Cellulose Nanomaterials Based Flexible Electrodes for All-Solid-State Supercapacitors

Page: [460 - 471] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

In recent years, flexible all-solid-state supercapacitors have been widely used as the energy storage device for various smart and wearable electronic devices. However, the design and fabrication of high-performance flexible supercapacitor electrodes are still challenging since most of the active materials used for supercapacitor electrodes lack the ability to form flexible and mechanically stable structures. Recently, cellulose nanomaterials (mainly including cellulose nanocrystals and cellulose nanofibrils) have gained extensive interest due to their large specific surface areas, versatile surface chemistry, high mechanical strength, and the ability to form mechanically stable structures (e.g., films, aerogels). These days, the design of flexible supercapacitor electrodes by combining cellulose nanomaterials with different active materials gradually attracted the attention of scholars. The main objective of this review is to give an overview of recent developments in the preparation of cellulose nanomaterials based flexible all-solid-state supercapacitor electrodes. The fabrication approach, structural characterization, and electrochemical performance of the invented cellulose nanomaterials based flexible supercapacitor are elaborated. Also, the current challenges and future outlook for the design and fabrication of cellulose nanomaterials based flexible all-solid-state supercapacitor are proposed.

Keywords: Cellulose nanomaterials, Cellulose nanocrystals, Cellulose nanofibrils, Supercapacitors, All-solid-state devices, Flexible electronics, Energy storage

Graphical Abstract

[1]
Zhang, M.; Du, H.; Wei, Z.; Zhang, X.; Wang, R. Facile electrodeposition of Mn-CoP nanosheets on Ni foam as high-rate and ultrastable electrodes for supercapacitors. ACS Appl. Energy Mater., 2021, 5(1), 186-195.
[http://dx.doi.org/10.1021/acsaem.1c02730]
[2]
Ramya, R.; Sivasubramanian, R.; Sangaranarayanan, M.V. Conducting polymers-based electrochemical supercapacitors-Progress and prospects. Electrochim. Acta, 2013, 101, 109-129.
[http://dx.doi.org/10.1016/j.electacta.2012.09.116]
[3]
Tian, Y.; Du, H.; Zhang, M.; Zheng, Y.; Guo, Q.; Zhang, H.; Luo, J.; Zhang, X. Microwave synthesis of MoS2/MoO2@CNT nanocomposites with excellent cycling stability for supercapacitor electrodes. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(31), 9545-9555.
[http://dx.doi.org/10.1039/C9TC02391G]
[4]
Dubal, D.P.; Chodankar, N.R.; Kim, D.H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev., 2018, 47(6), 2065-2129.
[http://dx.doi.org/10.1039/C7CS00505A] [PMID: 29399689]
[5]
Zhang, M.; Du, H.; Wei, Z.; Zhang, X.; Wang, R. Ultrafast microwave synthesis of nickel-cobalt Sulfide/Graphene hybrid electrodes for high-performance asymmetrical supercapacitors. ACS Appl. Energy Mater., 2021, 4(8), 8262-8274.
[http://dx.doi.org/10.1021/acsaem.1c01507]
[6]
Liu, H.; Xu, T.; Liu, K.; Zhang, M.; Liu, W.; Li, H.; Du, H.; Si, C. Lignin-based electrodes for energy storage application. Ind. Crops Prod., 2021, 165, 113425.
[http://dx.doi.org/10.1016/j.indcrop.2021.113425]
[7]
Lukatskaya, M.R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun., 2016, 7(1), 12647.
[http://dx.doi.org/10.1038/ncomms12647] [PMID: 27600869]
[8]
Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv., 2019, 1(10), 3807-3835.
[http://dx.doi.org/10.1039/C9NA00374F]
[9]
Chen, X.; Paul, R.; Dai, L. Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev., 2017, 4(3), 453-489.
