Nephrotic Syndrome and Renin-angiotensin System: Pathophysiological Role and Therapeutic Potential

Article ID: e160622206099 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Idiopathic Nephrotic Syndrome (INS) is the most frequent etiology of glomerulopathy in pediatric patients and one of the most common causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD) in this population. In this review, we aimed to summarize evidence on the pathophysiological role and therapeutic potential of the Renin-Angiotensin System (RAS) molecules for the control of proteinuria and for delaying the onset of CKD in patients with INS. This is a narrative review in which the databases PubMed, Web of Science, and Sci- ELO were searched for articles about INS and RAS. We selected articles that evaluated the pathophysiological role of RAS and the effects of the alternative RAS axis as a potential therapy for INS. Several studies using rodent models of nephropathies showed that the treatment with activators of the Angiotensin-Converting Enzyme 2 (ACE2) and with Mas receptor agonists reduces proteinuria and improves kidney tissue damage. Another recent paper showed that the reduction of urinary ACE2 levels in children with INS correlates with proteinuria and higher concentrations of inflammatory cytokines, although data with pediatric patients are still limited. The molecules of the alternative RAS axis comprise a wide spectrum, not yet fully explored, of potential pharmacological targets for kidney diseases. The effects of ACE2 activators and receptor Mas agonists show promising results that can be useful for nephropathies including INS.

Keywords: ACE2, renin-angiotensin-system, steroid-resistant nephrotic syndrome, idiopathic nephrotic syndrome, Angiotensin-(1-7), Mas receptor agonists, chronic kidney disease.

[1]
Niaudet, P.; Boyer, O. Idiopathic Nephrotic Syndrome in Children: Clinical Aspects.Pediatric Nephrology; Avner, E.D.; Harmon, W.E.; Niaudet, P.; Yoshikawa, N.; Emma, F.; Goldstein, S.L., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2016, pp. 839-882.
[http://dx.doi.org/10.1007/978-3-662-43596-0_24]
[2]
Gipson, D.S.; Massengill, S.F.; Yao, L.; Nagaraj, S.; Smoyer, W.E.; Mahan, J.D.; Wigfall, D.; Miles, P.; Powell, L.; Lin, J.J.; Trachtman, H.; Greenbaum, L.A. Management of childhood onset nephrotic syndrome. Pediatrics, 2009, 124(2), 747-757.
[http://dx.doi.org/10.1542/peds.2008-1559] [PMID: 19651590]
[3]
Noone, D.G.; Iijima, K.; Parekh, R. Idiopathic nephrotic syndrome in children. Lancet, 2018, 392(10141), 61-74.
[http://dx.doi.org/10.1016/S0140-6736(18)30536-1] [PMID: 29910038]
[4]
Silva Filha, R.; Burini, K.; Pires, L.G.; Pinheiro, S.V.B.; Simões e Silva, A.C. Idiopathic nephrotic syndrome in pediatrics: An up-to-date. Curr. Pediatr. Rev., 2022, 18(4), 251-264.
[http://dx.doi.org/10.2174/1573396318666220314142713]
[5]
Araújo, S.A.; Cordeiro, T.M.E.; Belisário, A.R.; Araújo, R.F.A.; Marinho, P.E.S.; Kroon, E.G.; de Oliveira, D.B.; Teixeira, M.M.; Simões, E.; Silva, A.C. First report of collapsing variant of focal segmental glomerulosclerosis triggered by arbovirus: Dengue and Zika virus infection. Clin. Kidney J., 2018, 12(3), 355-361.
[http://dx.doi.org/10.1093/ckj/sfy104] [PMID: 31198534]
[6]
Vivarelli, M.; Massella, L.; Ruggiero, B.; Emma, F. Minimal change disease. Clin. J. Am. Soc. Nephrol., 2017, 12(2), 332-345.
[http://dx.doi.org/10.2215/CJN.05000516] [PMID: 27940460]
[7]
D’Agati, V.D.; Kaskel, F.J.; Falk, R.J. Focal segmental glomerulosclerosis. N. Engl. J. Med., 2011, 365(25), 2398-2411.
[http://dx.doi.org/10.1056/NEJMra1106556] [PMID: 22187987]
[8]
Bahiense-Oliveira, M.; Saldanha, L.B.; Mota, E.L.A.; Penna, D.O.; Barros, R.T.; Romão-Junior, J.E. Primary glomerular diseases in Brazil (1979-1999): Is the frequency of focal and segmental glomerulosclerosis increasing? Clin. Nephrol., 2004, 61(2), 90-97.
