Three-dimensional Self-organization of Tetraphenylporphyrin and its Composites with C60: Structure and Optical Properties

Page: [76 - 81] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: Thin films of a 5,10,15,20-tetraphenylporphyrin (H2TPP) and its metal complexes (MeTPP, where Me = Co, Cu, Zn, Fe-Cl) were obtained by vacuum thermal evaporation under quasi-equilibrium conditions (hot wall method) and by coating from a toluene solution on various substrates. It was shown that H2TPP, CuTPP and CoTPP have an ability to selforganization into linear structures during crystallization (nanowhiskers, nanowires, or nanorods), regardless of our obtaining method.

Methods: FeClTPP and ZnTPP crystallize into planar films with the same preparation technique. Co-deposition with fullerene C60 allows obtaining fullerene crystallites on the surface of tetraphenylporphyrin, subsequently creating the so-called bulk heterojunctions.

Results: The possibility of controlling the shape of obtained crystallites by changing technological parameters and substrates has been shown for metal free tetraphenylporphyrin. High degree crystalline ZnTPP and H2TPP films are characterized by a red shift of photoluminescence and absorption spectra under crystallization.

Conclusion: A change in the relative intensity of the photoluminescence spectrum maxima of various nature is observed during transition from amorphous to crystalline structure of H2TPP.

Keywords: self-organization, tetraphenylporphyrin, structure, crystallization, photoluminescence, absorbance.