[http://dx.doi.org/10.1093/nsr/nwx009]
[10]
Gao, M.; Pan, S-Y.; Chen, W-C.; Chiang, P-C. A cross-disciplinary overview of naturally derived materials for electrochemical energy storage. Mater. Today Energy, 2018, 7, 58-79.
[http://dx.doi.org/10.1016/j.mtener.2017.12.005]
[11]
Jiang, Y.; Liu, J. Definitions of pseudocapacitive materials: A brief review. Energy Environ. Mater., 2019, 2(1), 30-37.
[http://dx.doi.org/10.1002/eem2.12028]
[12]
Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.E.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev., 2020, 120(14), 6738-6782.
[http://dx.doi.org/10.1021/acs.chemrev.0c00170] [PMID: 32597172]
[13]
Zhang, M.; Nautiyal, A.; Du, H.; Wei, Z.; Zhang, X.; Wang, R. Electropolymerization of polyaniline as high-performance binder free electrodes for flexible supercapacitor. Electrochim. Acta, 2021, 376, 138037.
[http://dx.doi.org/10.1016/j.electacta.2021.138037]
[14]
Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy, 2017, 36, 268-285.
[http://dx.doi.org/10.1016/j.nanoen.2017.04.040]
[15]
Chen, R.; Yu, M.; Sahu, R.P.; Puri, I.K.; Zhitomirsky, I. The development of pseudocapacitor electrodes and devices with high active mass loading. Adv. Energy Mater., 2020, 10(20), 1903848.
[http://dx.doi.org/10.1002/aenm.201903848]
[16]
Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci., 2014, 7(5), 1597.
[http://dx.doi.org/10.1039/c3ee44164d]
[17]
Kim, J.; Kim, J.H.; Ariga, K. Redox-Active polymers for energy storage nanoarchitectonics. Joule, 2017, 1(4), 739-768.
[http://dx.doi.org/10.1016/j.joule.2017.08.018]
[18]
Mohd Abdah, M.A.A.; Azman, N.H.N.; Kulandaivalu, S.; Sulaiman, Y. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater. Des., 2020, 186, 108199.
[http://dx.doi.org/10.1016/j.matdes.2019.108199]
[19]
Zhang, Q.Z.; Zhang, D.; Miao, Z.C.; Zhang, X.L.; Chou, S.L. Research progress in MnO2 -Carbon based supercapacitor electrode materials. Small, 2018, 14(24), e1702883.
[http://dx.doi.org/10.1002/smll.201702883] [PMID: 29707887]
[20]
Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater., 2014, 4(4), 1300816.
[http://dx.doi.org/10.1002/aenm.201300816]
[21]
Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev., 2018, 118(18), 9233-9280.
[http://dx.doi.org/10.1021/acs.chemrev.8b00252] [PMID: 30204424]
[22]
Tian, Y.; Du, H.; Sarwar, S.; Dong, W.; Zheng, Y.; Wang, S.; Guo, Q.; Luo, J.; Zhang, X. High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach. Front. Chem. Sci. Eng., 2020, 15(4), 1021-1032.
[http://dx.doi.org/10.1007/s11705-020-2006-x]
[23]
Liu, S.; Du, H.; Liu, K.; Ma, M-G.; Kwon, Y-E.; Si, C.; Ji, X-X.; Choi, S-E.; Zhang, X. Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors. Adv. Compos. Hybrid Mater., 2021, 4(4), 1367-1383.
[http://dx.doi.org/10.1007/s42114-021-00344-8]
[24]
Shown, I.; Ganguly, A.; Chen, L-C.; Chen, K-H. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng., 2015, 3(1), 2-26.
[http://dx.doi.org/10.1002/ese3.50]
[25]
Yao, B.; Zhang, J.; Kou, T.; Song, Y.; Liu, T.; Li, Y. Paper-based electrodes for flexible energy storage devices. Adv. Sci. (Weinh.), 2017, 4(7), 1700107.
[http://dx.doi.org/10.1002/advs.201700107] [PMID: 28725532]
[26]
Zhang, X.; Jiang, C.; Liang, J.; Wu, W. Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(13), 8099-8128.