[http://dx.doi.org/10.5414/CNP61090] [PMID: 14989627]
[9]
Rivera, F.; López-Gómez, J.M.; Pérez-García, R. Clinicopathologic correlations of renal pathology in Spain. Kidney Int., 2004, 66(3), 898-904.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00833.x] [PMID: 15327378]
[10]
Simon, P.; Ramee, M-P.; Boulahrouz, R.; Stanescu, C.; Charasse, C.; Ang, K.S.; Leonetti, F.; Cam, G.; Laruelle, E.; Autuly, V.; Rioux, N. Epidemiologic data of primary glomerular diseases in western France. Kidney Int., 2004, 66(3), 905-908.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00834.x] [PMID: 15327379]
[11]
Malafronte, P.; Mastroianni-Kirsztajn, G.; Betônico, G.N.; Romão, J.E., Jr; Alves, M.A.R.; Carvalho, M.F.; Viera Neto, O.M.; Cadaval, R.A.; Bérgamo, R.R.; Woronik, V.; Sens, Y.A.; Marrocos, M.S.; Barros, R.T. Paulista Registry of glomerulonephritis: 5-year data report. Nephrol. Dial. Transplant., 2006, 21(11), 3098-3105.
[http://dx.doi.org/10.1093/ndt/gfl237] [PMID: 16968733]
[12]
Banh, T.H.M.; Hussain-Shamsy, N.; Patel, V.; Vasilevska-Ristovska, J.; Borges, K.; Sibbald, C.; Lipszyc, D.; Brooke, J.; Geary, D.; Langlois, V.; Reddon, M.; Pearl, R.; Levin, L.; Piekut, M.; Licht, C.P.; Radhakrishnan, S.; Aitken-Menezes, K.; Harvey, E.; Hebert, D.; Piscione, T.D.; Parekh, R.S. Ethnic differences in incidence and outcomes of childhood nephrotic syndrome. Clin. J. Am. Soc. Nephrol., 2016, 11(10), 1760-1768.
[http://dx.doi.org/10.2215/CJN.00380116] [PMID: 27445165]
[13]
Zhang, S.Y.; Audard, V.; Fan, Q.; Pawlak, A.; Lang, P.; Sahali, D. Immunopathogenesis of idiopathic nephrotic syndrome. Contrib. Nephrol., 2011, 169, 94-106.
[http://dx.doi.org/10.1159/000313947] [PMID: 21252513]
[14]
Banaszak, B.; Banaszak, P. The increasing incidence of initial steroid resistance in childhood nephrotic syndrome. Pediatr. Nephrol., 2012, 27(6), 927-932.
[http://dx.doi.org/10.1007/s00467-011-2083-7] [PMID: 22231438]
[15]
Kim, J.S.; Bellew, C.A.; Silverstein, D.M.; Aviles, D.H.; Boineau, F.G.; Vehaskari, V.M. High incidence of initial and late steroid resistance in childhood nephrotic syndrome. Kidney Int., 2005, 68(3), 1275-1281.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00524.x] [PMID: 16105061]
[16]
Glimcher, L.H.; Murphy, K.M. Lineage commitment in the immune system: The T helper lymphocyte grows up. Genes Dev., 2000, 14(14), 1693-1711.
[http://dx.doi.org/10.1101/gad.14.14.1693] [PMID: 10898785]
[17]
Mendonça, A.C.Q.; Oliveira, E.A.; Fróes, B.P.; Faria, L.D.C.; Pinto, J.S.; Nogueira, M.M.I.; Lima, G.O.; Resende, P.I.; Assis, N.S.; Simões, E. Silva, A.C.; Pinheiro, S.V. A predictive model of progressive chronic kidney disease in idiopathic nephrotic syndrome. Pediatr. Nephrol., 2015, 30(11), 2011-2020.
[http://dx.doi.org/10.1007/s00467-015-3136-0] [PMID: 26084617]
[18]
Gbadegesin, R.; Lavin, P.; Foreman, J.; Winn, M. Pathogenesis and therapy of focal segmental glomerulosclerosis: An update. Pediatr. Nephrol., 2011, 26(7), 1001-1015.
[http://dx.doi.org/10.1007/s00467-010-1692-x] [PMID: 21110043]
[19]
Pedraza-Chaverrí, J.; Cruz, C.; Ibarra-Rubio, M.E.; Chávez, M.T.; Calleja, C.; Tapia, E.; del Carmen Uribe, M.; Romero, L.; Peña, J.C. Pathophysiology of experimental nephrotic syndrome induced by puromycin aminonucleoside in rats. I. The role of proteinuria, hypoproteinemia, and renin-angiotensin-aldosterone system on sodium retention. Rev. Invest. Clin., 1990, 42(1), 29-38.
[PMID: 2236972]
[20]
Mentzel, S.; Van Son, J.P.; De Jong, A.S.; Dijkman, H.B.; Koene, R.A.; Wetzels, J.F.; Assmann, K.J. Mouse glomerular epithelial cells in culture with features of podocytes in vivo express aminopeptidase A and angiotensinogen but not other components of the renin-angiotensin system. J. Am. Soc. Nephrol., 1997, 8(5), 706-719.
