Hepatoprotective Effect of Myricetin following Lipopolysaccharide/DGalactosamine: Involvement of Autophagy and Sirtuin 1

Article ID: e140622205933 Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Acute liver injury (ALI) is a critical and fatal disorder associated with excessive oxidative stress and inflammation, ultimately leading to the death of hepatocytes. Myricetin is a bioflavonoid in some berries, including blueberries and strawberries, with anti-inflammatory, antioxidant and anti-apoptotic properties.

Objective: In the current research, the hepatoprotective potential of myricetin was studied in the LPS/D-GalN model of ALI in C57BL/6 mice.

Methods: For inducing liver injury, D-GalN (400 mg/kg) and LPS (50 µg/kg) were injected via intraperitoneal route and myricetin was orally administered (25 or 100 mg/kg/day) for two days before inducing injury. Functional indices of liver dysfunction along with hepatic apoptotic, autophagic, oxidative stress and inflammatory factors were measured.

Results: Myricetin (100 mg/kg) reduced the fatality rate of animals and pathological liver changes and suitably lowered serum levels of total bilirubin, 8-OH-dG, ALT, AST and ALP in addition to decreasing apoptotic, oxidative and inflammatory factors, NOX, NLRP3, caspase 3, MPO and enhancing some antioxidants. Besides, myricetin improved the hepatic level and activity of sirtuin 1 and reversed inappropriate alterations of autophagic parameters, including LC3 II, Beclin 1, and P62. The beneficial effects of myricetin were attenuated after co-treatment with the autophagy inhibitor 3- methyladenine.

Conclusion: This study indicates the hepatoprotective potential of myricetin that can be ascribed to its down-regulation of oxidative, apoptotic, and inflammatory factors and upregulation of antioxidants besides its partial regulation of sirtuin 1 and autophagic pathway.

Keywords: Liver injury, myricetin, lipopolysaccharide, inflammation, oxidative stress, autophagy.

Graphical Abstract

[1]
Triantafyllou, E.; Woollard, K.J.; McPhail, M.J.W.; Antoniades, C.G.; Possamai, L.A. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front. Immunol., 2018, 9, 2948.
[http://dx.doi.org/10.3389/fimmu.2018.02948] [PMID: 30619308]
[2]
Yoon, E.; Babar, A.; Choudhary, M.; Kutner, M.; Pyrsopoulos, N. Acetaminophen-induced hepatotoxicity: a comprehensive update. J. Clin. Transl. Hepatol., 2016, 4(2), 131-142.
[PMID: 27350943]
[3]
Qin, C.C.; Liu, Y.N.; Hu, Y.; Yang, Y.; Chen, Z. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury. World J. Gastroenterol., 2017, 23(17), 3043-3052.
[http://dx.doi.org/10.3748/wjg.v23.i17.3043] [PMID: 28533661]
[4]
Nelson, S.D. Mechanisms of the formation and disposition of reactive metabolites that can cause acute liver injury. Drug Metab. Rev., 1995, 27(1-2), 147-177.
[http://dx.doi.org/10.3109/03602539509029821] [PMID: 7641574]
[5]
Peng, X.; Yang, Y.; Tang, L.; Wan, J.; Dai, J.; Li, L. Therapeutic benefits of apocynin in mice with lipopolysaccharide/D-galactosamine-induced acute liver injury via suppression of the late stage pro-apoptotic AMPK/JNK pathway. Biomed. Pharmacother., 2020, 125, 110020.
[6]
Yang, C.; Li, L.; Ma, Z.; Zhong, Y.; Pang, W.; Xiong, M.; Fang, S.; Li, Y. Hepatoprotective effect of methyl ferulic acid against carbon tetrachloride-induced acute liver injury in rats. Exp. Ther. Med., 2018, 15(3), 2228-2238.
[PMID: 29467841]
[7]
Liu, Z.; Wang, X.; Li, L.; Wei, G.; Zhao, M. Hydrogen sulfide protects against paraquat-induced acute liver injury in rats by regulating oxidative stress, mitochondrial function, and inflammation. Oxid. Med. Cell. Longev., 2020, 2020, 1-16.
