Surface Engineered Dendrimers: A Potential Nanocarrier for the Effective Management of Glioblastoma Multiforme

Page: [708 - 722] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Gliomas are the most prevailing intracranial tumors, which account for approximately 36% of the primary brain tumors of glial cells. Glioblastoma multiforme (GBM) possesses a higher degree of malignancy among different gliomas. The blood-brain barrier (BBB) protects the brain against infections and toxic substances by preventing foreign molecules or unwanted cells from entering the brain parenchyma. Nano-carriers such as liposomes, nanoparticles, dendrimers, etc. boost the brain permeability of various anticancer drugs or other drugs. The favorable properties like small size, better solubility, and the modifiable surface of dendrimers have proven their broad applicability in the better management of GBM. However, in vitro and in vivo toxicities caused by dendrimers have been a significant concern. The presence of multiple functionalities on the surface of dendrimers enables the grafting of target ligand and/or therapeutic moieties. Surface engineering improves certain properties like targeting efficiency, pharmacokinetic profile, therapeutic effect, and toxicity reduction. This review will be focused on the role of different surface-modified dendrimers in the effective management of GBM

Keywords: Glioblastoma multiforme, surface engineering, dendrimers, PAMAM, PLL, PPI.

Graphical Abstract

[1]
Rapalino, O.; Batchelor, T.; González, R.G. Intra-axial brain tumors. Handb. Clin. Neurol., 2016, 135, 253-274.
[http://dx.doi.org/10.1016/B978-0-444-53485-9.00014-3] [PMID: 27432670]
[2]
Agnihotri, S.; Burrell, K.E.; Wolf, A.; Jalali, S.; Hawkins, C.; Rutka, J.T.; Zadeh, G. Glioblastoma, a brief review of history, molecular genet-ics, animal models and novel therapeutic strategies. Arch. Immunol. Ther. Exp. (Warsz.), 2013, 61(1), 25-41.
[http://dx.doi.org/10.1007/s00005-012-0203-0] [PMID: 23224339]
[3]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[4]
Ohgaki, H.; Kleihues, P. The definition of primary and secondary glioblastoma. Clin. Cancer Res., 2013, 19(4), 764-772.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3002] [PMID: 23209033]
[5]
Jeswani, S.; Nuño, M.; Folkerts, V.; Mukherjee, D.; Black, K.L.; Patil, C.G. Comparison of survival between cerebellar and supratentorial glioblastoma patients: Surveillance, Epidemiology, and End Results (SEER) analysis. Neurosurgery, 2013, 73(2), 240-246.
[http://dx.doi.org/10.1227/01.neu.0000430288.85680.37] [PMID: 23615082]
[6]
Malay, S.; Somasundaram, E.; Patil, N.; Buerki, R.; Sloan, A.; Barnholtz-Sloan, J.S. Treatment and surgical factors associated with longer-term glioblastoma survival: A national cancer database study. Neurooncol. Adv., 2020, 2(Suppl. 1), 1-10.
[http://dx.doi.org/10.1093/noajnl/vdaa070] [PMID: 32642726]
[7]
Delgado-López, P.D.; Corrales-García, E.M. Survival in glioblastoma: A review on the impact of treatment modalities. Clin. Transl. Oncol., 2016, 18(11), 1062-1071.
[http://dx.doi.org/10.1007/s12094-016-1497-x] [PMID: 26960561]
[8]
Pearson, J.R.D.; Regad, T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct. Target. Ther., 2017, 2(1), 17040.
[http://dx.doi.org/10.1038/sigtrans.2017.40] [PMID: 29263927]
[9]
van Tellingen, O.; Yetkin-Arik, B.; de Gooijer, M.C.; Wesseling, P.; Wurdinger, T.; de Vries, H.E. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat., 2015, 19, 1-12.
[http://dx.doi.org/10.1016/j.drup.2015.02.002] [PMID: 25791797]
[10]
Karmur, B.S.; Philteos, J.; Abbasian, A.; Zacharia, B.E.; Lipsman, N.; Levin, V.; Grossman, S.; Mansouri, A. Blood-brain barrier disruption in neuro-oncology: Strategies, failures, and challenges to overcome. Front. Oncol., 2020, 10, 563840. Epub ahead of print
[http://dx.doi.org/10.3389/fonc.2020.563840] [PMID: 33072591]
[11]
Bhowmik, A.; Khan, R.; Ghosh, M.K. Blood brain barrier: A challenge for effectual therapy of brain tumors. Biomed Res. Int., 2015.
[http://dx.doi.org/10.1155/2015/320941]
[12]
Parrish, K.E.; Sarkaria, J.N.; Elmquist, W.F. Improving drug delivery to primary and metastatic brain tumors: Strategies to overcome the blood-brain barrier. Clin. Pharmacol. Ther., 2015, 97(4), 336-346.
[http://dx.doi.org/10.1002/cpt.71] [PMID: 25669487]
[13]
Wong, H.L.; Wu, X.Y.; Bendayan, R. Nanotechnological advances for the delivery of CNS therapeutics. Adv. Drug Deliv. Rev., 2012, 64(7), 686-700.
[http://dx.doi.org/10.1016/j.addr.2011.10.007] [PMID: 22100125]
[14]
Garcia-Garcia, E.; Andrieux, K.; Gil, S.; Couvreur, P. Colloidal carriers and Blood-Brain Barrier (BBB) translocation: A way to deliver drugs to the brain? Int. J. Pharm., 2005, 298(2), 274-292.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.031] [PMID: 15896933]
[15]
Wong, H.L.; Chattopadhyay, N.; Wu, X.Y.; Bendayan, R. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv. Drug Deliv. Rev., 2010, 62(4-5), 503-517.
[http://dx.doi.org/10.1016/j.addr.2009.11.020] [PMID: 19914319]
[16]
Aparicio-Blanco, J.; Torres-Suárez, A.I. Glioblastoma multiforme and lipid nanocapsules: A review. J. Biomed. Nanotechnol., 2015, 11(8), 1283-1311.
[http://dx.doi.org/10.1166/jbn.2015.2084] [PMID: 26295134]
[17]
Duan, X.; Li, Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small, 2013, 9(9-10), 1521-1532.
[http://dx.doi.org/10.1002/smll.201201390] [PMID: 23019091]
[18]
Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Itty Ipe, B.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol., 2007, 25(10), 1165-1170.
