Synthesis and Antibacterial Activity of Spiro[4H-pyran-3,3’-oxindoles] Catalyzed by Tröger's Base Derivative

Page: [870 - 879] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Objective: Two classes of spiro[4H-pyran-3,3’-oxindole] derivatives were prepared via the one pot reaction of chain diketones (1-phenyl-1,3-butanedione or dibenzoyl methane), substituted isatins and malononitrile successfully catalyzed by a Tröger’s base derivative 1b (5,12-dimethyl-3,10-diphenyl-bis-1H-pyrazol[b,f][4,5]-1,5-diazadicyclo[3.3.1]-2,6-octadiene). The antibacterial activity of products against three wild-type bacteria (B. subtilis, S. aureus, and E. coli) and two resistant strains (Methicillin-resistant S. aureus (18H8) and E. coli carrying the BlaNDM-1 gene (18H5)) was evaluated using the minimum inhibitory concentration (MIC)..

Methods: 1-Phenyl-1,3-butanedione 2 or dibenzoylmethane 2' (0.42 mmol), substituted isatin 3 (0.4 mmol), malononitrile 4 (0.8 mmol), Tröger's base derivative 1b (0.08 mmol), and 10 mL of acetonitrile were added to a 50 mL round bottom flask and refluxed. After the completion (TLC monitoring), water (10 mL) was added to the reaction mixture; pH = 7 was adjusted with saturated NaHCO3 (aq.), and the mixture was extracted with CH2Cl2 (50 mL × 3). Organic layers were combined and dried with anhydrous Na2SO4; the solvent was removed under vacuum, and the residue was purified by column chromatography (VDCM: VMeOH = 80: 1) to afford product 5. The antibacterial activity was tested by the MTT method.

Results: Seventeen spiro[4H-pyran-3,3’-oxindole] derivatives were synthesized through the reaction of chain diketones (1-phenyl-1,3-butanedione or dibenzoyl methane), substituted isatins, and malononitrile in one-pot in medium to high yields. Four compounds showed antibacterial activity, and two of them showed the same activity as the positive control Ceftazidime on S. aureus (MIC = 12.5 μg/mL).

Conclusion: Two classes of spiro[4H-pyran-3,3’-oxindole] derivatives were prepared, and their antibacterial activity was evaluated. Tröger’s base derivative 1b (5,12-dimethyl-3,10-diphenyl-bis-1H-pyrazol[b,f][4,5]- 1,5-diazadicyclo[3,3,1]-2,6-octadiene) was used as an efficient organocatalyst for the reaction of low reactive chain diketones (1-phenyl-1,3-butanedione or dibenzoyl methane), substituted isatins, and malononitrile in one-pot successfully and effectively by providing multiple active sites and alkaline environment. By the theoretical calculation, we explained the possible reaction sequence and mechanism. Due to the superiority and high efficiency of the TB framework as an organocatalyst, the reaction showed many advantages, including mild reaction conditions, low catalyst loading, and a wide substrate range. It expanded the application of Tröger’s base to the multicomponent reaction in organocatalysis. Some products were screened due to their high antibacterial activity in vitro, showing their potential in new antibacterial drug development.

Keywords: Tröger’s base derivative, Catalysis, spiro[4H-pyran-3, 3’-oxindoles], Synthesis, Antibacterial activity.

[1]
Smith, P.W.; Sollis, S.L.; Howes, P.D.; Cherry, P.C.; Starkey, I.D.; Cobley, K.N.; Weston, H.; Scicinski, J.; Merritt, A.; Whittington, A.; Wyatt, P.; Taylor, N.; Green, D.; Bethell, R.; Madar, S.; Fenton, R.J.; Morley, P.J.; Pateman, T.; Beresford, A. Dihydropyrancarboxamides related to zanamivir: A new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J. Med. Chem., 1998, 41(6), 787-797.
[http://dx.doi.org/10.1021/jm970374b] [PMID: 9526555]
[2]
a) Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem., 1993, 28, 517-520. 2020.
[http://dx.doi.org/10.1016/0223-5234(93)90020-F]
[3]
Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev., 2012, 112(11), 6104-6155.