[http://dx.doi.org/10.1681/ASN.V85706] [PMID: 9176840]
[21]
Boyer, O.; Tory, K.; Machuca, E.; Antignac, C. Idiopathic nephrotic syndrome in children: Genetic aspects. In: Pediatric Nephrology, 7th ed; Avner, E.D.; Harmon, W.E.; Niaudet, P.; Yoshikawa, N.; Emma, F.; Goldstein, S.L., Eds.; Springer: New York, 2016; pp. 805-837.
[22]
Simões, E. Silva, A.C.; Teixeira, M.M. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacological., 2016, 107, 154-162.
[http://dx.doi.org/10.1016/j.phrs.2016.03.018] [PMID: 26995300]
[23]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[24]
Santos, R.A.S.; Simoes e Silva, A.C.; Maric, C.; Silva, D.M.R.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.; Lopes, M.T.; Bader, M.; Mendes, E.P.; Lemos, V.S.; Campagnole-Santos, M.J.; Schultheiss, H.P.; Speth, R.; Walther, T. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8258-8263.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[25]
Fakhouri, F.; Bocquet, N.; Taupin, P.; Presne, C.; Gagnadoux, M-F.; Landais, P.; Lesavre, P.; Chauveau, D.; Knebelmann, B.; Broyer, M.; Grünfeld, J.P.; Niaudet, P. Steroid-sensitive nephrotic syndrome: From childhood to adulthood. Am. J. Kidney Dis., 2003, 41(3), 550-557.
[http://dx.doi.org/10.1053/ajkd.2003.50116] [PMID: 12612977]
[26]
Bruneau, S.; Dantal, J. New insights into the pathophysiology of idiopathic nephrotic syndrome. Clin. Immunol., 2009, 133(1), 13-21.
[http://dx.doi.org/10.1016/j.clim.2009.03.532] [PMID: 19410518]
[27]
Patrakka, J.; Tryggvason, K. New insights into the role of podocytes in proteinuria. Nat. Rev. Nephrol., 2009, 5(8), 463-468.
[http://dx.doi.org/10.1038/nrneph.2009.108] [PMID: 19581907]
[28]
Zenker, M.; Machuca, E.; Antignac, C. Genetics of nephrotic syndrome: New insights into molecules acting at the glomerular filtration barrier. J. Mol. Med. (Berl.), 2009, 87(9), 849-857.
[http://dx.doi.org/10.1007/s00109-009-0505-9] [PMID: 19649571]
[29]
Chesney, R. The changing face of childhood nephrotic syndrome. Kidney Int., 2004, 66(3), 1294-1302.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00885.x] [PMID: 15327442]
[30]
Chappell, M.C. Nonclassical renin-angiotensin system and renal function. Compr. Physiol., 2012, 2(4), 2733-2752.
[http://dx.doi.org/10.1002/cphy.c120002] [PMID: 23720263]
[31]
Simões e Silva, A.C.; Silveira, K.D.; Ferreira, A.J.; Teixeira, M.M. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br. J. Pharmacol., 2013, 169(3), 477-492.
[http://dx.doi.org/10.1111/bph.12159] [PMID: 23488800]
[32]
Zimmerman, D.; Burns, K.D. Angiotensin-(1-7) in kidney disease: A review of the controversies. Clin. Sci. (Lond.), 2012, 123(6), 333-346.
[http://dx.doi.org/10.1042/CS20120111] [PMID: 22639821]
[33]
Persson, P.; Fasching, A.; Palm, F. Acute intrarenal angiotensin (1-7) infusion decreases diabetes-induced glomerular hyperfiltration but increases kidney oxygen consumption in the rat. Acta Physiol. (Oxf.), 2019, 226(1), e13254.
[http://dx.doi.org/10.1111/apha.13254] [PMID: 30635985]
[34]
DelliPizzi, A.M.; Hilchey, S.D.; Bell-Quilley, C.P. Natriuretic action of angiotensin(1-7). Br. J. Pharmacol., 1994, 111(1), 1-3.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb14014.x] [PMID: 8012686]
[35]
Bürgelová, M.; Kramer, H.J.; Teplan, V.; Velicková, G.; Vítko, S.; Heller, J.; Malý, J.; Cervenka, L. Intrarenal infusion of angiotensin-(1-7) modulates renal functional responses to exogenous angiotensin II in the rat. Kidney Blood Press. Res., 2002, 25(4), 202-210.
[http://dx.doi.org/10.1159/000066340] [PMID: 12424421]
[36]
Cao, G.; Della Penna, S.L.; Kouyoumdzian, N.M.; Choi, M.R.; Gorzalczany, S.; Fernández, B.E.; Toblli, J.E.; Rosón, M.I. Immunohistochemical expression of intrarenal renin angiotensin system components in response to tempol in rats fed a high salt diet. World J. Nephrol., 2017, 6(1), 29-40.