[http://dx.doi.org/10.1038/nbt1340] [PMID: 17891134]
[19]
Maeda, H.; Tsukigawa, K.; Fang, J. A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tu-mors: Next-generation chemotherapeutics and photodynamic therapy--problems, solutions, and prospects. Microcirculation, 2016, 23(3), 173-182.
[http://dx.doi.org/10.1111/micc.12228] [PMID: 26237291]
[20]
Ortiz, R.; Cabeza, L.; Perazzoli, G.; Jimenez-Lopez, J.; García-Pinel, B.; Melguizo, C.; Prados, J. Nanoformulations for glioblastoma multi-forme: A new hope for treatment. Future Med. Chem., 2019, 11(18), 2459-2480.
[http://dx.doi.org/10.4155/fmc-2018-0521] [PMID: 31544490]
[21]
Xie, X.; Liao, J.; Shao, X.; Li, Q.; Lin, Y. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and trian-gles. Sci. Rep., 2017, 7(1), 3827.
[http://dx.doi.org/10.1038/s41598-017-04229-z] [PMID: 28630477]
[22]
Wang, B.; Su, X.; Liang, J.; Yang, L.; Hu, Q.; Shan, X.; Wan, J.; Hu, Z. Synthesis of polymer-functionalized nanoscale graphene oxide with different surface charge and its cellular uptake, biosafety and immune responses in Raw264.7 macrophages. Mater. Sci. Eng. C, 2018, 90, 514-522.
[http://dx.doi.org/10.1016/j.msec.2018.04.096] [PMID: 29853120]
[23]
Maurizi, L.; Papa, A.L.; Dumont, L.; Bouyer, F.; Walker, P.; Vandroux, D.; Millot, N. Influence of surface charge and polymer coating on internalization and biodistribution of polyethylene glycol-modified iron oxide nanoparticles. J. Biomed. Nanotechnol., 2015, 11(1), 126-136.
[http://dx.doi.org/10.1166/jbn.2015.1996] [PMID: 26301306]
[24]
Xiao, K.; Li, Y.; Luo, J.; Lee, J.S.; Xiao, W.; Gonik, A.M.; Agarwal, R.G.; Lam, K.S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 2011, 32(13), 3435-3446.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.021] [PMID: 21295849]
[25]
Yan, J.; Hou, S.; Yu, Y.; Qiao, Y.; Xiao, T.; Mei, Y.; Zhang, Z.; Wang, B.; Huang, C.C.; Lin, C.H.; Suo, G. The effect of surface charge on the cytotoxicity and uptake of carbon quantum dots in human umbilical cord derived mesenchymal stem cells. Colloids Surf. B Biointerfaces, 2018, 171, 241-249.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.034] [PMID: 30036791]
[26]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[27]
Pourgholi, F.; Hajivalili, M.; Farhad, J.N.; Kafil, H.S.; Yousefi, M. Nanoparticles: Novel vehicles in treatment of glioblastoma. Biomed. Pharmacother., 2016, 77, 98-107.
[http://dx.doi.org/10.1016/j.biopha.2015.12.014] [PMID: 26796272]
[28]
Béduneau, A.; Saulnier, P.; Benoit, J.P. Active targeting of brain tumors using nanocarriers. Biomaterials, 2007, 28(33), 4947-4967.
[http://dx.doi.org/10.1016/j.biomaterials.2007.06.011] [PMID: 17716726]
[29]
Maletínská, L.; Blakely, E.A.; Bjornstad, K.A.; Deen, D.F.; Knoff, L.J.; Forte, T.M. Human glioblastoma cell lines: Levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein. Cancer Res., 2000, 60(8), 2300-2303.
[30]
Zhang, B.; Sun, X.; Mei, H.; Wang, Y.; Liao, Z.; Chen, J.; Zhang, Q.; Hu, Y.; Pang, Z.; Jiang, X. LDLR-mediated peptide-22-conjugated na-noparticles for dual-targeting therapy of brain glioma. Biomaterials, 2013, 34(36), 9171-9182.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.039] [PMID: 24008043]
[31]
Pillay, V.; Allaf, L.; Wilding, A.L.; Donoghue, J.F.; Court, N.W.; Greenall, S.A.; Scott, A.M.; Johns, T.G. The plasticity of oncogene addiction: Implications for targeted therapies directed to receptor tyrosine kinases. Neoplasia,, 2009, 11(5), 448-458. 2,458.http://dx.doi.org/10.1593/neo.09230 PMID: 19412429
[32]
Jin, J.; Bae, K.H.; Yang, H.; Lee, S.J.; Kim, H.; Kim, Y.; Joo, K.M.; Seo, S.W.; Park, T.G.; Nam, D.H. In vivo specific delivery of c-Met siR-NA to glioblastoma using cationic solid lipid nanoparticles. Bioconjug. Chem., 2011, 22(12), 2568-2572.
[http://dx.doi.org/10.1021/bc200406n] [PMID: 22070554]
[33]
Shi, L.; Zhang, S.; Feng, K.; Wu, F.; Wan, Y.; Wang, Z.; Zhang, J.; Wang, Y.; Yan, W.; Fu, Z.; You, Y. MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. Int. J. Oncol., 2012, 40(1), 119-129.
[PMID: 21879257]
[34]
Ornelas, C. Brief timelapse on dendrimer chemistry: Advances, limitations, and expectations. Macromol. Chem. Phys., 2016, 217(2), 149-174.
[http://dx.doi.org/10.1002/macp.201500393]
[35]
Gothwal, A.; Malik, S.; Gupta, U. Toxicity and biocompatibility aspects of dendrimers. In: Chauhan, A.; Kulari, H.; Eds.Pharmaceutical Applications of Dendrimers; Elsevier Science: Amsterdam, Netherlands, 2020, pp. 251-274.
[36]
Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 2(2), 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[37]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Den-drimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[38]
Jain, K. Dendrimers: Smart nanoengineered polymers for bioinspired applications in drug delivery.. In: Jana, S.; Maiti, S.; Jana, S.; Eds.Bi-opolymer-Based Composites: Drug Delivery and Biomedical Applications; Woodhead Publishing: Sawston, United Kingdom, 2017, pp. 169-220.