[http://dx.doi.org/10.1039/D0TA12299H]
[27]
Palchoudhury, S.; Ramasamy, K.; Gupta, R.K.; Gupta, A. Flexible supercapacitors: A materials perspective. Front. Mater., 2019, 5, 83.
[http://dx.doi.org/10.3389/fmats.2018.00083]
[28]
Xu, B.; Wang, H.; Zhu, Q.; Sun, N.; Anasori, B.; Hu, L.; Wang, F.; Guan, Y.; Gogotsi, Y. Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Mater., 2018, 12, 128-136.
[http://dx.doi.org/10.1016/j.ensm.2017.12.006]
[29]
Li, S.; Huang, D.; Yang, J.; Zhang, B.; Zhang, X.; Yang, G.; Wang, M.; Shen, Y. Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy, 2014, 9, 309-317.
[http://dx.doi.org/10.1016/j.nanoen.2014.08.004]
[30]
Yang, K.; Luo, M.; Zhang, D.; Liu, C.; Li, Z.; Wang, L.; Chen, W.; Zhou, X. Ti3C2Tx/carbon nanotube/porous carbon film for flexible supercapacitor. Chem. Eng. J., 2022, 427, 132002.
[http://dx.doi.org/10.1016/j.cej.2021.132002]
[31]
Wang, Y.; Wu, X.; Han, Y.; Li, T. Flexible supercapacitor: Overview and outlooks. J. Energy Storage, 2021, 42, 103053.
[http://dx.doi.org/10.1016/j.est.2021.103053]
[32]
Liang, J.; Jiang, C.; Wu, W. Printed flexible supercapacitor: Ink formulation, printable electrode materials and applications. Appl. Phys. Rev., 2021, 8(2), 021319.
[http://dx.doi.org/10.1063/5.0048446]
[33]
Wu, Y.; Luo, Y.; Qu, J.; Daoud, W.A.; Qi, T. Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting. Nano Energy, 2020, 75, 105027.
[http://dx.doi.org/10.1016/j.nanoen.2020.105027]
[34]
Wu, Y.; Luo, Y.; Cuthbert, T.J.; Shokurov, A.V.; Chu, P.K.; Feng, S.P.; Menon, C. Hydrogels as soft ionic conductors in flexible and wearable triboelectric nanogenerators. Adv. Sci. (Weinh.), 2022, 9(11), e2106008.
[http://dx.doi.org/10.1002/advs.202106008] [PMID: 35187859]
[35]
Wu, Y.; Mu, Y.; Luo, Y.; Menon, C.; Zhou, Z.; Chu, P.K.; Feng, S.P. Hofmeister effect and electrostatic interaction enhanced ionic conductive organohydrogels for electronic applications. Adv. Funct. Mater., 2021, 32(15), 2110859.
[http://dx.doi.org/10.1002/adfm.202110859]
[36]
Wu, Y.; Qu, J.; Zhang, X.; Ao, K.; Zhou, Z.; Zheng, Z.; Mu, Y.; Wu, X.; Luo, Y.; Feng, S.P. Biomechanical energy harvesters based on ionic conductive organohydrogels via the hofmeister effect and electrostatic interaction. ACS Nano, 2021, 15(8), 13427-13435.
[http://dx.doi.org/10.1021/acsnano.1c03830] [PMID: 34355557]
[37]
Dai, H.; Zhang, G.; Rawach, D.; Fu, C.; Wang, C.; Liu, X.; Dubois, M.; Lai, C.; Sun, S. Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Mater., 2021, 34, 320-355.
[http://dx.doi.org/10.1016/j.ensm.2020.09.018]
[38]
Suriyakumar, S.; Bhardwaj, P.; Grace, A.N.; Stephan, A.M. Role of polymers in enhancing the performance of electrochemical supercapacitors: A review. Batter. Supercaps, 2021, 4(4), 571-584.