[http://dx.doi.org/10.1021/cr300135y] [PMID: 22950860]
[4]
Williams, R.M.; Cox, R.J. Paraherquamides, brevianamides, and asperparalines: Laboratory synthesis and biosynthesis. An interim report. Acc. Chem. Res., 2003, 36(2), 127-139.
[http://dx.doi.org/10.1021/ar020229e] [PMID: 12589698]
[5]
Yang, Y.T.; Zhu, J.F.; Liao, G.; Xu, H.J.; Yu, B. The development of biologically important spirooxindoles as new antimicrobial agents. Curr. Med. Chem., 2018, 25(19), 2233-2244.
[http://dx.doi.org/10.2174/0929867325666171129131311] [PMID: 29189121]
[6]
a) Trost, B.M.; Jiang, C. Catalytic enantioselective construction of all-carbon quaternary stereocenters. Synthesis, 2006, 3, 369-396.
[http://dx.doi.org/10.1055/s-2006-926302];
b) Marti, C.; Carreira, E.M. Construction of spiro[pyrrolidine-3,3′-oxindoles] − recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem., 2003, 12, 2209-2219.
[7]
(a) Chen, X.H.; Wei, Q.; Luo, S.W.; Xiao, H.; Gong, L.Z. Organocatalytic synthesis of spiro[pyrrolidin-3,3′-oxindoles] with high enantiopurity and structural diversity. J. Am. Chem. Soc., 2009, 131(38), 13819-13825.
[http://dx.doi.org/10.1021/ja905302f] [PMID: 19736987];
(b) Bencivenni, G; Wu, L. Y; Mazzanti, A.; Giannichi, B.; Pesciaioli, F; Song, M. P; Bartoli, G.; Melchiorre, P. Targeting structural and stereochemical complexity by organocascade catalysis: Construction of spirocyclic oxindoles having multiple stereocenters. Angew. Chem. Int. Ed., 2009, 48, 7200.
[http://dx.doi.org/10.1002/anie.200903192];
(c) Jiang, K.; Jia, Z.J.; Chen, S.; Wu, L.; Chen, Y.C. Organocatalytic tandem reaction to construct six-membered spirocyclic oxindoles with multiple chiral centres through a formal [2+2+2] annulation. Chemistry, 2010, 16(9), 2852-2856.
[http://dx.doi.org/10.1002/chem.200903009] [PMID: 20112315];
(d) Wei, Q.; Gong, L.Z. Organocatalytic asymmetric formal [4 + 2] cycloaddition for the synthesis of spiro[4-cyclohexanone-1,3′-oxindoline] derivatives in high optical purity. Org. Lett., 2010, 12(5), 1008-1011.
[http://dx.doi.org/10.1021/ol100020v] [PMID: 20131823];
(e) Shintani, R.; Hayashi, S.Y.; Murakami, M.; Takeda, M.; Hayashi, T. Stereoselective synthesis of spirooxindoles by palladium-catalyzed decarboxylative cyclization of γ-methylidene-δ-valerolactones with isatins. Org. Lett., 2009, 11(16), 3754-3756.
[http://dx.doi.org/10.1021/ol901348f] [PMID: 19637858];
(f) Castaldi, M. P.; Troast, D. M; Porco, J. A. Stereoselective synthesis of spirocyclic oxindoles via prins cyclizations. J. Org. Lett., 2009, 11, 3362.
[http://dx.doi.org/10.1021/ol901201k];
(g) Ghahremanzadeh, R; Amanpour, T; Bazgir, A. An efficient, threecomponent synthesis of spiro[benzo[g]chromene-4,30-indoline]-3-carbonitrile and Spiro[indoline-3,50-pyrano[2,3-d]pyrimidine]-60-carbonitrile Derivatives. J. Heterocycl. Chem., 2009, 46, 1266.
[http://dx.doi.org/10.1002/jhet.240];
(h) Pan, F. F.; Yu, W.; Qi, Z. H; Qiao, C. H; Wang, X. W. Efficient construction of chiral spiro[benzo[g]chromene-oxindole] derivatives via organocatalytic asymmetric cascade cyclization. Synthesis, 2014, 9(46), 1143-1156.
[8]
Ghahremanzadeh, R.; Rashid, Z.; Zarnani, A.H.; Naeimi, H. A rapid and high efficient microwave promoted multicomponent domino reaction for the synthesis of spirooxindole derivatives. J. Ind. Eng. Chem., 2014, 20, 4076-4084.