[39]
Sharma, A.; Liaw, K.; Sharma, R.; Spriggs, T.; Appiani La Rosa, S.; Kannan, S.; Kannan, R.M. Dendrimer-mediated targeted delivery of rapamycin to tumor-associated macrophages improves systemic treatment of glioblastoma. Biomacromolecules, 2020, 21(12), 5148-5161.
[http://dx.doi.org/10.1021/acs.biomac.0c01270] [PMID: 33112134]
[40]
Fan, X.; Li, Z.; Loh, X.J. Recent development of unimolecular micelles as functional materials and applications. Polym. Chem., 2016, 7(38), 5898-5919.
[http://dx.doi.org/10.1039/C6PY01006G]
[41]
Lee, S.; Son, S.J.; Song, S.J.; Ha, T.H.; Choi, J.S. Polyamidoamine (PAMAM) dendrimers modified with cathepsin-B cleavable oligopeptides for enhanced gene delivery. Polymers (Basel), 2017, 9(6), 224.
[http://dx.doi.org/10.3390/polym9060224] [PMID: 30970901]
[42]
Najafi, F.; Ghasemian, N.; Safari, M.; Salami-Kalajahi, M. Poly(propylene imine) dendrimer as reducing agent for chloroauric acid to fabri-cate and stabilize gold nanoparticles. J. Phys. Chem. Solids, 2021, 148, 109682.
[http://dx.doi.org/10.1016/j.jpcs.2020.109682]
[43]
Vembu, S.; Pazhamalai, S.; Gopalakrishnan, M. Potential antibacterial activity of triazine dendrimer: Synthesis and controllable drug release properties. Bioorg. Med. Chem., 2015, 23(15), 4561-4566.
[http://dx.doi.org/10.1016/j.bmc.2015.06.009] [PMID: 26113186]
[44]
Ghaffari, M.; Dehghan, G.; Abedi-Gaballu, F.; Kashanian, S.; Baradaran, B.; Ezzati Nazhad Dolatabadi, J.; Losic, D. Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting. Eur. J. Pharm. Sci., 2018, 122, 311-330.
[http://dx.doi.org/10.1016/j.ejps.2018.07.020] [PMID: 30003954]
[45]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev., 2012, 64, 102-115.
[http://dx.doi.org/10.1016/j.addr.2012.09.030]
[46]
Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N.K. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm., 2010, 394(1-2), 122-142.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.027] [PMID: 20433913]
[47]
El-Sayed, M.; Ginski, M.; Rhodes, C.; Ghandehari, H. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell mono-layers. J. Control. Release, 2002, 81(3), 355-365.
[http://dx.doi.org/10.1016/S0168-3659(02)00087-1] [PMID: 12044574]
[48]
Sahoo, R.K.; Gothwal, A.; Rani, S.; Nakhate, K.T. Ajazuddin; Gupta, U. PEGylated dendrimer mediated delivery of bortezomib: Drug con-jugation versus encapsulation. Int. J. Pharm., 2020, 584, 119389.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119389] [PMID: 32380027]
[49]
Wang, F.; Cai, X.; Su, Y.; Hu, J.; Wu, Q.; Zhang, H.; Xiao, J.; Cheng, Y. Reducing cytotoxicity while improving anti-cancer drug loading ca-pacity of polypropylenimine dendrimers by surface acetylation. Acta Biomater., 2012, 8(12), 4304-4313.
[http://dx.doi.org/10.1016/j.actbio.2012.07.031] [PMID: 22842039]
[50]
Cheng, Y.; Zhao, L.; Li, Y.; Xu, T. Design of biocompatible dendrimers for cancer diagnosis and therapy: Current status and future perspec-tives. Chem. Soc. Rev., 2011, 40(5), 2673-2703.
[http://dx.doi.org/10.1039/c0cs00097c] [PMID: 21286593]
[51]
Gupta, U.; Dwivedi, S.K.D.; Bid, H.K.; Konwar, R.; Jain, N.K. Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. Int. J. Pharm., 2010, 393(1-2), 185-196.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.002] [PMID: 20382210]
[52]
Singh, P.; Gupta, U.; Asthana, A.; Jain, N.K. Folate and folate-PEG-PAMAM dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug. Chem., 2008, 19(11), 2239-2252.
[http://dx.doi.org/10.1021/bc800125u] [PMID: 18950215]
[53]
Yellepeddi, V.K.; Kumar, A.; Maher, D.M.; Chauhan, S.C.; Vangara, K.K.; Palakurthi, S. Biotinylated PAMAM dendrimers for intracellular delivery of cisplatin to ovarian cancer: Role of SMVT. Anticancer Res., 2011, 31(3), 897-906.
[54]
Jiang, Y.; Lv, L.; Shi, H.; Hua, Y.; Lv, W.; Wang, X.; Xin, H.; Xu, Q. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma. Colloids Surf. B Biointerfaces, 2016, 147, 242-249.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.002] [PMID: 27518456]
[55]
He, X.; Alves, C.S.; Oliveira, N.; Rodrigues, J.; Zhu, J.; Bányai, I.; Tomás, H.; Shi, X. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells. Colloids Surf. B Biointerfaces, 2015, 125, 82-89.
[http://dx.doi.org/10.1016/j.colsurfb.2014.11.004] [PMID: 25437067]
[56]
Mignani, S.; Shi, X.; Ceña, V.; Majoral, J.P. Dendrimer- and polymeric nanoparticle-aptamer bioconjugates as nonviral delivery systems: A new approach in medicine. Drug Discov. Today, 2020, 25(6), 1065-1073.
[http://dx.doi.org/10.1016/j.drudis.2020.03.009] [PMID: 32283193]
[57]
Duncan, R.; Izzo, L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev., 2005, 57(15), 2215-2237.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[58]
Biswas, S.; Deshpande, P.P.; Navarro, G.; Dodwadkar, N.S.; Torchilin, V.P. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials, 2013, 34(4), 1289-1301.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.024] [PMID: 23137395]
[59]
Luo, K.; Li, C.; Li, L.; She, W.; Wang, G.; Gu, Z. Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials, 2012, 33(19), 4917-4927.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.030] [PMID: 22484048]
[60]
Johnson, M.E.; Shon, J.; Guan, B.M.; Patterson, J.P.; Oldenhuis, N.J.; Eldredge, A.C.; Gianneschi, N.C.; Guan, Z. Fluorocarbon modified low-molecular-weight polyethylenimine for siRNA delivery. Bioconjug. Chem., 2016, 27(8), 1784-1788.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00216] [PMID: 27457882]
[61]
Molla, M.R.; Rangadurai, P.; Pavan, G.M.; Thayumanavan, S. Experimental and theoretical investigations in stimuli responsive dendrimer-based assemblies. Nanoscale, 2015, 7(9), 3817-3837.