[http://dx.doi.org/10.5527/wjn.v6.i1.29] [PMID: 28101449]
[37]
Zhang, J.; Noble, N.A.; Border, W.A.; Huang, Y. Infusion of angiotensin-(1-7) reduces glomerulosclerosis through counteracting angiotensin II in experimental glomerulonephritis. Am. J. Physiol. Renal Physiol., 2010, 298(3), F579-F588.
[http://dx.doi.org/10.1152/ajprenal.00548.2009] [PMID: 20032116]
[38]
Giani, J.F.; Burghi, V.; Veiras, L.C.; Tomat, A.; Muñoz, M.C.; Cao, G.; Turyn, D.; Toblli, J.E.; Dominici, F.P. Angiotensin-(1-7) attenuates diabetic nephropathy in Zucker diabetic fatty rats. Am. J. Physiol. Renal Physiol., 2012, 302(12), F1606-F1615.
[http://dx.doi.org/10.1152/ajprenal.00063.2012] [PMID: 22492942]
[39]
Ye, M.; Wysocki, J.; Naaz, P.; Salabat, M.R.; LaPointe, M.S.; Batlle, D. Increased ACE 2 and decreased ACE protein in renal tubules from diabetic mice: A renoprotective combination? Hypertension, 2004, 43(5), 1120-1125.
[http://dx.doi.org/10.1161/01.HYP.0000126192.27644.76] [PMID: 15078862]
[40]
Wysocki, J.; Ye, M.; Soler, M.J.; Gurley, S.B.; Xiao, H.D.; Bernstein, K.E.; Coffman, T.M.; Chen, S.; Batlle, D. ACE and ACE2 activity in diabetic mice. Diabetes, 2006, 55(7), 2132-2139.
[http://dx.doi.org/10.2337/db06-0033] [PMID: 16804085]
[41]
Wong, D.W.; Oudit, G.Y.; Reich, H.; Kassiri, Z.; Zhou, J.; Liu, Q.C.; Backx, P.H.; Penninger, J.M.; Herzenberg, A.M.; Scholey, J.W. Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am. J. Pathol., 2007, 171(2), 438-451.
[http://dx.doi.org/10.2353/ajpath.2007.060977] [PMID: 17600118]
[42]
Riera, M.; Márquez, E.; Clotet, S.; Gimeno, J.; Roca-Ho, H.; Lloreta, J.; Juanpere, N.; Batlle, D.; Pascual, J.; Soler, M.J. Effect of insulin on ACE2 activity and kidney function in the non-obese diabetic mouse. PLoS One, 2014, 9(1), e84683.
[http://dx.doi.org/10.1371/journal.pone.0084683] [PMID: 24400109]
[43]
Liu, Z.; Huang, X.R.; Chen, H.Y.; Penninger, J.M.; Lan, H.Y. Loss of angiotensin-converting enzyme 2 enhances TGF-β/Smad-mediated renal fibrosis and NF-κB-driven renal inflammation in a mouse model of obstructive nephropathy. Lab. Invest., 2012, 92(5), 650-661.
[http://dx.doi.org/10.1038/labinvest.2012.2] [PMID: 22330342]
[44]
Belisário, A.R.; Vieira, É.L.M.; de Almeida, J.A.; Mendes, F.G.; Miranda, A.S.; Rezende, P.V.; Viana, M.B.; Simões, E. Silva, A.C. Low urinary levels of angiotensin-converting enzyme 2 may contribute to albuminuria in children with sickle cell anaemia. Br. J. Haematol., 2019, 185(1), 190-193.
[http://dx.doi.org/10.1111/bjh.15439] [PMID: 29974954]
[45]
Ohashi, N.; Isobe, S.; Ishigaki, S.; Suzuki, T.; Ono, M.; Fujikura, T.; Tsuji, T.; Kato, A.; Ozono, S.; Yasuda, H. Intrarenal renin-angiotensin system activity is augmented after initiation of dialysis. Hypertens. Res., 2017, 40(4), 364-370.
[http://dx.doi.org/10.1038/hr.2016.143] [PMID: 27761002]
[46]
Simões e Silva, A.C.; Diniz, J.S.; Pereira, R.M.; Pinheiro, S.V.; Santos, R.A.; Santos, R. Circulating renin Angiotensin system in childhood chronic renal failure: Marked increase of Angiotensin-(1-7) in end-stage renal disease. Pediatr. Res., 2006, 60(6), 734-739.
[http://dx.doi.org/10.1203/01.pdr.0000246100.14061.bc] [PMID: 17065573]
[47]
Zhu, Y.; Zuo, N.; Li, B.; Xiong, Y.; Chen, H.; He, H.; Sun, Z.; Hu, S.; Cheng, H.; Ao, Y.; Wang, H. The expressional disorder of the renal RAS mediates nephrotic syndrome of male rat offspring induced by prenatal ethanol exposure. Toxicology, 2018, 400-401, 9-19.