Graphical Abstract

[1]
Wang, X.; Lu, Y.; Zhang, J.; Zhang, S.; Chen, T.; Ou, Q.; Huang, J. Highly sensitive artificial visual array using transistors based on porphyrins and semiconductors. Small, 2021, 17(2), e2005491.
[http://dx.doi.org/10.1002/smll.202005491] [PMID: 33325607]
[2]
Xie, Y.; Tang, Y.; Wu, W.; Wang, Y.; Liu, J.; Li, X.; Tian, H.; Zhu, W-H. Porphyrin cosensitization for a photovoltaic efficiency of 11.5%: A record for non-ruthenium solar cells based on iodine electrolyte. J. Am. Chem. Soc., 2015, 137(44), 14055-14058.
[http://dx.doi.org/10.1021/jacs.5b09665] [PMID: 26492075]
[3]
Kotteswaran, S.; Ramasamy, P. The influence of triphenylamine as a donor group on Zn–porphyrin for dye sensitized solar cell applications. New J. Chem., 2021, 45(5), 2453-2462.
[http://dx.doi.org/10.1039/D0NJ05060A]
[4]
Lindström, H.; Fili, G.U.S. Dye-sensitized solar cell and a method for manufacturing the solar cell. US Patent No. 10,043,614, 2016.
[5]
Zdorovets, M.V.; Kozlovskiy, A.L.; Shlimas, D.I.; Borgekov, D.B. Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J. Mater. Sci. Mater. Electron., 2021, 32(12), 16694-16705.
[http://dx.doi.org/10.1007/s10854-021-06226-5]
[6]
Sreseli, O.M.; Elistratova, M.A.; Goryachev, D.N.; Beregulin, E.V.; Nevedomskii, V.N.; Bert, N.A.; Ershov, A.V. Electrical and photoelectric properties of α-Si/SiO2 and α-Ge/SiO2 multilayer nanostructures on p-si substrates annealed at various temperatures. Semiconductors, 2020, 54(10), 1315-1319.
[http://dx.doi.org/10.1134/S1063782620100292]
[7]
Lee, H.B.; Jin, W.Y.; Ovhal, M.M.; Kumar, N.; Kang, J.W. Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: A review. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 5(5), 1087-1110.
[http://dx.doi.org/10.1039/C8TC04423F]
[8]
Korolkov, I.V.; Zhumanazar, N.; Gorin, Y.G.; Yeszhanov, A.B.; Zdorovets, M.V. Enhancement of electrochemical detection of Pb2+ by sensor based on track-etched membranes modified with interpolyelectrolyte complexes. J. Mater. Sci. Mater. Electron., 2020, 31(22), 20368-20377.
[http://dx.doi.org/10.1007/s10854-020-04556-4]
[9]
Strianese, M.; Pappalardo, D.; Mazzeo, M.; Lamberti, M.; Pellecchia, C. The contribution of metalloporphyrin complexes in molecular sensing and in sustainable polymerization processes: A new and unique perspective. Dalton Trans., 2021, 50(23), 7898-7916.
[http://dx.doi.org/10.1039/D1DT00841B] [PMID: 33999066]
[10]
Lin, H.; Lv, Q.B.; Wang, H.F.; Zhao, K.Q.; Hu, P.; Wang, B.Q.; Heinrich, B.; Donnio, B. Organic dyads and triads based on the triphenylene-rylenediimide couple: Molecular design, self-organization, and photo-physical properties. Dyes Pigments, 2022, 197, 109911.
[http://dx.doi.org/10.1016/j.dyepig.2021.109911]
[11]
George, L.; Hiltunen, A.; Santala, V.; Efimov, A. Photo-antimicrobial efficacy of zinc complexes of porphyrin and phthalocyanine activated by inexpensive consumer LED lamp. J. Inorg. Biochem., 2018, 183, 94-100.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.03.015] [PMID: 29604497]
[12]
Chen, L.; Bai, H.; Xu, J-F.; Wang, S.; Zhang, X. Supramolecular porphyrin photosensitizers: Controllable disguise and photoinduced activation of antibacterial behavior. ACS Appl. Mater. Interfaces, 2017, 9(16), 13950-13957.
[http://dx.doi.org/10.1021/acsami.7b02611] [PMID: 28414447]
[13]
Zhang, X.L.; Jiang, J.W.; Liu, Y.T.; Lou, S.T.; Gao, C.L.; Jin, Q.Y. Identifying the assembly configuration and fluorescence spectra of nanoscale zinc-tetraphenylporphyrin aggregates with scanning tunneling microscopy. Sci. Rep., 2016, 6(1), 22756.
[http://dx.doi.org/10.1038/srep22756] [PMID: 26948654]
[14]
Trinh, C.; Whited, M.T.; Steiner, A.; Tassone, C.J.; Toney, M.F.; Thompson, M.E. Chemical annealing of zinc tetraphenylporphyrin films: Effects on film morphology and organic photovoltaic performance. Chem. Mater., 2012, 24(13), 2583-2591.
[http://dx.doi.org/10.1021/cm3012777]
[15]
Nurhayati, S.V.; Nugroho, A.A.; Alni, A. Temperature-dependent photoluminescence of H2TPP and ZnTPP thin films on Si substrates IOP Conf. Ser. Mater. Sci. Eng., 2020, 858(1), 012036.
[16]
Kozlovskiy, A.; Egizbek, K.; Zdorovets, M.V.; Ibragimova, M.; Shumskaya, A.; Rogachev, A.A.; Ignatovich, Z.V.; Kadyrzhanov, K. Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors (Basel), 2020, 20(17), 4851.
[http://dx.doi.org/10.3390/s20174851] [PMID: 32867214]
[17]
Kozlovskiy, A.L.; Zdorovets, M.V. Study of hydrogenation processes in radiation-resistant nitride ceramics. J. Mater. Sci. Mater. Electron., 2020, 31(14), 11227-11237.
[http://dx.doi.org/10.1007/s10854-020-03671-6]
[18]
Romanov, N.M.; Zakharova, I.B. The composition and the structure of thin films based on metal porphyrin complexes. St. Petersbg. Polytech. Univ. J. Phys. Math., 2016, 2(2), 71-77.
[http://dx.doi.org/10.1016/j.spjpm.2016.05.001]
[19]
Elistratova, M.A.; Zakharova, I.B.; Kvyatkovskii, O.E. Self-organization features of tetraphenylporphyrins according to quantum chemical calculations. Macroheterocycles, 2019, 12(4), 370-374.
[http://dx.doi.org/10.6060/mhc190552e]
[20]
Harriman, A. Luminescence of porphyrins and metalloporphyrins. Part 1.-Zinc (II), nickel (II) and manganese (II) porphyrins. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 1980, 76, 1978-1985.
[21]
Gouterman, M. Study of the effects of substitution on the absorption spectra of porphin. J. Chem. Phys., 1959, 30(5), 1139-1161.
[http://dx.doi.org/10.1063/1.1730148]
[22]
Elistratova, M.A.; Zakharova, I.B.; Li, G.V.; Dubrovin, R.M.; Sreseli, O.M. The effect of crystallization conditions on the spectral characteristics of tetraphenylporphyrin thin films. Semiconductors, 2019, 53(1), 51-54.
[http://dx.doi.org/10.1134/S1063782619010056]
[23]
Brookfield, R.L.; Ellul, H.; Harriman, A.; Porter, G. Luminescence of porphyrins and metalloporphyrins. Part 11.-Energy transfer in zinc–metal-free porphyrin dimers. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys., 1986, 82(2), 219-233.