[http://dx.doi.org/10.1039/C4NR04563G] [PMID: 25260107]
[62]
Zhang, C.; Pan, D.; Luo, K.; Li, N.; Guo, C.; Zheng, X.; Gu, Z. Dendrimer-doxorubicin conjugate as enzyme-sensitive and polymeric na-noscale drug delivery vehicle for ovarian cancer therapy. Polym. Chem., 2014, 5(18), 5227-5235.
[http://dx.doi.org/10.1039/C4PY00601A]
[63]
Chen, J.; Wu, C.; Oupický, D. Bioreducible hyperbranched poly(amido amine)s for gene delivery. Biomacromolecules, 2009, 10(10), 2921-2927.
[http://dx.doi.org/10.1021/bm900724c] [PMID: 19743843]
[64]
Zhao, Y.; Fan, X.; Liu, D.; Wang, Z. PEGylated thermo-sensitive poly(amidoamine) dendritic drug delivery systems. Int. J. Pharm., 2011, 409(1-2), 229-236.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.005] [PMID: 21316434]
[65]
Kostiainen, M.A.; Smith, D.K.; Ikkala, O. Optically triggered release of DNA from multivalent dendrons by degrading and charge-switching multivalency. Angew. Chem. Int. Ed., 2007, 46(40), 7600-7604.
[http://dx.doi.org/10.1002/anie.200701200] [PMID: 17729224]
[66]
Menjoge, A.R.; Kannan, R.M.; Tomalia, D.A. Dendrimer-based drug and imaging conjugates: Design considerations for nanomedical appli-cations. Drug Discov. Today, 2010, 15(5-6), 171-185.
[http://dx.doi.org/10.1016/j.drudis.2010.01.009] [PMID: 20116448]
[67]
Kolhe, P.; Khandare, J.; Pillai, O.; Kannan, S.; Lieh-Lai, M.; Kannan, R.M. Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials, 2006, 27(4), 660-669.
[http://dx.doi.org/10.1016/j.biomaterials.2005.06.007] [PMID: 16054211]
[68]
Gupta, U.; Agashe, H.B.; Asthana, A.; Jain, N.K. Dendrimers: Novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules, 2006, 7(3), 649-658.
[http://dx.doi.org/10.1021/bm050802s] [PMID: 16529394]
[69]
Rai, D.B.; Gupta, N.; Pooja, D.; Kulhari, H. Dendrimers for diagnostic applications. In: Chauhan, A.; Kulari, H.; Eds.Pharmaceutical Appli-cations of Dendrimers; Elsevier Science: Amsterdam, Netherlands, 2020, pp. 291-324.
[http://dx.doi.org/10.1016/B978-0-12-814527-2.00013-5]
[70]
Mormina, E.; Petracca, M.; Bommarito, G.; Piaggio, N.; Cocozza, S.; Inglese, M. Cerebellum and neurodegenerative diseases: Beyond con-ventional magnetic resonance imaging. World J. Radiol., 2017, 9(10), 371-388.
[http://dx.doi.org/10.4329/wjr.v9.i10.371] [PMID: 29104740]
[71]
Merbach, A.S.; Helm, L.; Toth, E. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, 2nd Ed.; Wiley: Hoboken, New Jersey, 2013.
[http://dx.doi.org/10.1002/9781118503652]
[72]
Geraldes, C.F.G.C.; Laurent, S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol. Imaging, 2009, 4(1), 1-23.
[http://dx.doi.org/10.1002/cmmi.265] [PMID: 19156706]
[73]
Sarin, H.; Kanevsky, A.S.; Wu, H.; Brimacombe, K.R.; Fung, S.H.; Sousa, A.A.; Auh, S.; Wilson, C.M.; Sharma, K.; Aronova, M.A.; Leap-man, R.D.; Griffiths, G.L.; Hall, M.D. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J. Transl. Med., 2008, 6(1), 80.
[http://dx.doi.org/10.1186/1479-5876-6-80] [PMID: 19094226]
[74]
Sarin, H.; Kanevsky, A.S.; Fung, S.H.; Butman, J.A.; Cox, R.W.; Glen, D.; Reynolds, R.; Auh, S. Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life. J. Transl. Med., 2009, 7(1), 33.
[http://dx.doi.org/10.1186/1479-5876-7-33] [PMID: 19439100]
[75]
Sarin, H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of micro-vascular permeability. J. Angiogenes. Res., 2010, 2(1), 14.
[http://dx.doi.org/10.1186/2040-2384-2-14] [PMID: 20701757]
[76]
Sarin, H. Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors. J. Transl. Med., 2009, 7(1), 77.
[http://dx.doi.org/10.1186/1479-5876-7-77] [PMID: 19723323]
[77]
Ali, M.M.; Bhuiyan, M.P.I.; Janic, B.; Varma, N.R.; Mikkelsen, T.; Ewing, J.R.; Knight, R.A.; Pagel, M.D.; Arbab, A.S. A nano-sized PARACEST-fluorescence imaging contrast agent facilitates and validates in vivo CEST MRI detection of glioma. Nanomedicine (Lond.), 2012, 7(12), 1827-1837.
[http://dx.doi.org/10.2217/nnm.12.92] [PMID: 22891866]
[78]
Karki, K.; Ewing, J.R.; Ali, M.M. Targeting glioma with a dual mode optical and paramagnetic nanoprobe across the blood-brain tumor barri-er. J. Nanomed. Nanotechnol., 2016, 7(4), 395.
[http://dx.doi.org/10.4172/2157-7439.1000395] [PMID: 27695645]
[79]
Lesniak, W.G.; Oskolkov, N.; Song, X.; Lal, B.; Yang, X.; Pomper, M.; Laterra, J.; Nimmagadda, S.; McMahon, M.T. Salicylic acid conjugat-ed dendrimers are a tunable, high performance CEST MRI NanoPlatform. Nano Lett., 2016, 16(4), 2248-2253.