[http://dx.doi.org/10.1016/j.tox.2018.03.004] [PMID: 29548890]
[48]
Oudit, G.Y.; Herzenberg, A.M.; Kassiri, Z.; Wong, D.; Reich, H.; Khokha, R.; Crackower, M.A.; Backx, P.H.; Penninger, J.M.; Scholey, J.W. Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am. J. Pathol., 2006, 168(6), 1808-1820.
[http://dx.doi.org/10.2353/ajpath.2006.051091] [PMID: 16723697]
[49]
Maksimowski, N.A.; Scholey, J.W.; Williams, V.R. Sex and kidney ACE2 expression in primary focal segmental glomerulosclerosis: A NEPTUNE study. PLoS One, 2021, 16(6), e0252758.
[http://dx.doi.org/10.1371/journal.pone.0252758] [PMID: 34097714]
[50]
Filha, R.D.S.; Pinheiro, S.V.B.; Macedo, E. Cordeiro, T.; Feracin, V.; Vieira, É.L.M.; Miranda, A.S.; Simões E Silva, A.C. Evidence for a role of angiotensin converting enzyme 2 in proteinuria of idiopathic nephrotic syndrome. Biosci. Rep., 2019, 39(1), BSR20181361.
[http://dx.doi.org/10.1042/BSR20181361] [PMID: 30514826]
[51]
Ishikura, K.; Matsumoto, S.; Sako, M.; Tsuruga, K.; Nakanishi, K.; Kamei, K.; Saito, H.; Fujinaga, S.; Hamasaki, Y.; Chikamoto, H.; Ohtsuka, Y.; Komatsu, Y.; Ohta, T.; Nagai, T.; Kaito, H.; Kondo, S.; Ikezumi, Y.; Tanaka, S.; Kaku, Y.; Iijima, K. Clinical practice guideline for pediatric idiopathic nephrotic syndrome 2013: Medical therapy. Clin. Exp. Nephrol., 2015, 19(1), 6-33.
[http://dx.doi.org/10.1007/s10157-014-1030-x] [PMID: 25653046]
[52]
Lee, J.M.; Kronbichler, A.; Shin, J.I.; Oh, J. Current understandings in treating children with steroid-resistant nephrotic syndrome. Pediatr. Nephrol., 2021, 36(4), 747-761.
[http://dx.doi.org/10.1007/s00467-020-04476-9] [PMID: 32086590]
[53]
Lombel, R.M.; Hodson, E.M.; Gipson, D.S. Treatment of steroid-resistant nephrotic syndrome in children: New guidelines from KDIGO. Pediatr. Nephrol., 2013, 28(3), 409-414.
[http://dx.doi.org/10.1007/s00467-012-2304-8] [PMID: 23052648]
[54]
Chapter 4: Steroid-resistant nephrotic syndrome in children. Kidney Int. Suppl., 2012, 2(2), 172-176.
[http://dx.doi.org/10.1038/kisup.2012.17] [PMID: 25018929]
[55]
Rutkowski, B.; Tylicki, L. Nephroprotective action of renin-angiotensin-aldosterone system blockade in chronic kidney disease patients: The landscape after Altitude and VA Nephron-D trails. J. Ren. Nutr., 2015, 25(2), 194-200.
[http://dx.doi.org/10.1053/j.jrn.2014.10.026] [PMID: 25576239]
[56]
Proesmans, W.; Wambeke, I.V.; Dyck, M.V. Long-term therapy with enalapril in patients with nephrotic-range proteinuria. Pediatr. Nephrol., 1996, 10(5), 587-589.
[http://dx.doi.org/10.1007/s004670050166] [PMID: 8897561]
[57]
Bagga, A.; Mudigoudar, B.D.; Hari, P.; Vasudev, V. Enalapril dosage in steroid-resistant nephrotic syndrome. Pediatr. Nephrol., 2004, 19(1), 45-50.
[http://dx.doi.org/10.1007/s00467-003-1314-y] [PMID: 14648339]
[58]
Li, Z.; Duan, C.; He, J.; Wu, T.; Xun, M.; Zhang, Y.; Yin, Y. Mycophenolate mofetil therapy for children with steroid-resistant nephrotic syndrome. Pediatr. Nephrol., 2010, 25(5), 883-888.
[http://dx.doi.org/10.1007/s00467-009-1375-7] [PMID: 19953275]
[59]
Kumar, N.S.; Singh, A.K.; Mishra, R.N.; Prakash, J. Comparative study of angiotensin converting enzyme inhibitor and calcium channel blocker in the treatment of steroid-resistant idiopathic nephrotic syndrome. J. Assoc. Physicians India, 2004, 52, 454-458.