[http://dx.doi.org/10.1155/2020/6325378] [PMID: 32064027]
[8]
Helal, M.G.; Samra, Y.A. Irbesartan mitigates acute liver injury, oxidative stress, and apoptosis induced by acetaminophen in mice. J. Biochem. Mol. Toxicol., 2020, 34(12), e22447.
[http://dx.doi.org/10.1002/jbt.22447] [PMID: 31967706]
[9]
Chan, S.; Ou, J.; Hepatitis, C. Hepatitis C virus-induced autophagy and host innate immune response. Viruses, 2017, 9(8), 224.
[http://dx.doi.org/10.3390/v9080224] [PMID: 28805674]
[10]
Chen, Q.; Wang, Y.; Jiao, F.Z.; Shi, C.X.; Gong, Z.J. Histone deacetylase 6 inhibitor ACY1215 offers a protective effect through the autophagy pathway in acute liver failure. Life Sci., 2019, 238, 116976.
[http://dx.doi.org/10.1016/j.lfs.2019.116976] [PMID: 31634464]
[11]
Wang, K. Autophagy and apoptosis in liver injury. Cell Cycle, 2015, 14(11), 1631-1642.
[http://dx.doi.org/10.1080/15384101.2015.1038685] [PMID: 25927598]
[12]
Sebti, Y.; Ferri, L.; Zecchin, M.; Beauchamp, J.; Mogilenko, D.; Staels, B.; Duez, H.; Pourcet, B. The LPS/D-galactosamine-induced fulminant hepatitis model to assess the role of ligand-activated nuclear receptors on the NLRP3 inflammasome pathway in vivo. Methods Mol. Biol., 2019, 1951, 189-207.
[http://dx.doi.org/10.1007/978-1-4939-9130-3_15] [PMID: 30825154]
[13]
Yuan, Z.; Hasnat, M.; Liang, P.; Yuan, Z.; Zhang, H.; Sun, L.; Zhang, L.; Jiang, Z. The role of inflammasome activation in Triptolide-induced acute liver toxicity. Int. Immunopharmacol., 2019, 75, 105754.
[http://dx.doi.org/10.1016/j.intimp.2019.105754] [PMID: 31352325]
[14]
Liu, A.; Shen, Y.; Du, Y.; Chen, J.; Pei, F.; Fu, W.; Qiao, J. Esculin prevents Lipopolysaccharide/D-Galactosamine-induced acute liver injury in mice. Microb. Pathog., 2018, 125, 418-422.
[http://dx.doi.org/10.1016/j.micpath.2018.10.003] [PMID: 30290266]
[15]
Li, Z.; Feng, H.; Han, L.; Ding, L.; Shen, B.; Tian, Y.; Zhao, L.; Jin, M.; Wang, Q.; Qin, H.; Cheng, J.; Liu, G. Chicoric acid ameliorate inflammation and oxidative stress in Lipopolysaccharide and D ‐galactosamine induced acute liver injury. J. Cell. Mol. Med., 2020, 24(5), 3022-3033.
[http://dx.doi.org/10.1111/jcmm.14935] [PMID: 31989756]
[16]
Ali, S.A.; Sharief, N.H.; Mohamed, Y.S. Hepatoprotective activity of some medicinal plants in Sudan. Evid. Based Comp. Alter. Med., 2019, 2019, 2196315.
[17]
Parvez, M.K.; Al-Dosari, M.S.; Arbab, A.H.; Alam, P.; Alsaid, M.S.; Khan, A.A. Hepatoprotective effect of Solanum surattense leaf extract against chemical- induced oxidative and apoptotic injury in rats. BMC Complement. Altern. Med., 2019, 19(1), 154.
[http://dx.doi.org/10.1186/s12906-019-2553-1] [PMID: 31269948]
[18]
Semwal, D.; Semwal, R.; Combrinck, S.; Viljoen, A. Myricetin: a dietary molecule with diverse biological activities. Nutrients, 2016, 8(2), 90.
[http://dx.doi.org/10.3390/nu8020090] [PMID: 26891321]
[19]
Ong, K.C.; Khoo, H.E. Biological effects of myricetin. Gen. Pharmacol., 1997, 29(2), 121-126.