[http://dx.doi.org/10.1021/acs.nanolett.5b04517] [PMID: 26910126]
[80]
Krause, W; Schneider, P.W. Chemistry of X-ray contrast agents., 2002, 107-150. http://dx.doi.org/10.1007/3-540-46009-8_4
[81]
Wang, H.; Zheng, L.; Peng, C.; Guo, R.; Shen, M.; Shi, X.; Zhang, G. Computed tomography imaging of cancer cells using acetylated den-drimer-entrapped gold nanoparticles. Biomaterials, 2011, 32(11), 2979-2988.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.001] [PMID: 21277019]
[82]
Liu, Y.; Ai, K.; Liu, J.; Yuan, Q.; He, Y.; Lu, L. A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray com-puted tomography imaging. Angew. Chem. Int. Ed. Engl., 2012, 51(6), 1437-1442.
[http://dx.doi.org/10.1002/anie.201106686] [PMID: 22223303]
[83]
Shi, X.; Wang, S.; Sun, H.; Baker, J.R. Improved biocompatibility of surface functionalized dendrimer-entrapped gold nanoparticles. Soft Matter, 2006, 3(1), 71-74.
[http://dx.doi.org/10.1039/B612972B] [PMID: 32680194]
[84]
Lesniak, W.G.; Azad, B.B.; Chatterjee, S.; Lisok, A.; Pomper, M.G. An evaluation of CXCR4 targeting with PAMAM dendrimer conjugates for oncologic applications. Pharmaceutics, 2022, 14(3), 655.
[http://dx.doi.org/10.3390/pharmaceutics14030655] [PMID: 35336029]
[85]
Luker, G.D.; Luker, K.E. Optical imaging: Current applications and future directions. J. Nucl. Med., 2008, 49(1), 1-4.
[http://dx.doi.org/10.2967/jnumed.107.045799] [PMID: 18077528]
[86]
Lakowicz, J.R. Principles of fluorescence spectroscopy; Springer: New York, NY, 2006, pp. 1-954.
[http://dx.doi.org/10.1007/978-0-387-46312-4]
[87]
Zhao, J.; Zhang, B.; Shen, S.; Chen, J.; Zhang, Q.; Jiang, X.; Pang, Z. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J. Colloid Interface Sci., 2015, 450, 396-403.
[http://dx.doi.org/10.1016/j.jcis.2015.03.019] [PMID: 25863222]
[88]
Yu, M.; Jie, X.; Xu, L.; Chen, C.; Shen, W.; Cao, Y.; Lian, G.; Qi, R. Recent advances in dendrimer research for cardiovascular diseases. Biomacromolecules, 2015, 16(9), 2588-2598.
[http://dx.doi.org/10.1021/acs.biomac.5b00979] [PMID: 26310544]
[89]
Zhao, L.; Shi, X.; Zhao, J. Dendrimer-based contrast agents for PET imaging. Drug Deliv., 2017, 24((sup1)), 81-93. http://dx.doi.org/10.1080/10717544.2017.1399299 PMID: 29124984
[90]
Garrigue, P.; Tang, J.; Ding, L.; Bouhlel, A.; Tintaru, A.; Laurini, E.; Huang, Y.; Lyu, Z.; Zhang, M.; Fernandez, S.; Balasse, L.; Lan, W.; Mas, E.; Marson, D.; Weng, Y.; Liu, X.; Giorgio, S.; Iovanna, J.; Pricl, S.; Guillet, B.; Peng, L. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proc. Natl. Acad. Sci. USA, 2018, 115(45), 11454-11459.
[http://dx.doi.org/10.1073/pnas.1812938115] [PMID: 30348798]
[91]
Barth, R.F.; Soloway, A.H.; Fairchild, R.G.; Brugger, R.M. Boron neutron capture therapy for cancer. Realities and prospects. Cancer, 1992, 70(12), 2995-3007.
[http://dx.doi.org/10.1002/1097-0142(19921215)70:12<2995:AID-CNCR2820701243>3.0.CO;2-#] [PMID: 1451084]
[92]
Barth, R.F.; Adams, D.M.; Soloway, A.H.; Alam, F.; Darby, M.V. Boronated starburst dendrimer-monoclonal antibody immunoconjugates: Evaluation as a potential delivery system for neutron capture therapy. Bioconjug. Chem., 1994, 5(1), 58-66.
[http://dx.doi.org/10.1021/bc00025a008] [PMID: 8199235]
[93]
Wu, G.; Barth, R.F.; Yang, W.; Chatterjee, M.; Tjarks, W.; Ciesielski, M.J.; Fenstermaker, R.A. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug. Chem., 2004, 15(1), 185-194.
[http://dx.doi.org/10.1021/bc0341674] [PMID: 14733599]
[94]
Uram, Ł.; Szuster, M.; Filipowicz, A.; Zaręba, M.; Wałajtys-Rode, E.; Wołowiec, S. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs. Bioorg. Med. Chem., 2017, 25(2), 706-713.
[http://dx.doi.org/10.1016/j.bmc.2016.11.047] [PMID: 27919613]
[95]
Uram, Ł.; Misiorek, M.; Pichla, M.; Filipowicz-Rachwał, A.; Markowicz, J.; Wołowiec, S.; Wałajtys-Rode, E. The effect of biotinylated PAMAM G3 dendrimers conjugated with COX-2 Inhibitor (celecoxib) and PPARγ Agonist (Fmoc-L-Leucine) on human normal fibroblasts, immortalized keratinocytes and glioma cells in vitro. Molecules, 2019, 24(20), 3801.
[http://dx.doi.org/10.3390/molecules24203801] [PMID: 31652556]
[96]
Uram, Ł.; Markowicz, J.; Misiorek, M.; Filipowicz-Rachwał, A.; Wołowiec, S.; Wałajtys-Rode, E. Celecoxib substituted biotinylated poly(amidoamine) G3 dendrimer as potential treatment for temozolomide resistant glioma therapy and anti-nematode agent. Eur. J. Pharm. Sci., 2020, 152, 105439.
[http://dx.doi.org/10.1016/j.ejps.2020.105439] [PMID: 32615261]
[97]
Qiu, J.; Kong, L.; Cao, X.; Li, A.; Wei, P.; Wang, L.; Mignani, S.; Caminade, A.M.; Majoral, J.P.; Shi, X. Enhanced delivery of therapeutic siRNA into glioblastoma cells using dendrimer-entrapped gold nanoparticles conjugated with β-cyclodextrin. Nanomaterials (Basel), 2018, 8(3), 131.