[http://dx.doi.org/10.1002/batt.202000272]
[39]
Xu, T.; Liu, K.; Sheng, N.; Zhang, M.; Liu, W.; Liu, H.; Dai, L.; Zhang, X.; Si, C.; Du, H.; Zhang, K. Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Mater., 2022, 48, 244-262.
[http://dx.doi.org/10.1016/j.ensm.2022.03.013]
[40]
Purkait, T.; Singh, G.; Kumar, D.; Singh, M.; Dey, R.S. High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci. Rep., 2018, 8(1), 640.
[http://dx.doi.org/10.1038/s41598-017-18593-3] [PMID: 29330476]
[41]
Liu, L.; Niu, Z.; Chen, J. Flexible supercapacitors based on carbon nanotubes. Chin. Chem. Lett., 2018, 29(4), 571-581.
[http://dx.doi.org/10.1016/j.cclet.2018.01.013]
[42]
Liu, Y.; Weng, B.; Razal, J.M.; Xu, Q.; Zhao, C.; Hou, Y.; Seyedin, S.; Jalili, R.; Wallace, G.G.; Chen, J. High-Performance flexible all-solid-state supercapacitor from large free-standing Graphene-PEDOT/PSS films. Sci. Rep., 2015, 5(1), 17045.
[http://dx.doi.org/10.1038/srep17045] [PMID: 26586106]
[43]
Du, H.; Zhang, M.; Liu, K.; Parit, M.; Jiang, Z.; Zhang, X.; Li, B.; Si, C. Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J., 2022, 428, 131994.
[http://dx.doi.org/10.1016/j.cej.2021.131994]
[44]
Zhang, M.; Nautiyal, A.; Du, H.; Li, J.; Liu, Z.; Zhang, X.; Wang, R. Polypyrrole film based flexible supercapacitor: Mechanistic insight into influence of acid dopants on electrochemical performance. Electrochim. Acta, 2020, 357, 136877.
[http://dx.doi.org/10.1016/j.electacta.2020.136877]
[45]
Ha, D.; Zhitenev, N.B.; Fang, Z. Paper in electronic and optoelectronic devices. Adv. Electron. Mater., 2018, 4(5), 1700593.
[http://dx.doi.org/10.1002/aelm.201700593] [PMID: 31093483]
[46]
Mao, Y.; Li, Y.; Xie, J.; Liu, H.; Guo, C.; Hu, W. Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2NW hybrid elastomer. Nano Energy, 2021, 84, 105918.
[http://dx.doi.org/10.1016/j.nanoen.2021.105918]
[47]
Jost, K.; Stenger, D.; Perez, C.R.; McDonough, J.K.; Lian, K.; Gogotsi, Y.; Dion, G. Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ. Sci., 2013, 6(9), 2698-2705.
[http://dx.doi.org/10.1039/c3ee40515j]
[48]
Le, V.T.; Kim, H.; Ghosh, A.; Kim, J.; Chang, J.; Vu, Q.A.; Pham, D.T.; Lee, J-H.; Kim, S-W.; Lee, Y.H. Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano, 2013, 7(7), 5940-5947.
[http://dx.doi.org/10.1021/nn4016345] [PMID: 23731060]
[49]
Si, W.; Yan, C.; Chen, Y.; Oswald, S.; Han, L.; Schmidt, O.G. On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers. Energy Environ. Sci., 2013, 6(11), 3218-3223.
[http://dx.doi.org/10.1039/c3ee41286e]
[50]
Liu, W.; Du, H.; Liu, K.; Liu, H.; Xie, H.; Si, C.; Pang, B.; Zhang, X. Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohydr. Polym., 2021, 267, 118220.
[http://dx.doi.org/10.1016/j.carbpol.2021.118220] [PMID: 34119174]
[51]
Wang, H.; Du, H.; Liu, K.; Liu, H.; Xu, T.; Zhang, S.; Chen, X.; Zhang, R.; Li, H.; Xie, H.; Zhang, X.; Si, C. Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydr. Polym., 2021, 266, 118107.