[http://dx.doi.org/10.1016/S0306-3623(96)00421-1] [PMID: 9251891]
[20]
Aminzadeh, A.; Bashiri, H. Myricetin ameliorates high glucose‐induced endothelial dysfunction in human umbilical vein endothelial cells. Cell Biochem. Funct., 2020, 38(1), 12-20.
[http://dx.doi.org/10.1002/cbf.3442] [PMID: 31691320]
[21]
Chen, H.; Lin, H.; Xie, S.; Huang, B.; Qian, Y.; Chen, K.; Niu, Y.; Shen, H.M.; Cai, J.; Li, P.; Leng, J.; Yang, H.; Xia, D.; Wu, Y. Myricetin inhibits NLRP3 inflammasome activation via reduction of ROS-dependent ubiquitination of ASC and promotion of ROS-independent NLRP3 ubiquitination. Toxicol. Appl. Pharmacol., 2019, 365, 19-29.
[http://dx.doi.org/10.1016/j.taap.2018.12.019] [PMID: 30594691]
[22]
Lv, H.; An, B.; Yu, Q.; Cao, Y.; Liu, Y.; Li, S. The hepatoprotective effect of myricetin against lipopolysaccharide and D-galactosamine-induced fulminant hepatitis. Int. J. Biol. Macromol., 2019, 155, 1092-1104.
[PMID: 31712142]
[23]
Yao, Q.; Li, S.; Li, X.; Wang, F.; Tu, C. Myricetin modulates macrophage polarization and mitigates liver inflammation and fibrosis in a murine model of nonalcoholic steatohepatitis. Front. Med. (Lausanne), 2020, 7, 71.
[http://dx.doi.org/10.3389/fmed.2020.00071] [PMID: 32195263]
[24]
Cui, C.; Enosawa, S.; Matsunari, H.; Nagashima, H.; Umezawa, A. Natural flavonol, myricetin, enhances the function and survival of cryopreserved hepatocytes in vitro and in vivo. Int. J. Mol. Sci., 2019, 20(24), 6123.
[http://dx.doi.org/10.3390/ijms20246123] [PMID: 31817281]
[25]
Guo, C.; Xue, G.; Pan, B.; Zhao, M.; Chen, S.; Gao, J.; Chen, T.; Qiu, L. Myricetin ameliorates ethanol‐induced lipid accumulation in liver cells by reducing fatty acid biosynthesis. Mol. Nutr. Food Res., 2019, 63(14), 1801393.
[http://dx.doi.org/10.1002/mnfr.201801393] [PMID: 31168926]
[26]
Geng, Y.; Sun, Q.; Li, W.; Lu, Z.M.; Xu, H.Y.; Shi, J.S.; Xu, Z.H. The common dietary flavonoid myricetin attenuates liver fibrosis in carbon tetrachloride treated mice. Mol. Nutr. Food Res., 2017, 61(4), 1600392.
[http://dx.doi.org/10.1002/mnfr.201600392] [PMID: 27983763]
[27]
Cao, J.; Chen, H.; Lu, W.; Wu, Y.; Wu, X.; Xia, D. Myricetin induces protective autophagy by inhibiting the phosphorylation of mTOR in HepG2 cells. Anat. Rec. (Hoboken), 2018, 301, 786-795.
[28]
Pietrocola, F.; Mariño, G.; Lissa, D.; Vacchelli, E.; Malik, S.A.; Niso-Santano, M.; Zamzami, N.; Galluzzi, L.; Maiuri, M.C.; Kroemer, G. Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. Cell Cycle, 2012, 11(20), 3851-3860.
[http://dx.doi.org/10.4161/cc.22027] [PMID: 23070521]
[29]
Wang, W.; Zhang, Y.; Li, H.; Zhao, Y.; Cai, E.; Zhu, H.; Li, P.; Liu, J. Protective effects of sesquiterpenoids from the root of panax ginseng on fulminant liver injury induced by lipopolysaccharide/D -Galactosamine. J. Agric. Food Chem., 2018, 66(29), 7758-7763.