[http://dx.doi.org/10.3390/nano8030131] [PMID: 29495429]
[98]
Sharma, A.K.; Gupta, L.; Sahu, H.; Qayum, A.; Singh, S.K.; Nakhate, K.T. Ajazuddin; Gupta, U. Chitosan engineered PAMAM dendrimers as nanoconstructs for the enhanced anti-cancer potential and improved in vivo brain pharmacokinetics of temozolomide. Pharm. Res., 2018, 35(1), 9.
[http://dx.doi.org/10.1007/s11095-017-2324-y] [PMID: 29294212]
[99]
Kang, C.; Yuan, X.; Li, F.; Pu, P.; Yu, S.; Shen, C.; Zhang, Z.; Zhang, Y. Evaluation of folate-PAMAM for the delivery of antisense oligonu-cleotides to rat C6 glioma cells in vitro and in vivo. J. Biomed. Mater. Res. A, 2010, 93(2), 585-594.
[PMID: 19591231]
[100]
Sharma, A.; Liaw, K.; Sharma, R.; Thomas, A.G.; Slusher, B.S.; Kannan, S.; Kannan, R.M. Targeting mitochondria in tumor-associated mac-rophages using a dendrimer-conjugated TSPO ligand that stimulates antitumor signaling in glioblastoma. Biomacromolecules, 2020, 21(9), 3909-3922.
[http://dx.doi.org/10.1021/acs.biomac.0c01033] [PMID: 32786523]
[101]
Sharma, R.; Liaw, K.; Sharma, A.; Jimenez, A.; Chang, M.; Salazar, S.; Amlani, I.; Kannan, S.; Kannan, R.M. Glycosylation of PAMAM dendrimers significantly improves tumor macrophage targeting and specificity in glioblastoma. J. Control. Release, 2021, 337, 179-192.
[http://dx.doi.org/10.1016/j.jconrel.2021.07.018] [PMID: 34274384]
[102]
Bai, C.Z.; Choi, S.; Nam, K.; An, S.; Park, J.S. Arginine modified PAMAM dendrimer for interferon beta gene delivery to malignant glioma. Int. J. Pharm., 2013, 445(1-2), 79-87.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.057] [PMID: 23384727]
[103]
An, S.; Nam, K.; Choi, S.; Bai, C.Z.; Lee, Y.; Park, J.S. Nonviral gene therapy in vivo with PAM-RG4/apoptin as a potential brain tumor ther-apeutic. Int. J. Nanomedicine, 2013, 8, 821-834.
[PMID: 23589689]
[104]
Yu, G.S.; Bae, Y.M.; Choi, H.; Kong, B.; Choi, I.S.; Choi, J.S. Synthesis of PAMAM dendrimer derivatives with enhanced buffering capacity and remarkable gene transfection efficiency. Bioconjug. Chem., 2011, 22(6), 1046-1055.
[http://dx.doi.org/10.1021/bc100479t] [PMID: 21528924]
[105]
Park, J.H.; Park, J.S.; Choi, J.S. Basic amino acid-conjugated polyamidoamine dendrimers with enhanced gene transfection efficiency. Macromol. Res., 2014, 22(5), 500-508.
[http://dx.doi.org/10.1007/s13233-014-2073-2]
[106]
Bae, Y.; Green, E.S.; Kim, G.Y.; Song, S.J.; Mun, J.Y.; Lee, S.; Park, J.I.; Park, J.S.; Ko, K.S.; Han, J.; Choi, J.S. Dipeptide-functionalized polyamidoamine dendrimer-mediated apoptin gene delivery facilitates apoptosis of human primary glioma cells. Int. J. Pharm., 2016, 515(1-2), 186-200.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.083] [PMID: 27732896]
[107]
Bae, Y.; Rhim, H.S.; Lee, S.; Ko, K.S.; Han, J.; Choi, J.S. Apoptin gene delivery by the functionalized polyamidoamine dendrimer derivatives induces cell death of U87-MG glioblastoma Cells. J. Pharm. Sci., 2017, 106(6), 1618-1633.
[http://dx.doi.org/10.1016/j.xphs.2017.01.034] [PMID: 28188727]
[108]
Huang, S.; Li, J.; Han, L.; Liu, S.; Ma, H.; Huang, R.; Jiang, C. Dual targeting effect of angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials, 2011, 32(28), 6832-6838.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.064] [PMID: 21700333]
[109]
Huang, R.; Ke, W.; Han, L.; Li, J.; Liu, S.; Jiang, C. Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intra-venous administration. Biomaterials, 2011, 32(9), 2399-2406.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.079] [PMID: 21185076]
[110]
Lu, Y.; Han, S.; Zheng, H.; Ma, R.; Ping, Y.; Zou, J.; Tang, H.; Zhang, Y.; Xu, X.; Li, F. A novel RGDyC/PEG co-modified PAMAM den-drimer-loaded arsenic trioxide of glioma targeting delivery system. Int. J. Nanomedicine, 2018, 13, 5937-5952.
[http://dx.doi.org/10.2147/IJN.S175418] [PMID: 30323584]
[111]
Wang, K.; Zhang, X.; Zhang, L.; Qian, L.; Liu, C.; Zheng, J.; Jiang, Y. Development of biodegradable polymeric implants of RGD-modified PEG-PAMAM-DOX conjugates for long-term intratumoral release. Drug Deliv., 2015, 22(3), 389-399.
[http://dx.doi.org/10.3109/10717544.2014.895457] [PMID: 24670095]
[112]
Zhang, L.; Zhu, S.; Qian, L.; Pei, Y.; Qiu, Y.; Jiang, Y. RGD-modified PEG-PAMAM-DOX conjugates: in vitro and in vivo studies for glio-ma. Eur. J. Pharm. Biopharm., 2011, 79(2), 232-240.
[http://dx.doi.org/10.1016/j.ejpb.2011.03.025] [PMID: 21496485]
[113]
Shi, X.; Ma, R.; Lu, Y.; Cheng, Y.; Fan, X.; Zou, J.; Zheng, H.; Li, F.; Piao, J.G. iRGD and TGN co-modified PAMAM for multi-targeted delivery of ATO to gliomas. Biochem. Biophys. Res. Commun., 2020, 527(1), 117-123.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.064] [PMID: 32446354]
[114]
Jin, Z.; Piao, L.; Sun, G.; Lv, C.; Jing, Y.; Jin, R. Dual functional nanoparticles efficiently across the blood-brain barrier to combat glioblas-toma via simultaneously inhibit the PI3K pathway and NKG2A axis. J. Drug Target., 2021, 29(3), 323-335.