[PMID: 15645954]
[60]
Usta, M.; Ersoy, A.; Dilek, K.; Ozdemir, B.; Yavuz, M.; Güllülü, M.; Yurtkuran, M. Efficacy of losartan in patients with primary focal segmental glomerulosclerosis resistant to immunosuppressive treatment. J. Intern. Med., 2003, 253(3), 329-334.
[http://dx.doi.org/10.1046/j.1365-2796.2003.01071.x] [PMID: 12603500]
[61]
Prasher, P.K.; Varma, P.P.; Baliga, K.V. Efficacy of enalapril in the treatment of steroid resistant idiopathic nephrotic syndrome. J. Assoc. Physicians India, 1999, 47(2), 180-182.
[PMID: 10999084]
[62]
Kosmadakis, G.; Filiopoulos, V.; Georgoulias, C.; Tentolouris, N.; Michail, S. Comparison of the influence of angiotensin-converting enzyme inhibitor lisinopril and angiotensin II receptor antagonist losartan in patients with idiopathic membranous nephropathy and nephrotic syndrome. Scand. J. Urol. Nephrol., 2010, 44(4), 251-256.
[http://dx.doi.org/10.3109/00365591003667351] [PMID: 20201749]
[63]
Cetinkaya, R.; Odabas, A.R.; Selcuk, Y. Anti-proteinuric effects of combination therapy with enalapril and losartan in patients with nephropathy due to type 2 diabetes. Int. J. Clin. Pract., 2004, 58(5), 432-435.
[http://dx.doi.org/10.1111/j.1368-5031.2004.00004.x] [PMID: 15206496]
[64]
Trachtman, H.; Gauthier, B. Effect of angiotensin-converting enzyme inhibitor therapy on proteinuria in children with renal disease. J. Pediatr., 1988, 112(2), 295-298.
[http://dx.doi.org/10.1016/S0022-3476(88)80073-8] [PMID: 2828592]
[65]
Webb, N.J.; Shahinfar, S.; Wells, T.G.; Massaad, R.; Gleim, G.W.; McCrary Sisk, C.; Lam, C. Losartan and enalapril are comparable in reducing proteinuria in children with Alport syndrome. Pediatr. Nephrol., 2013, 28(5), 737-743.
[http://dx.doi.org/10.1007/s00467-012-2372-9] [PMID: 23207876]
[66]
MacKinnon, M.; Shurraw, S.; Akbari, A.; Knoll, G.A.; Jaffey, J.; Clark, H.D. Combination therapy with an angiotensin receptor blocker and an ACE inhibitor in proteinuric renal disease: A systematic review of the efficacy and safety data. Am. J. Kidney Dis., 2006, 48(1), 8-20.
[http://dx.doi.org/10.1053/j.ajkd.2006.04.077] [PMID: 16797382]
[67]
Ranganathan, S. Pathology of podocytopathies causing nephrotic syndrome in children. Front Pediatr., 2016, 4, 32.
[http://dx.doi.org/10.3389/fped.2016.00032] [PMID: 27066465]
[68]
Breyer, M.D.; Susztak, K. The next generation of therapeutics for chronic kidney disease. Nat. Rev. Drug Discov., 2016, 15(8), 568-588.
[http://dx.doi.org/10.1038/nrd.2016.67] [PMID: 27230798]
[69]
Zhang, F.; Liu, H.; Liu, D.; Liu, Y.; Li, H.; Tan, X.; Liu, F.; Peng, Y.; Zhang, H. Effects of RAAS Inhibitors in Patients with Kidney Disease. Curr. Hypertens. Rep., 2017, 19(9), 72.
[http://dx.doi.org/10.1007/s11906-017-0771-9] [PMID: 28791529]
[70]
de Zeeuw, D.; Remuzzi, G.; Parving, H.H.; Keane, W.F.; Zhang, Z.; Shahinfar, S.; Snapinn, S.; Cooper, M.E.; Mitch, W.E.; Brenner, B.M. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: Lessons from RENAAL. Kidney Int., 2004, 65(6), 2309-2320.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00653.x] [PMID: 15149345]
[71]
Meguid El Nahas, A.; Bello, A.K. Chronic kidney disease: The global challenge. Lancet, 2005, 365(9456), 331-340.
[http://dx.doi.org/10.1016/S0140-6736(05)17789-7] [PMID: 15664230]
[72]
Hou, F.F.; Zhang, X.; Zhang, G.H.; Xie, D.; Chen, P.Y.; Zhang, W.R.; Jiang, J.P.; Liang, M.; Wang, G.B.; Liu, Z.R.; Geng, R.W. Efficacy and safety of benazepril for advanced chronic renal insufficiency. N. Engl. J. Med., 2006, 354(2), 131-140.
[http://dx.doi.org/10.1056/NEJMoa053107] [PMID: 16407508]
[73]
Perico, N.; Benigni, A.; Remuzzi, G. Present and future drug treatments for chronic kidney diseases: Evolving targets in renoprotection. Nat. Rev. Drug Discov., 2008, 7(11), 936-953.