[http://dx.doi.org/10.1021/acs.jafc.8b02627] [PMID: 29974747]
[30]
Farghali, H.; Kemelo, M.K.; Canová, N.K. SIRT1 modulators in experimentally induced liver injury. Oxid. Med. Cell. Longev., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/8765954] [PMID: 31281594]
[31]
Jung, H.Y.; Lee, D.; Ryu, H.G.; Choi, B.H.; Go, Y.; Lee, N.; Lee, D.; Son, H.G.; Jeon, J.; Kim, S.H.; Yoon, J.H.; Park, S.M.; Lee, S.J.V.; Lee, I.K.; Choi, K.Y.; Ryu, S.H.; Nohara, K.; Yoo, S.H.; Chen, Z.; Kim, K.T. Myricetin improves endurance capacity and mitochondrial density by activating SIRT1 and PGC-1α. Sci. Rep., 2017, 7(1), 6237.
[http://dx.doi.org/10.1038/s41598-017-05303-2] [PMID: 28740165]
[32]
Li, L.; Yin, H.; Zhao, Y.; Zhang, X.; Duan, C.; Liu, J.; Huang, C.; Liu, S.; Yang, S.; Li, X. Protective role of puerarin on LPS/D-Gal induced acute liver injury via restoring autophagy. Am. J. Transl. Res., 2018, 10(3), 957-965.
[PMID: 29636885]
[33]
Qiu, Z.; Kwon, A.H.; Tsuji, K.; Kamiyama, Y.; Okumura, T.; Hirao, Y. FIBRONECTIN PREVENTS D-galactosamine/Lipopolysaccharide-induced lethal hepatic failure in mice. Shock, 2006, 25(1), 80-87.
[http://dx.doi.org/10.1097/01.shk.0000185797.04589.5c] [PMID: 16369191]
[34]
Berköz, M.; Ünal, S.; Karayakar, F. Yunusoğlu, O.; Özkan-Yılmaz, F.; Özlüer-Hunt, A.; Aslan, A. Prophylactic effect of myricetin and apigenin against lipopolysaccharide-induced acute liver injury. Mol. Biol. Rep., 2021, 48(9), 6363-6373.
[http://dx.doi.org/10.1007/s11033-021-06637-x] [PMID: 34401985]
[35]
Berköz, M. Yalın, S.; Özkan-Yılmaz, F.; Özlüer-Hunt, A.; Krośniak, M.; Francik, R.; Yunusoğlu, O.; Adıyaman, A.; Gezici, H.; Yiğit, A.; Ünal, S.; Volkan, D.; Yıldırım, M. Protective effect of myricetin, apigenin, and hesperidin pretreatments on cyclophosphamide-induced immunosuppression. Immunopharmacol. Immunotoxicol., 2021, 43(3), 353-369.
[http://dx.doi.org/10.1080/08923973.2021.1916525] [PMID: 33905277]
[36]
Maeda, H.; Nagai, H.; Takemura, G.; Shintani-Ishida, K.; Komatsu, M.; Ogura, S.; Aki, T.; Shirai, M.; Kuwahira, I.; Yoshida, K. Intermittent-hypoxia induced autophagy attenuates contractile dysfunction and myocardial injury in rat heart. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(8), 1159-1166.
[http://dx.doi.org/10.1016/j.bbadis.2013.02.014] [PMID: 23499993]
[37]
Khajevand-Khazaei, M.R.; Azimi, S.; Sedighnejad, L.; Salari, S.; Ghorbanpour, A.; Baluchnejadmojarad, T.; Mohseni-Moghaddam, P.; Khamse, S.; Roghani, M. S-allyl cysteine protects against lipopolysaccharide-induced acute kidney injury in the C57BL/6 mouse strain: Involvement of oxidative stress and inflammation. Int. Immunopharmacol., 2019, 69, 19-26.
[http://dx.doi.org/10.1016/j.intimp.2019.01.026] [PMID: 30665040]
[38]
Arya, A.; Sethy, N.K.; Singh, S.K.; Das, M.; Bhargava, K. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation. Int. J. Nanomedicine, 2013, 8, 4507-4520.