[http://dx.doi.org/10.1080/1061186X.2020.1841214] [PMID: 33108906]
[115]
Somani, S.; Blatchford, D.R.; Millington, O.; Stevenson, M.L.; Dufès, C. Transferrin-bearing polypropylenimine dendrimer for targeted gene delivery to the brain. J. Control. Release, 2014, 188, 78-86.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.006] [PMID: 24933602]
[116]
Somani, S.; Robb, G.; Pickard, B.S.; Dufès, C. Enhanced gene expression in the brain following intravenous administration of lactoferrin-bearing polypropylenimine dendriplex. J. Control. Release, 2015, 217, 235-242.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.003] [PMID: 26362697]
[117]
Gajbhiye, V.; Jain, N.K. The treatment of glioblastoma xenografts by surfactant conjugated dendritic nanoconjugates. Biomaterials, 2011, 32(26), 6213-6225.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.057] [PMID: 21616528]
[118]
Patel, S.K.; Gajbhiye, V.; Jain, N.K. Synthesis, characterization and brain targeting potential of paclitaxel loaded thiamine-PPI nanoconju-gates. J. Drug Target., 2012, 20(10), 841-849.
[http://dx.doi.org/10.3109/1061186X.2012.719231] [PMID: 22994427]
[119]
Patel, H.K.; Gajbhiye, V.; Kesharwani, P.; Jain, N.K. Ligand anchored poly(propyleneimine) dendrimers for brain targeting: Comparative in vitro and in vivo assessment. J. Colloid Interface Sci., 2016, 482, 142-150.
[http://dx.doi.org/10.1016/j.jcis.2016.07.047] [PMID: 27501037]
[120]
Afsharzadeh, M.; Hashemi, M.; Mokhtarzadeh, A.; Abnous, K.; Ramezani, M. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1095-1110.
[http://dx.doi.org/10.1080/21691401.2017.1376675] [PMID: 28954547]
[121]
Malkoch, M.; Malmström, E.; Nyström, A.M. Dendrimers: Properties and applications. In: Matyjaszewski, K.; Moller, M.; Eds. Polymer Science: A Comprhensive Reference; Elsevier Science: Amsterdam,Netherlands,; , 2012, 6, pp. 113-176.
[122]
Kadlecova, Z.; Baldi, L.; Hacker, D.; Wurm, F.M.; Klok, H.A. Comparative study on the in vitro cytotoxicity of linear, dendritic, and hyper-branched polylysine analogues. Biomacromolecules, 2012, 13(10), 3127-3137.
[http://dx.doi.org/10.1021/bm300930j] [PMID: 22931162]
[123]
Ohsaki, M.; Okuda, T.; Wada, A.; Hirayama, T.; Niidome, T.; Aoyagi, H. In vitro gene transfection using dendritic poly(L-lysine). Bioconjug. Chem., 2002, 13(3), 510-517.
[http://dx.doi.org/10.1021/bc015525a] [PMID: 12009940]
[124]
Tripathi, P.K.; Tripathi, S. Dendrimers for anticancer drug delivery.In: Chauhan, A.; Kulari, H.; Eds.Pharmaceutical Applications of Den-drimers; Elsevier Science: Amsterdam, Netherlands, 2020, pp. 131-150.
[125]
Choi, Y.H.; Liu, F.; Kim, J.S.; Choi, Y.K.; Park, J.S.; Kim, S.W. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J. Control. Release, 1998, 54(1), 39-48.
[http://dx.doi.org/10.1016/S0168-3659(97)00174-0] [PMID: 9741902]
[126]
Roberts, B.P.; Scanlon, M.J.; Krippner, G.Y.; Chalmers, D.K. Molecular dynamics of poly(L-lysine) dendrimers with naphthalene disul-fonate caps. Macromolecules, 2009, 42(7), 2775-2783.
[http://dx.doi.org/10.1021/ma802154e]
[127]
Choi, J.S.; Nam, K.; Park, J.Y.; Kim, J.B.; Lee, J.K.; Park, J.S. Enhanced transfection efficiency of PAMAM dendrimer by surface modifica-tion with L-arginine. J. Control. Release, 2004, 99(3), 445-456.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.027] [PMID: 15451602]
[128]
Kaminskas, L.M.; Kelly, B.D.; McLeod, V.M.; Sberna, G.; Owen, D.J.; Boyd, B.J.; Porter, C.J. Characterisation and tumour targeting of PEGylated polylysine dendrimers bearing doxorubicin via a pH labile linker. J. Control. Release, 2011, 152(2), 241-248.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.005] [PMID: 21315119]
[129]
Dwivedi, N.; Shah, J.; Mishra, V.; Mohd Amin, M.C.; Iyer, A.K.; Tekade, R.K.; Kesharwani, P. Dendrimer-mediated approaches for the treatment of brain tumor. J. Biomater. Sci. Polym. Ed., 2016, 27(7), 557-580.
[http://dx.doi.org/10.1080/09205063.2015.1133155] [PMID: 26928261]
[130]
Liu, Y.; Li, J.; Shao, K.; Huang, R.; Ye, L.; Lou, J.; Jiang, C. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine den-drigraft for brain targeted gene delivery. Biomaterials, 2010, 31(19), 5246-5257.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.011] [PMID: 20382424]
[131]
Niidome, T.; Yamauchi, H.; Takahashi, K.; Naoyama, K.; Watanabe, K.; Mori, T.; Katayama, Y. Hydrophobic cavity formed by oligopeptide for doxorubicin delivery based on dendritic poly(L-lysine). J. Biomater. Sci. Polym. Ed., 2014, 25(13), 1362-1373.
[http://dx.doi.org/10.1080/09205063.2014.938979] [PMID: 25040893]
[132]
Wang, X.; Tu, Q.; Zhao, B.; An, Y.; Wang, J.C.; Liu, W.; Yuan, M.S.; Ahmed, S.M.; Xu, J.; Liu, R.; Zhang, Y.; Wang, J. Effects of poly(L-lysine)-modified Fe3O4 nanoparticles on endogenous reactive oxygen species in cancer stem cells. Biomaterials, 2013, 34(4), 1155-1169.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.063] [PMID: 23164425]
[133]
Jain, P.K.; El-Sayed, M.A. Surface plasmon resonance sensitivity of metal nanostructures: Physical basis and universal scaling in metal nanoshells. J. Phys. Chem. C, 2007, 111(47), 17451-17454.