[http://dx.doi.org/10.1016/j.jiec.2013.12.109]
[9]
Hari, G.S.; Lee, Y.R. Efficient one-pot synthesis of spirooxindole derivatives by ethylenediamine diacetate catalyzed reactions in water. Synthesis, 2010, 3, 453-464.
[10]
Li, Y.; Chen, H.; Shi, C.; Shi, D.; Ji, S. Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium. J. Comb. Chem., 2010, 12(2), 231-237.
[http://dx.doi.org/10.1021/cc9001185] [PMID: 20085353]
[11]
Shanthi, G.; Subbulakshmi, G.; Perumal, P.T. A new InCl3-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions. Tetrahedron, 2007, 63, 2057-2063.
[http://dx.doi.org/10.1016/j.tet.2006.12.042]
[12]
Wang, L.M.; Jiao, N.; Qiu, J.; Yu, J.J.; Liu, J.Q.; Guo, F.L.; Liu, Y. Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron, 2010, 66, 339-343.
[http://dx.doi.org/10.1016/j.tet.2009.10.091]
[13]
Kidwai, M.; Jahan, A.; Mishra, N.K. Gold(III) chloride (HAuCl4•3H2O) in PEG: A new and efficient catalytic system for the synthesis of functionalized spirochromenes. Appl. Catal. A Gen., 2012, 425, 35-43.
[14]
Rad-Moghadam, K.; Youseftabar-Miri, L. Ambient synthesis of spiro[4H-pyran-oxindole] derivatives under [BMIm]BF4 catalysis. Tetrahedron, 2011, 67, 5693-5699.
[http://dx.doi.org/10.1016/j.tet.2011.05.077]
[15]
Chen, W.B.; Wu, Z.J.; Pei, Q.L.; Cun, L.F.; Zhang, X.M.; Yuan, W.C. Highly enantioselective construction of spiro[4H-pyran-3,3′-oxindoles] through a domino Knoevenagel/Michael/cyclization sequence catalyzed by cupreine. Org. Lett., 2010, 12(14), 3132-3135.
[http://dx.doi.org/10.1021/ol1009224] [PMID: 20545337]
[16]
Paul, A.; Maji, B.; Misra, S.K.; Jain, A.K.; Muniyappa, K.; Bhattacharya, S.J. Stabilization and structural alteration of the g-quadruplex dna made from the human telomeric repeat mediated by tröger’s base based novel benzimidazole derivatives. Med. Chem., 2012, 55, 7460.
[http://dx.doi.org/10.1021/jm300442r]
[17]
Yuan, R.; Wang, Y.J.; Fang, Y.; Ge, W.H.; Lin, W.; Li, M.Q.; Xu, J.B.; Wan, Y.; Liu, Y.; Wu, H. The first direct synthesis of chiral Tröger’s bases catalyzed by chiral glucose-containing pyridinium ionic liquids. Chem. Eng. J., 2017, 316, 1026.
[http://dx.doi.org/10.1016/j.cej.2017.02.026]
[18]
Kejik, Z.; Briza, T.; Havlik, M.; Dolensky, B.; Kaplanek, R.; Kralova, J.; Mikula, I.; Martasek, P.; Kral, V. Specific ligands based on Tröger’s base derivatives for the recognition of glycosaminoglycans. Dyes Pigments, 2016, 134, 212.
[http://dx.doi.org/10.1016/j.dyepig.2016.07.002]
[19]
Ishiwari, F.; Takeuchi, N.; Sato, T.; Yamazaki, H.; Osuga, R.; Kondo, J.N.; Fukushima, T. Rigid-to-flexible conformational transformation: An efficient route to ring-opening of a Tröger’s base-containing ladder polymer. ACS Macro Lett., 2017, 6, 775.
[http://dx.doi.org/10.1021/acsmacrolett.7b00385]
[20]
a) Sergeyev, S.; Didier, D.; Boitsov, V.; Teshome, A.; Asselberghs, I.; Clays, K.; Velde, C.M.L.V.; Plaquet, A.; Champagne, B. Symmetrical and nonsymmetrical chromophores with Tröger’s base skeleton: Chiroptical, linear, and quadratic nonlinear optical properties-joint theoretical and experimental study. Chemistry, 2010, 16, 8181.