[PMID: 24294000]
[39]
Raoufi, S.; Baluchnejadmojarad, T.; Roghani, M.; Ghazanfari, T.; Khojasteh, F.; Mansouri, M. Antidiabetic potential of salvianolic acid B in multiple low-dose streptozotocin-induced diabetes. Pharm. Biol., 2015, 53(12), 1803-1809.
[http://dx.doi.org/10.3109/13880209.2015.1008148] [PMID: 25885938]
[40]
Claiborne, A. Handbook of methods for oxygen radical research. Florida; CRC Press: Boca Raton, 1985.
[41]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[42]
Samie, A.; Sedaghat, R.; Baluchnejadmojarad, T.; Roghani, M. Hesperetin, a citrus flavonoid, attenuates testicular damage in diabetic rats via inhibition of oxidative stress, inflammation, and apoptosis. Life Sci., 2018, 210, 132-139.
[http://dx.doi.org/10.1016/j.lfs.2018.08.074] [PMID: 30179627]
[43]
Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 1967, 70(1), 158-169.
[PMID: 6066618]
[44]
Popovic, D.; Kocic, G.; Katic, V.; Zarubica, A.; Velickovic, L.J.; Nickovic, V.P. Anthocyanins protect hepatocytes against CCl4-induced acute liver injury in rats by inhibiting pro-inflammatory mediators, polyamine catabolism, lipocalin-2, and excessive proliferation of kupffer cells. Antioxidants, 2019, 8(10), 451.
[45]
Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem., 2005, 38(12), 1103-1111.
[http://dx.doi.org/10.1016/j.clinbiochem.2005.08.008] [PMID: 16214125]
[46]
Witko-Sarsat, V.; Friedlander, M.; Nguyen Khoa, T.; Capeillere-Blandin, C.; Nguyen, A.T.; Canteloup, S. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J. Immunol., 1998, 161, 2524-2532.
[47]
Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol., 1990, 186, 464-478.
[http://dx.doi.org/10.1016/0076-6879(90)86141-H] [PMID: 1978225]
[48]
Pulli, B.; Ali, M.; Forghani, R.; Schob, S.; Hsieh, K.L.C.; Wojtkiewicz, G.; Linnoila, J.J.; Chen, J.W. Measuring myeloperoxidase activity in biological samples. PLoS One, 2013, 8(7), e67976.
[http://dx.doi.org/10.1371/journal.pone.0067976] [PMID: 23861842]
[49]
Khosravi, Z.; Sedaghat, R.; Baluchnejadmojarad, T.; Roghani, M. Diosgenin ameliorates testicular damage in streptozotocin-diabetic rats through attenuation of apoptosis, oxidative stress, and inflammation. Int. Immunopharmacol., 2019, 70, 37-46.
[http://dx.doi.org/10.1016/j.intimp.2019.01.047] [PMID: 30785089]
[50]
Du, L.L.; Xie, J.Z.; Cheng, X.S.; Li, X.H.; Kong, F.L.; Jiang, X.; Ma, Z.W.; Wang, J.Z.; Chen, C.; Zhou, X.W. Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi. Age (Omaha), 2014, 36(2), 613-623.
[http://dx.doi.org/10.1007/s11357-013-9592-1] [PMID: 24142524]
[51]
Movsesyan, V.A.; Yakovlev, A.G.; Dabaghyan, E.A.; Stoica, B.A.; Faden, A.I. Ceramide induces neuronal apoptosis through the caspase-9/caspase-3 pathway. Biochem. Biophys. Res. Commun., 2002, 299(2), 201-207.
[http://dx.doi.org/10.1016/S0006-291X(02)02593-7] [PMID: 12437970]
[52]
Lyu, Z.; Ji, X.; Chen, G.; An, B. Atractylodin ameliorates lipopolysaccharide and d-galactosamine-induced acute liver failure via the suppression of inflammation and oxidative stress. Int. Immunopharmacol., 2019, 72, 348-357.
[http://dx.doi.org/10.1016/j.intimp.2019.04.005] [PMID: 31030090]
[53]
Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: a guide for clinicians. CMAJ, 2005, 172(3), 367-379.