[http://dx.doi.org/10.1021/jp0773177]
[134]
Verma, J.; Lal, S.; Van Noorden, C.J.F. Nanoparticles for hyperthermic therapy: Synthesis strategies and applications in glioblastoma. Int. J. Nanomedicine, 2014, 9, 2863-2877.
[PMID: 24959075]
[135]
Xiao, Y.; Hong, H.; Matson, V.Z.; Javadi, A.; Xu, W.; Yang, Y.; Zhang, Y.; Engle, J.W.; Nickles, R.J.; Cai, W.; Steeber, D.A.; Gong, S. Gold nanorods conjugated with doxorubicin and cRGD for combined anti-cancer drug delivery and PET imaging. Theranostics, 2012, 2(8), 757-768.
[http://dx.doi.org/10.7150/thno.4756] [PMID: 22916075]
[136]
Oli, M. Aptamer conjugated gold nanorods for targeted nanothermal radiation of glioblastoma cancer cells (A novel selective targeted ap-proach to cancer treatment). Young Sci. J., 2009, 8(8), 18.
[http://dx.doi.org/10.4103/0974-6102.68740]
[137]
Xin, H.; Sha, X.; Jiang, X.; Zhang, W.; Chen, L.; Fang, X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials, 2012, 33(32), 8167-8176.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.046] [PMID: 22889488]
[138]
Steiniger, S.C.J.; Kreuter, J.; Khalansky, A.S.; Skidan, I.N.; Bobruskin, A.I.; Smirnova, Z.S.; Severin, S.E.; Uhl, R.; Kock, M.; Geiger, K.D.; Gelperina, S.E. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int. J. Cancer, 2004, 109(5), 759-767.
[http://dx.doi.org/10.1002/ijc.20048] [PMID: 14999786]
[139]
Tsujii, M.; Kawano, S.; Tsuji, S.; Sawaoka, H.; Hori, M.; DuBois, R.N. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell, 1998, 93(5), 705-716.
[http://dx.doi.org/10.1016/S0092-8674(00)81433-6] [PMID: 9630216]
[140]
Ren, Y.; Kang, C.S.; Yuan, X.B.; Zhou, X.; Xu, P.; Han, L.; Wang, G.X.; Jia, Z.; Zhong, Y.; Yu, S.; Sheng, J.; Pu, P.Y. Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J. Biomater. Sci. Polym. Ed., 2010, 21(3), 303-314.
[http://dx.doi.org/10.1163/156856209X415828] [PMID: 20178687]
[141]
Hadjipanayis, C.G.; Machaidze, R.; Kaluzova, M.; Wang, L.; Schuette, A.J.; Chen, H.; Wu, X.; Mao, H. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res., 2010, 70(15), 6303-6312.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1022] [PMID: 20647323]
[142]
Morrison, R.; Schleicher, S.M.; Sun, Y.; Niermann, K.J.; Kim, S.; Spratt, D.E.; Chung, C.H.; Lu, B. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J. Oncol., 2011, 2011, 941876. Epub ahead of print
[http://dx.doi.org/10.1155/2011/941876] [PMID: 20981352]
[143]
Ashrafzadeh, M.S.; Akbarzadeh, A.; Heydarinasab, A.; Ardjmand, M. In vivo glioblastoma therapy using targeted liposomal cisplatin. Int. J. Nanomedicine, 2020, 15, 7035-7049.
[http://dx.doi.org/10.2147/IJN.S255902] [PMID: 33061366]
[144]
Boswell, C.A.; Eck, P.K.; Regino, C.A.S.; Bernardo, M.; Wong, K.J.; Milenic, D.E.; Choyke, P.L.; Brechbiel, M.W. Synthesis, characteriza-tion, and biological evaluation of integrin alphavbeta3-targeted PAMAM dendrimers. Mol. Pharm., 2008, 5(4), 527-539.
[http://dx.doi.org/10.1021/mp800022a] [PMID: 18537262]
[145]
Cheng, Y.; Zhu, J.; Zhao, L.; Xiong, Z.; Tang, Y.; Liu, C.; Guo, L.; Qiao, W.; Shi, X.; Zhao, J. (131)I-labeled multifunctional dendrimers modified with BmK CT for targeted SPECT imaging and radiotherapy of gliomas. Nanomedicine (Lond.), 2016, 11(10), 1253-1266.
[http://dx.doi.org/10.2217/nnm-2016-0001] [PMID: 26940668]
[146]
Tsai, Y.J.; Hu, C.C.; Chu, C.C.; Imae, T. Intrinsically fluorescent PAMAM dendrimer as gene carrier and nanoprobe for nucleic acids deliv-ery: Bioimaging and transfection study. Biomacromolecules, 2011, 12(12), 4283-4290.
[http://dx.doi.org/10.1021/bm201196p] [PMID: 22029823]
[147]
Barth, R.F.; Wu, G.; Yang, W.; Binns, P.J.; Riley, K.J.; Patel, H.; Coderre, J.A.; Tjarks, W.; Bandyopadhyaya, A.K.; Thirumamagal, B.T.; Ciesielski, M.J.; Fenstermaker, R.A. Neutron capture therapy of epidermal growth factor (+) gliomas using boronated cetuximab (IMC-C225) as a delivery agent. Appl. Radiat. Isot., 2004, 61(5), 899-903.
[http://dx.doi.org/10.1016/j.apradiso.2004.05.004] [PMID: 15308165]
[148]
Fischer, G.; Wängler, B.; Wängler, C. Optimized solid phase-assisted synthesis of dendrons applicable as scaffolds for radiolabeled bioac-tive multivalent compounds intended for molecular imaging. Molecules, 2014, 19(6), 6952-6974.
[http://dx.doi.org/10.3390/molecules19066952] [PMID: 24871573]
[149]
Wang, H.; Zheng, L.; Guo, R.; Peng, C.; Shen, M.; Shi, X.; Zhang, G. Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale Res. Lett., 2012, 7(1), 190.
[http://dx.doi.org/10.1186/1556-276X-7-190] [PMID: 22429280]