[http://dx.doi.org/10.1016/j.carbpol.2021.118107] [PMID: 34044925]
[52]
Liu, W.; Du, H.; Liu, H.; Xie, H.; Xu, T.; Zhao, X.; Liu, Y.; Zhang, X.; Si, C. Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-Catalyzed innocuous citric acid hydrolysis. ACS Sustain. Chem.& Eng., 2020, 8(44), 16691-16700.
[http://dx.doi.org/10.1021/acssuschemeng.0c06561]
[53]
Liu, K.; Du, H.; Zheng, T.; Liu, W.; Zhang, M.; Liu, H.; Zhang, X.; Si, C. Lignin-containing cellulose nanomaterials: Preparation and applications. Green Chem., 2021, 23(24), 9723-9746.
[http://dx.doi.org/10.1039/D1GC02841C]
[54]
Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym., 2019, 209, 130-144.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.020] [PMID: 30732792]
[55]
Liu, W.; Du, H.S.; Zhang, M.M.; Liu, K.; Liu, H.Y.; Xie, H.X.; Zhang, X.Y.; Si, C.L. Bacterial cellulose-based composite scaffolds for biomedical applications: A review. ACS Sustain. Chem.& Eng., 2020, 8(20), 7536-7562.
[http://dx.doi.org/10.1021/acssuschemeng.0c00125]
[56]
Liu, W.; Du, H.; Zheng, T.; Si, C. Biomedical applications of bacterial cellulose based composite hydrogels. Curr. Med. Chem., 2021, 28(40), 8319-8332.
[http://dx.doi.org/10.2174/0929867328666210412124444] [PMID: 33845720]
[57]
Ma, W.; Li, L.; Xiao, X.; Du, H.; Ren, X.; Zhang, X.; Huang, T.S. Construction of chlorine labeled ZnO–Chitosan loaded cellulose nanofibrils film with quick antibacterial performance and prominent UV stability. Macromol. Mater. Eng., 2020, 305(8), 2000228.
[http://dx.doi.org/10.1002/mame.202000228]
[58]
Liu, C.; Du, H.S.; Dong, L.; Wang, X.; Zhang, Y.D.; Yu, G.; Li, B.; Mu, X.D.; Peng, H.; Liu, H.Z. Properties of nanocelluloses and their application as rheology modifier in paper coating. Ind. Eng. Chem. Res., 2017, 56(29), 8264-8273.
[http://dx.doi.org/10.1021/acs.iecr.7b01804]
[59]
Li, M.C.; Wu, Q.; Moon, R.J.; Hubbe, M.A.; Bortner, M.J. Rheological aspects of cellulose nanomaterials: Governing factors and emerging applications. Adv. Mater., 2021, 33(21), e2006052.
[http://dx.doi.org/10.1002/adma.202006052] [PMID: 33870553]
[60]
Wang, Q.; Du, H.; Zhang, F.; Zhang, Y.; Wu, M.; Yu, G.; Liu, C.; Li, B.; Peng, H. Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(27), 13021-13030.
[http://dx.doi.org/10.1039/C8TA01986J]
[61]
Kargarzadeh, H.; Huang, J.; Lin, N.; Ahmad, I.; Mariano, M.; Dufresne, A.; Thomas, S.; Galeski, A. Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog. Polym. Sci., 2018, 87, 197-227.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.07.008]
[62]
Du, H.; Parit, M.; Liu, K.; Zhang, M.; Jiang, Z.; Huang, T-S.; Zhang, X.; Si, C. Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohydr. Polym., 2021, 270, 118372.
[http://dx.doi.org/10.1016/j.carbpol.2021.118372] [PMID: 34364616]
[63]
Du, H.; Parit, M.; Liu, K.; Zhang, M.; Jiang, Z.; Huang, T.S.; Zhang, X.; Si, C. Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl. Mater. Interfaces, 2021, 13(27), 32115-32125.
