.K.; Liang, Y.; Fu, G.C. Silicon–carbon bond formation via nickel-catalyzed cross-coupling of silicon nucleophiles with unactivated secondary and tertiary alkyl electrophiles. J. Am. Chem. Soc., 2016, 138(20), 6404-6407.
[http://dx.doi.org/10.1021/jacs.6b03465] [PMID: 27187869]
[101]
Xue, W.; Qu, Z.W.; Grimme, S.; Oestreich, M. Copper-catalyzed cross-coupling of silicon pronucleophiles with unactivated alkyl electrophiles coupled with radical cyclization. J. Am. Chem. Soc., 2016, 138(43), 14222-14225.
[http://dx.doi.org/10.1021/jacs.6b09596] [PMID: 27744687]
[102]
Xue, W.; Oestreich, M. Copper‐catalyzed decarboxylative radical silylation of redox‐active aliphatic carboxylic acid derivatives. Angew. Chem. Int. Ed. Engl., 2017, 56(38), 11649-11652.
[http://dx.doi.org/10.1002/anie.201706611] [PMID: 28742250]
[103]
(a) Liu, W.; Li, Y.; Liu, K.; Li, Z. Iron-catalyzed carbonylation-peroxidation of alkenes with aldehydes and hydroperoxides. J. Am. Chem. Soc., 2011, 133(28), 10756-10759.
[http://dx.doi.org/10.1021/ja204226n] [PMID: 21688814]
(b) Pramanik, S.; Ghorai, P. Synthesis and asymmetric resolution of α-azido-peroxides. Org. Lett., 2013, 15(15), 3832-3835.
[http://dx.doi.org/10.1021/ol401443a] [PMID: 23855809]
(c) Sabbasani, V.R.; Lee, H.; Xia, Y.; Lee, D. Complementary iron(II)-Catalyzed oxidative transformations of allenes with different oxidants. Angew. Chem. Int. Ed. Engl., 2016, 55(3), 1151-1155.
[http://dx.doi.org/10.1002/anie.201510006] [PMID: 26636261]
(d) An, G.; Zhou, W.; Zhang, G.; Sun, H.; Han, J.; Pan, Y. Palladium-catalyzed tandem diperoxidation/C-H activation resulting in diperoxy-oxindole in air. Org. Lett., 2010, 12(20), 4482-4485.
[http://dx.doi.org/10.1021/ol101664y] [PMID: 20839834]
[104]
Lan, Y.; Chang, X.H.; Fan, P.; Shan, C.C.; Liu, Z.B.; Loh, T.P.; Xu, Y.H. Copper-catalyzed silylperoxidation reaction of α, β-unsaturated ketones, esters, amides, and conjugated enynes. ACS Catal., 2017, 7(10), 7120-7125.
[http://dx.doi.org/10.1021/acscatal.7b02754]
[105]
Lu, S.; Tian, T.; Xu, R.; Li, Z. Fe-or co-catalyzed silylation-peroxidation of alkenes with hydrosilanes and T-hydro. Tetrahedron Lett., 2018, 59(26), 2604-2606.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.072]