[http://dx.doi.org/10.1503/cmaj.1040752] [PMID: 15684121]
[54]
Ahmad, M.M.; Rezk, N.A.; Fawzy, A.; Sabry, M. Protective effects of curcumin and silymarin against paracetamol induced hepatotoxicity in adult male albino rats. Gene, 2019, 712, 143966.
[http://dx.doi.org/10.1016/j.gene.2019.143966] [PMID: 31279711]
[55]
Yang, S.; Kuang, G.; Zhang, L.; Wu, S.; Zhao, Z.; Wang, B.; Yin, X.; Gong, X.; Wan, J. Mangiferin Attenuates LPS/D-GalN-induced acute liver injury by promoting HO-1 in Kupffer cells. Front. Immunol., 2020, 11, 285.
[http://dx.doi.org/10.3389/fimmu.2020.00285] [PMID: 32158448]
[56]
Neag, M.A.; Catinean, A.; Muntean, D.M.; Pop, M.R.; Bocsan, C.I.; Botan, E.C.; Buzoianu, A.D. Probiotic bacillus spores protect against acetaminophen induced acute liver injury in rats. Nutrients, 2020, 12(3), 632.
[http://dx.doi.org/10.3390/nu12030632] [PMID: 32120994]
[57]
Wang, Y.; Tang, C.; Zhang, H. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. J. Food Drug Anal., 2015, 23(2), 310-317.
[http://dx.doi.org/10.1016/j.jfda.2014.10.002] [PMID: 28911387]
[58]
Matić S.; Stanić S.; Bogojević D.; Vidaković M.; Grdović N.; Dinić S.; Solujić S.; Mladenović M.; Stanković N.; Mihailović M. Methanol extract from the stem of Cotinus coggygria Scop., and its major bioactive phytochemical constituent myricetin modulate pyrogallol-induced DNA damage and liver injury. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2013, 755(2), 81-89.
[http://dx.doi.org/10.1016/j.mrgentox.2013.03.011] [PMID: 23830930]
[59]
Hassan, S.M.; Khalaf, M.M.; Sadek, S.A.; Abo-Youssef, A.M. Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. Pharm. Biol., 2017, 55(1), 766-774.
[http://dx.doi.org/10.1080/13880209.2016.1275704] [PMID: 28064632]
[60]
Zhang, Z.; Tian, L.; Jiang, K. Propofol attenuates inflammatory response and apoptosis to protect d-galactosamine/lipopolysaccha-ride induced acute liver injury via regulating TLR4/NF-κB/NLRP3 pathway. Int. Immunopharmacol., 2019, 77, 105974.
[http://dx.doi.org/10.1016/j.intimp.2019.105974] [PMID: 31735662]
[61]
Bae, J.; Min, Y.S.; Nam, Y.; Lee, H.S.; Sohn, U.D. Humulus japonicus extracts protect against lipopolysaccharide/D -galactosamine-induced acute liver injury in rats. J. Med. Food, 2018, 21(10), 1009-1015.
[http://dx.doi.org/10.1089/jmf.2018.4178] [PMID: 30334699]
[62]
Bian, X.; Liu, X.; Liu, J.; Zhao, Y.; Li, H.; Zhang, L.; Li, P.; Gao, Y. Hepatoprotective effect of chiisanoside from Acanthopanax sessiliflorus against LPS/D‐GalN‐induced acute liver injury by inhibiting NF‐ κ B and activating Nrf2/HO‐1 signaling pathways. J. Sci. Food Agric., 2019, 99(7), 3283-3290.
[http://dx.doi.org/10.1002/jsfa.9541] [PMID: 30552777]
[63]
Li, M.; Wang, S.; Li, X.; Jiang, L.; Wang, X.; Kou, R. Diallyl sulfide protects against lipopolysaccharide/d-galactosamine-induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice. Food Chem. Toxicol., 2018, 120, 500-509.
[64]
Rehman, M.U.; Rather, I.A. Myricetin abrogates cisplatin-induced oxidative stress, inflammatory response, and goblet cell disintegration in colon of wistar rats. Plants, 2019, 9(1), 28.
[65]
Kasai, S.; Shimizu, S.; Tatara, Y.; Mimura, J.; Itoh, K. Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology. Biomolecules, 2020, 10(2), 320.
