(a) Gao, R.; Pahls, D.R.; Cundari, T.R.; Yi, C.S. Experimental and computational studies of the ruthenium-catalyzed hydrosilylation of alkynes: Mechanistic insights into the regio-and stereoselective formation of vinylsilanes.
Organometallics, 2014,
33(23), 6937-6944.
[
http://dx.doi.org/10.1021/om501019j]
(b) Na, Y.; Chang, S. Highly stereoselective and efficient hydrosilylation of terminal alkynes catalyzed by [RuCl
2 (p-cymene)] 2.
Org. Lett., 2000,
2(13), 1887-1889.
[
http://dx.doi.org/10.1021/ol0059697] [PMID:
10891183]
(c) Zhao, X.; Yang, D.; Zhang, Y.; Wang, B.; Qu, J. Highly β( Z)-selective hydrosilylation of terminal alkynes catalyzed by Thiolate-Bridged Dirhodium Complexes.
Org. Lett., 2018,
20(17), 5357-5361.
[
http://dx.doi.org/10.1021/acs.orglett.8b02267] [PMID:
30152700]
(d) Sato, A.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Hydrosilylation of alkynes with a cationic rhodium species formed in an anionic micellar system.
Org. Lett., 2004,
6(13), 2217-2220.
[
http://dx.doi.org/10.1021/ol049308b] [PMID:
15200324]
(e) Reddy, C.B.; Shil, A.K.; Guha, N.R.; Sharma, D.; Das, P. Solid supported palladium (0) nanoparticles: An efficient heterogeneous catalyst for regioselective hydrosilylation of alkynes and Suzuki coupling of β-arylvinyl iodides.
Catal. Lett., 2014,
144(9), 1530-1536.
[
http://dx.doi.org/10.1007/s10562-014-1311-8]
(f) Duan, Y.; Ji, G.; Zhang, S.; Chen, X.; Yang, Y. Additive-modulated switchable reaction pathway in the addition of alkynes with organosilanes catalyzed by supported Pd nanoparticles: hydrosilylation versus semihydrogenation.
Catal. Sci. Technol., 2018,
8(4), 1039-1050.
[
http://dx.doi.org/10.1039/C7CY02280H]
(g) Shore, G.; Organ, M.G. Gold-film-catalysed hydrosilylation of alkynes by microwave-assisted, continuous-flow organic synthesis (MACOS).
Chemistry, 2008,
14(31), 9641-9646.
[
http://dx.doi.org/10.1002/chem.200801610] [PMID:
18816566]
(h) Corre, Y.; Werlé, C.; Brelot-Karmazin, L.; Djukic, J.P.; Agbossou-Niedercorn, F.; Michon, C. Regioselective hydrosilylation of terminal alkynes using pentamethylcyclopentadienyl iridium (III) metallacycle catalysts.
J. Mol. Catal. Chem., 2016,
423, 256-263.
[
http://dx.doi.org/10.1016/j.molcata.2016.07.014]
(i) Cheng, Z. One Earth‐Abundant Cobalt Catalyst for Alkynes Double Hydrosilylation: Efficient Synthesis of Gem‐bis (silanes).
Chin. J. Chem., 2019,
37(6), 632-633.
[
http://dx.doi.org/10.1002/cjoc.201900129]
(j) Tamao, K.; Kobayashi, K.; Ito, Y. Nickel (0)-catalyzed cyclization of 1, 7-diynes
via hydrosilation: One-step synthesis of 1, 2-dialkylidenecyclohexanes with a (Z)-vinylsilane moiety.
J. Am. Chem. Soc., 1989,
111(16), 6478-6480.
[
http://dx.doi.org/10.1021/ja00198a100]
(k) Ojima, I.; Zhu, J.; Vidal, E.S.; Kass, D.F. Silylcarbocyclizations of 1, 6-diynes.
J. Am. Chem. Soc., 1998,
120(27), 6690-6697.