[http://dx.doi.org/10.1002/chem.201000216] [PMID: 20533454];
b) Xi, H.; Liu, Y.; Yuan, C.X.; Li, Y.X.; Wang, L.; Tao, X.T.; Ma, X.H.; Zhang, C.F.; Hao, Y. Through space charge-transfer emission in lambda (Λ)-shaped triarylboranes and the use in fluorescent sensing for fluoride and cyanide ions. RSC Advances, 2015, 5, 45668.
[http://dx.doi.org/10.1039/C5RA07912H]
[21]
a) Elmes, R.B.P.; Erby, M.; Bright, S.A.; Williams, D.C.; Gunnlaugsson, T. Photophysical and biological investigation of novel luminescent Ru(II)-polypyridyl-1,8-naphthalimide Tröger’s bases as cellular imaging agents. Chem. Commun. (Camb.), 2012, 48(20), 2588-2590.
[http://dx.doi.org/10.1039/c2cc17274g] [PMID: 22293955];
b) Wu, Z.; Tang, M.; Tian, T.; Wu, J.; Deng, Y.; Dong, X.; Tan, Z.; Weng, X.; Liu, Z.; Wang, C.; Zhou, X. A specific probe for two-photon fluorescence lysosomal imaging. Talanta, 2011, 87, 216.probes for Con A. Org. Biomol. Chem., 2019, 17(8), 2116-2125.
[http://dx.doi.org/10.1039/C8OB02980F] [PMID: 30629076]
[22]
Yuan, R.; Li, M.Q.; Xu, J.B.; Huang, S.Y.; Zhou, S.L.; Zhang, P.; Liu, J.J.; Wu, H. Synthesis and optical properties of novel Tröger’s base derivatives. Tetrahedron, 2016, 72, 4081.
[http://dx.doi.org/10.1016/j.tet.2016.05.042]
[23]
a) Cabrero-Antonino, J.R.; García, T.; Rubio-Marqués, P.; Vidal-Moya, J.A.; Leyva-Pérez, A.; Al-Deyab, S.S.; Al-Resayes, S.I.; Díaz, U.; Corma, A. Synthesis of organic-inorganic hybrid solids with copper complex framework and their catalytic activity for the s-arylation and the azide-alkyne cycloaddition reactions. ACS Catal., 2011, 1, 147.
[http://dx.doi.org/10.1021/cs100086y];
b) Pereira, R.; Cvengroš, J. Tröger’s base derived phosphanes for suzuki-iyaura and Buchwald-hartwig cross-coupling reactions. Eur. J. Org. Chem., 2013, 20: 4233. J., 2018, 12(1), 50.
[http://dx.doi.org/10.1186/s13065-018-0419-0] [PMID: 29728887]
[24]
Wu, H.; Chen, X.M.; Wan, Y.; Ye, L.; Xin, H.M.; Xu, H.H.; Yue, C.H.; Pang, L.L.; Ma, R.; Shi, D.Q. Stereoselective mannich reactions catalyzed by Tröger’s base derivatives in aqueous media. Tetrahedron Lett., 2009, 50, 1062.
[http://dx.doi.org/10.1016/j.tetlet.2008.12.067]
[25]
Ren, X.X.; Yuan, R.; Chen, W.; Zhou, H.; Ye, F.; Shi, X.Y.; Hu, J.; Zhang, P.; Zhou, S.L.; Wan, Y.; Wu, H. Synthesis and biological evaluation of polysubstituted 5-amino-3,7-diphenyl-7h-thiazolo[3,2-a]pyrimidine-6-carbonitriles. Youji Huaxue, 2020, 40, 1266-1274.
[http://dx.doi.org/10.6023/cjoc201908007]
[26]
Lange, N.A.; Speight, J.G. Lange’s Handbook of Chemistry., 2005, 2.620-2.708.
[27]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Molecular modeling and synthesis of ethyl benzyl carbamates as possible ixodicide activitygaussian, Inc.: Wallingford, CT 2016.
[28]
Becke, A.D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys., 1997, 107, 8554-8560.
[http://dx.doi.org/10.1063/1.475007]
[29]
Zhao, Y.; Truhlra, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 2008, 120, 215-241.
[http://dx.doi.org/10.1007/s00214-007-0310-x]