[http://dx.doi.org/10.3390/biom10020320] [PMID: 32079324]
[66]
Jang, J.H.; Lee, S.H.; Jung, K.; Yoo, H.; Park, G. Inhibitory effects of myricetin on lipopolysaccharide-induced neuroinflammation. Brain Sci., 2020, 10(1), 32.
[http://dx.doi.org/10.3390/brainsci10010032] [PMID: 31935983]
[67]
Nguyen, G.T.; Green, E.R.; Mecsas, J. Neutrophils to the ROScue: Mechanisms of NADPH oxidase activation and bacterial resistance. Front. Cell. Infect. Microbiol., 2017, 7, 373.
[http://dx.doi.org/10.3389/fcimb.2017.00373] [PMID: 28890882]
[68]
Karunakaran, U.; Lee, J.E.; Elumalai, S.; Moon, J.S.; Won, K.C. Myricetin prevents thapsigargin-induced CDK5-P66Shc signalosome mediated pancreatic β-cell dysfunction. Free Radic. Biol. Med., 2019, 141, 59-66.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.05.038] [PMID: 31163256]
[69]
Tang, F.; Fan, K.; Wang, K.; Bian, C. Amygdalin attenuates acute liver injury induced by D-galactosamine and lipopolysaccharide by regulating the NLRP3, NF-kappaB and Nrf2/NQO1 signalling pathways. Biomed. Pharmacother., 2019, 111, 527-536.
[70]
He, M.; Horuk, R.; Moochhala, S.M.; Bhatia, M. Treatment with BX471, a CC chemokine receptor 1 antagonist, attenuates systemic inflammatory response during sepsis. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(4), G1173-G1180.
[http://dx.doi.org/10.1152/ajpgi.00420.2006] [PMID: 17234893]
[71]
Kan, X.; Liu, B.; Guo, W.; Wei, L.; Lin, Y.; Guo, Y.; Gong, Q.; Li, Y.; Xu, D.; Cao, Y.; Huang, B.; Dong, A.; Ma, H.; Fu, S.; Liu, J. Myricetin relieves LPS‐induced mastitis by inhibiting inflammatory response and repairing the blood-milk barrier. J. Cell. Physiol., 2019, 234(9), 16252-16262.
[http://dx.doi.org/10.1002/jcp.28288] [PMID: 30746687]
[72]
Lv, H.; Qi, Z.; Wang, S.; Feng, H.; Deng, X.; Ci, X. Asiatic acid exhibits anti-inflammatory and antioxidant activities against lipopolysaccharide and d-galactosamine-induced fulminant hepatic failure. Front. Immunol., 2017, 8, 785.
[http://dx.doi.org/10.3389/fimmu.2017.00785] [PMID: 28736552]
[73]
Pan, C.; Pan, Z.; Hu, J.; Chen, W.; Zhou, G.; Lin, W.; Jin, L.; Xu, C. Mangiferin alleviates lipopolysaccharide and D-galactosamine-induced acute liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Eur. J. Pharmacol., 2016, 770, 85-91.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.006] [PMID: 26668000]
[74]
Al-Harbi, N.O.; Imam, F.; Al-Harbi, M.M.; Ansari, M.A.; Zoheir, K.M.A.; Korashy, H.M.; Sayed-Ahmed, M.M.; Attia, S.M.; Shabanah, O.A.; Ahmad, S.F. Dexamethasone attenuates LPS-induced acute lung injury through inhibition of NF-κB, COX-2, and pro-inflammatory mediators. Immunol. Invest., 2016, 45(4), 349-369.
[http://dx.doi.org/10.3109/08820139.2016.1157814] [PMID: 27104958]
[75]
Zhang, Y.; Li, X.; Grailer, J.J.; Wang, N.; Wang, M.; Yao, J.; Zhong, R.; Gao, G.F.; Ward, P.A.; Tan, D.X.; Li, X. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J. Pineal Res., 2016, 60(4), 405-414.