[
http://dx.doi.org/10.1021/ja980907l]
(l) Itami, K.; Mitsudo, K.; Nishino, A.; Yoshida, J. Metal-catalyzed hydrosilylation of alkenes and alkynes using dimethyl(pyridyl)silane.
J. Org. Chem., 2002,
67(8), 2645-2652.
[
http://dx.doi.org/10.1021/jo0163389] [PMID:
11950311]
(m) Trost, B.M.; Ball, Z.T. Alkyne hydrosilylation catalyzed by a cationic ruthenium complex: Efficient and general trans addition.
J. Am. Chem. Soc., 2005,
127(50), 17644-17655.
[
http://dx.doi.org/10.1021/ja0528580] [PMID:
16351094]
(n) Trost, B.M.; Ball, Z.T. Addition of metalloid hydrides to alkynes: hydrometallation with Boron, Silicon, and Tin.
Synthesis, 2005,
2005(6), 853-887.
[
http://dx.doi.org/10.1055/s-2005-861874]
(o) Denmark, S.E.; Neuville, L.; Christy, M.E.; Tymonko, S.A. A qualitative examination of the effects of silicon substituents on the efficiency of cross-coupling reactions.
J. Org. Chem., 2006,
71(22), 8500-8509.
[
http://dx.doi.org/10.1021/jo061481t] [PMID:
17064026]
(p) Alonso, F.; Buitrago, R.; Moglie, Y.; Ruiz-Martínez, J.; Sepúlveda-Escribano, A.; Yus, M. Hydrosilylation of alkynes catalysed by platinum on titania.
J. Organomet. Chem., 2011,
696(1), 368-372.
[
http://dx.doi.org/10.1016/j.jorganchem.2010.09.068]
(q) Miller, Z.D.; Li, W.; Belderrain, T.R.; Montgomery, J. Regioselective allene hydrosilylation catalyzed by N-heterocyclic carbene complexes of nickel and palladium.
J. Am. Chem. Soc., 2013,
135(41), 15282-15285.
[
http://dx.doi.org/10.1021/ja407749w] [PMID:
24079389]
(r) Xie, H.; Zhao, L.; Yang, L.; Lei, Q.; Fang, W.; Xiong, C. Mechanisms and origins of switchable regioselectivity of palladium-and nickel-catalyzed allene hydrosilylation with N-heterocyclic carbene ligands: A theoretical study.
J. Org. Chem., 2014,
79(10), 4517-4527.
[
http://dx.doi.org/10.1021/jo500557w] [PMID:
24779730]
(s) Xu, Y.H.; Wu, L.H.; Wang, J.; Loh, T.P. Synthesis of multi-substituted vinylsilanes
via copper(I)-catalyzed hydrosilylation reactions of allenes and propiolate derivatives with silylboronates.
Chem. Commun. (Camb.), 2014,
50(54), 7195-7197.
[
http://dx.doi.org/10.1039/C4CC01722F] [PMID:
24867646]
(t) Kidonakis, M.; Stratakis, M. Ligandless regioselective hydrosilylation of allenes catalyzed by gold nanoparticles.
Org. Lett., 2015,
17(18), 4538-4541.
[
http://dx.doi.org/10.1021/acs.orglett.5b02236] [PMID:
26331196]
(u) Wilkinson, J.R.; Nuyen, C.E.; Carpenter, T.S.; Harruff, S.R.; Van Hoveln, R. Copper-catalyzed carbon–silicon bond formation.
ACS Catal., 2019,
9(10), 8961-8979.
[
http://dx.doi.org/10.1021/acscatal.9b02762]
(v) Yang, Y.; Song, R.J.; Li, Y.; Ouyang, X.H.; Li, J.H.; He, D.L. Oxidative radical divergent Si-incorporation: Facile access to Si-containing heterocycles.
Chem. Commun. (Camb.), 2018,
54(12), 1441-1444.
[
http://dx.doi.org/10.1039/C7CC08964C] [PMID:
29328345]