[http://dx.doi.org/10.1038/nrd2685] [PMID: 18846102]
[74]
Heerspink, H.J.L. Therapeutic approaches in lowering albuminuria: Travels along the renin-angiotensin-aldosterone-system pathway. Adv. Chronic Kidney Dis., 2011, 18(4), 290-299.
[http://dx.doi.org/10.1053/j.ackd.2011.04.001] [PMID: 21782135]
[75]
Trask, A.J.; Ferrario, C.M. Angiotensin-(1-7): Pharmacology and new perspectives in cardiovascular treatments. Cardiovasc. Drug Rev., 2007, 25(2), 162-174.
[http://dx.doi.org/10.1111/j.1527-3466.2007.00012.x] [PMID: 17614938]
[76]
Antlanger, M.; Bernhofer, S.; Kovarik, J.J.; Kopecky, C.; Kaltenecker, C.C.; Domenig, O.; Poglitsch, M.; Säemann, M.D. Effects of direct renin inhibition versus angiotensin II receptor blockade on angiotensin profiles in non-diabetic chronic kidney disease. Ann. Med., 2017, 49(6), 525-533.
[http://dx.doi.org/10.1080/07853890.2017.1313447] [PMID: 28358246]
[77]
Gilbert, A.; Liu, J.; Cheng, G.; An, C.; Deo, K.; Gorret, A.M.; Qin, X. A review of urinary angiotensin converting enzyme 2 in diabetes and diabetic nephropathy. Biochem. Med. (Zagreb), 2019, 29(1), 010501.
[http://dx.doi.org/10.11613/BM.2019.010501] [PMID: 30591810]
[78]
Liu, C.X.; Hu, Q.; Wang, Y.; Zhang, W.; Ma, Z.Y.; Feng, J.B.; Wang, R.; Wang, X.P.; Dong, B.; Gao, F.; Zhang, M.X.; Zhang, Y. Angiotensin-converting enzyme (ACE) 2 overexpression ameliorates glomerular injury in a rat model of diabetic nephropathy: A comparison with ACE inhibition. Mol. Med., 2011, 17(1-2), 59-69.
[http://dx.doi.org/10.2119/molmed.2010.00111] [PMID: 20844835]
[79]
Silva de Almeida, T.C.; Lanza, K.; da Silva Filha, R.; Campos, L.M.C.; Fonseca, E.G.; Chagas, M.W.; Rocha, N.P.; de Sá, M.A.; Vieira, M.A.R.; Caliari, M.V.; Kangussu, L.M.; Ferreira, A.J.; Simões, E. Silva, A.C. ACE2 activator diminazene aceturate exerts renoprotective effects in gentamicin-induced acute renal injury in rats. Clin. Sci., 2020, 134(23), 3093-3106.
[http://dx.doi.org/10.1042/CS20201022] [PMID: 33206153]
[80]
Kangussu, L.M.; de Almeida, T.C.S.; Prestes, T.R.R.; de Andrade De Maria, M.L.; da Silva Filha, R.; Vieira, M.A.R.; Silva, A.C.S.E.; Ferreira, A.J. Beneficial effects of the angiotensin-converting enzyme 2 activator dize in renovascular hypertension. Protein Pept. Lett., 2019, 26(7), 523-531.
[http://dx.doi.org/10.2174/0929866526666190405123422] [PMID: 30950337]
[81]
Pinheiro, S.V.B.; Ferreira, A.J.; Kitten, G.T.; da Silveira, K.D.; da Silva, D.A.; Santos, S.H.S.; Gava, E.; Castro, C.H.; Magalhães, J.A.; da Mota, R.K.; Botelho-Santos, G.A.; Bader, M.; Alenina, N.; Santos, R.A.S.; Simoes, E.; Silva, A.C. Genetic deletion of the angiotensin-(1-7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kidney Int., 2009, 75(11), 1184-1193.
[http://dx.doi.org/10.1038/ki.2009.61] [PMID: 19262461]
[82]
Esteban, V.; Heringer-Walther, S.; Sterner-Kock, A.; de Bruin, R.; van den Engel, S.; Wang, Y.; Mezzano, S.; Egido, J.; Schultheiss, H.P.; Ruiz-Ortega, M.; Walther, T. Angiotensin-(1-7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS One, 2009, 4(4), e5406.
[http://dx.doi.org/10.1371/journal.pone.0005406] [PMID: 19404405]
[83]
Velkoska, E.; Dean, R.G.; Griggs, K.; Burchill, L.; Burrell, L.M. Angiotensin-(1-7) infusion is associated with increased blood pressure and adverse cardiac remodelling in rats with subtotal nephrectomy. Clin. Sci. (Lond.), 2011, 120(8), 335-345.