[http://dx.doi.org/10.1111/jpi.12322] [PMID: 26888116]
[76]
Lian, L.H.; Jin, X.; Wu, Y.L.; Cai, X.F.; Lee, J.J.; Nan, J.X. Hepatoprotective effects of Sedum sarmentosum on D-galactosamine/lipopolysaccharide-induced murine fulminant hepatic failure. J. Pharmacol. Sci., 2010, 114(2), 147-157.
[http://dx.doi.org/10.1254/jphs.10045FP] [PMID: 20838028]
[77]
Molina-Jiménez, M.F.; Sánchez-Reus, M.I.; Andres, D.; Cascales, M.; Benedi, J. Neuroprotective effect of fraxetin and myricetin against rotenone-induced apoptosis in neuroblastoma cells. Brain Res., 2004, 1009(1-2), 9-16.
[http://dx.doi.org/10.1016/j.brainres.2004.02.065] [PMID: 15120578]
[78]
Ren, F.; Zhang, L.; Zhang, X.; Shi, H.; Wen, T.; Bai, L.; Zheng, S.; Chen, Y.; Chen, D.; Li, L.; Duan, Z. Inhibition of glycogen synthase kinase 3β promotes autophagy to protect mice from acute liver failure mediated by peroxisome proliferator-activated receptor α. Cell Death Dis., 2016, 7(3), e2151.
[http://dx.doi.org/10.1038/cddis.2016.56] [PMID: 27010852]
[79]
Lin, X.; Cui, M.; Xu, D.; Hong, D.; Xia, Y.; Xu, C.; Li, R.; Zhang, X.; Lou, Y.; He, Q.; Lv, P.; Chen, Y. Liver-specific deletion of Eva1a/Tmem166 aggravates acute liver injury by impairing autophagy. Cell Death Dis., 2018, 9(7), 768.
[http://dx.doi.org/10.1038/s41419-018-0800-x] [PMID: 29991758]
[80]
Liu, Z.Q.; Liu, N.; Huang, S.S.; Lin, M.M.; Qin, S.; Wu, J.C.; Liang, Z.Q.; Qin, Z.H.; Wang, Y. NADPH protects against kainic acid-induced excitotoxicity via autophagy-lysosome pathway in rat striatum and primary cortical neurons. Toxicology, 2020, 435, 152408.
[http://dx.doi.org/10.1016/j.tox.2020.152408] [PMID: 32057834]
[81]
Lv, H.; Yang, H.; Wang, Z.; Feng, H.; Deng, X.; Cheng, G.; Ci, X. Nrf2 signaling and autophagy are complementary in protecting lipopolysaccharide/d-galactosamine-induced acute liver injury by licochalcone A. Cell Death Dis., 2019, 10(4), 313.
[http://dx.doi.org/10.1038/s41419-019-1543-z] [PMID: 30952839]
[82]
Athamneh, K.; Alneyadi, A.; Alsamri, H.; Alrashedi, A.; Palakott, A.; El-Tarabily, K.A.; Eid, A.H.; Al Dhaheri, Y.; Iratni, R. Origanum majorana essential oil triggers p38 MAPK-mediated protective autophagy, apoptosis, and caspase-dependent cleavage of P70S6K in colorectal cancer cells. Biomolecules, 2020, 10(3), 412.
[http://dx.doi.org/10.3390/biom10030412] [PMID: 32155920]
[83]
Yuan, H.; Wang, Y.; Chen, H.; Cai, X. Protective effect of flavonoids from Rosa roxburghii Tratt on myocardial cells via autophagy. 3 Biotech, 2020, 10, 58.
[84]
Yang, Q.B.; He, Y.L.; Zhong, X.W.; Xie, W.G.; Zhou, J.G. Resveratrol ameliorates gouty inflammation via upregulation of sirtuin 1 to promote autophagy in gout patients. Inflammopharmacology, 2019, 27(1), 47-56.
[http://dx.doi.org/10.1007/s10787-018-00555-4] [PMID: 30600470]
[85]
Ren, J.; Jin, M.; You, Z.X.; Luo, M.; Han, Y.; Li, G.C. Melatonin prevents chronic intermittent hypoxia-induced injury by inducing sirtuin 1-mediated autophagy in steatotic liver of mice. Sleep Breath., 2019, 23, 825-836.