[http://dx.doi.org/10.1042/CS20100280] [PMID: 21091432]
[84]
Cunha, T.M.; Lima, W.G.; Silva, M.E.; Souza Santos, R.A.; Campagnole-Santos, M.J.; Alzamora, A.C. The nonpeptide ANG-(1-7) mimic AVE 0991 attenuates cardiac remodeling and improves baroreflex sensitivity in renovascular hypertensive rats. Life Sci., 2013, 92(4-5), 266-275.
[http://dx.doi.org/10.1016/j.lfs.2012.12.008] [PMID: 23333828]
[85]
Silveira, K.D.; Barroso, L.C.; Vieira, A.T.; Cisalpino, D.; Lima, C.X.; Bader, M.; Arantes, R.M.; Dos Santos, R.A.; Simões-E-Silva, A.C.; Teixeira, M.M. Beneficial effects of the activation of the angiotensin-(1-7) MAS receptor in a murine model of adriamycin-induced nephropathy. PLoS One, 2013, 8(6), e66082.
[http://dx.doi.org/10.1371/journal.pone.0066082] [PMID: 23762470]
[86]
Pereira, W.F.; Brito-Melo, G.E.A.; de Almeida, C.A.; Moreira, L.L.; Cordeiro, C.W.; Carvalho, T.G.R.; Mateo, E.C.; Simões, E.; Silva, A.C. The experimental model of nephrotic syndrome induced by Doxorubicin in rodents: An update. Inflamm. Res., 2015, 64(5), 287-301.
[http://dx.doi.org/10.1007/s00011-015-0813-1] [PMID: 25788426]
[87]
Dilauro, M.; Burns, K.D. Angiotensin-(1-7) and its effects in the kidney. ScientificWorldJournal, 2009, 9, 522-535.
[http://dx.doi.org/10.1100/tsw.2009.70] [PMID: 19578709]
[88]
Mikulak, J.; Singhal, P.C. HIV-1 and kidney cells: Better understanding of viral interaction. Nephron, Exp. Nephrol., 2010, 115(2), e15-e21.
[http://dx.doi.org/10.1159/000312882] [PMID: 20407278]
[89]
Campos, Y.M.; Drumond, A.L.V.; de Matos Gamonal, M.; Parreira, M.P.; Simões, E. Silva, A.C.; Silva, A.C. Renal involvement in pediatric patients with covid-19: an up-to-date review. Curr. Pediatr. Rev., 2021, 17(4), 253-263.
[http://dx.doi.org/10.2174/1573396317666210924121550] [PMID: 34561986]
[90]
Barsoum, R.S. Hepatitis C virus: From entry to renal injury--facts and potentials. Nephrol. Dial. Transplant., 2007, 22(7), 1840-1848.
[http://dx.doi.org/10.1093/ndt/gfm205] [PMID: 17478492]
[91]
Fine, D.M.; Wasser, W.G.; Estrella, M.M.; Atta, M.G.; Kuperman, M.; Shemer, R.; Rajasekaran, A.; Tzur, S.; Racusen, L.C.; Skorecki, K. APOL1 risk variants predict histopathology and progression to ESRD in HIV-related kidney disease. J. Am. Soc. Nephrol., 2012, 23(2), 343-350.
[http://dx.doi.org/10.1681/ASN.2011060562] [PMID: 22135313]
[92]
Besse, W.; Mansour, S.; Jatwani, K.; Nast, C.C.; Brewster, U.C. Collapsing glomerulopathy in a young woman with APOL1 risk alleles following acute parvovirus B19 infection: A case report investigation. BMC Nephrol., 2016, 17(1), 125.
[http://dx.doi.org/10.1186/s12882-016-0330-7] [PMID: 27600725]
[93]
Genovese, G.; Friedman, D.J.; Ross, M.D.; Lecordier, L.; Uzureau, P.; Freedman, B.I.; Bowden, D.W.; Langefeld, C.D.; Oleksyk, T.K.; Uscinski Knob, A.L.; Bernhardy, A.J.; Hicks, P.J.; Nelson, G.W.; Vanhollebeke, B.; Winkler, C.A.; Kopp, J.B.; Pays, E.; Pollak, M.R. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science, 2010, 329(5993), 841-845.
[http://dx.doi.org/10.1126/science.1193032] [PMID: 20647424]
[94]
Kopp, J.B.; Winkler, C.A.; Zhao, X.; Radeva, M.K.; Gassman, J.J.; D’Agati, V.D.; Nast, C.C.; Wei, C.; Reiser, J.; Guay-Woodford, L.M.; Pollak, M.R.; Hildebrandt, F.; Moxey-Mims, M.; Gipson, D.S.; Trachtman, H.; Friedman, A.L.; Kaskel, F.J. Clinical features and histology of apolipoprotein L1-associated nephropathy in the FSGS clinical trial. J. Am. Soc. Nephrol., 2015, 26(6), 1443-1448.
[http://dx.doi.org/10.1681/ASN.2013111242] [PMID: 25573908]