[http://dx.doi.org/10.1021/acsami.1c06647] [PMID: 34185490]
[64]
Parit, M.; Du, H.; Zhang, X.; Prather, C.; Adams, M.; Jiang, Z. Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications. Carbohydr. Polym., 2020, 240, 116304.
[http://dx.doi.org/10.1016/j.carbpol.2020.116304] [PMID: 32475575]
[65]
Zhao, D.; Zhu, Y.; Cheng, W.; Chen, W.; Wu, Y.; Yu, H. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater., 2021, 33(28), e2000619.
[http://dx.doi.org/10.1002/adma.202000619] [PMID: 32310313]
[66]
Zhang, M.; Du, H.; Liu, K.; Nie, S.; Xu, T.; Zhang, X.; Si, C. Fabrication and applications of cellulose-based nanogenerators. Adv. Compos. Hybrid Mater., 2021, 4(4), 865-884.
[http://dx.doi.org/10.1007/s42114-021-00312-2]
[67]
Liu, H.; Xu, T.; Cai, C.; Liu, K.; Liu, W.; Zhang, M.; Du, H.; Si, C.; Zhang, K. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose‐based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater., 2022, •••, 2113082.
[http://dx.doi.org/10.1002/adfm.202113082]
[68]
Liu, K.; Du, H.; Liu, W.; Liu, H.; Zhang, M.; Xu, T.; Si, C. Cellulose nanomaterials for oil exploration applications. Polym. Rev. (Phila. Pa.), 2021, 62(3), 1-41.
[69]
Liu, K.; Du, H.; Zheng, T.; Liu, H.; Zhang, M.; Zhang, R.; Li, H.; Xie, H.; Zhang, X.; Ma, M.; Si, C. Recent advances in cellulose and its derivatives for oilfield applications. Carbohydr. Polym., 2021, 259, 117740.
[http://dx.doi.org/10.1016/j.carbpol.2021.117740] [PMID: 33674000]
[70]
Sun, L.; Zhang, X.; Liu, H.; Liu, K.; Du, H.; Kumar, A.; Sharma, G.; Si, C. Recent advance in hydrophobic modification of nanocellulose. Curr. Org. Chem., 2021, 25(3), 417-436.
[http://dx.doi.org/10.2174/1385272824999201210191041]
[71]
Liu, K.; Liu, W.; Li, W.; Duan, Y.; Zhou, K.; Zhang, S.; Ni, S.; Xu, T.; Du, H.; Si, C. Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater., 2022, 1-12.
[http://dx.doi.org/10.1007/s42114-022-00425-2]
[72]
Du, H.S.; Liu, C.; Wang, D.; Zhang, Y.D.; Yu, G.; Si, C.L.; Li, B.; Mu, X.D.; Peng, H. Sustainable preparation and characterization of thermally stable and functional cellulose nanocrystals and nanofibrils via formic acid hydrolysis. J. Bioresour. Bioprod, 2017, 2(1), 10-15.
[73]
Lv, D.; Du, H.; Che, X.; Wu, M.; Zhang, Y.; Liu, C.; Nie, S.; Zhang, X.; Li, B. Tailored and integrated production of functional cellulose nanocrystals and cellulose nanofibrils via sustainable formic acid hydrolysis: Kinetic study and characterization. ACS Sustain. Chem.& Eng., 2019, 7(10), 9449-9463.
[http://dx.doi.org/10.1021/acssuschemeng.9b00714]
[74]
Hu, L.; Du, H.; Liu, C.; Zhang, Y.; Yu, G.; Zhang, X.; Si, C.; Li, B.; Peng, H. Comparative evaluation of the efficient conversion of corn husk filament and corn husk powder to valuable materials via a sustainable and clean biorefinery process. ACS Sustain. Chem.& Eng., 2018, 7(1), 1327-1336.
[http://dx.doi.org/10.1021/acssuschemeng.8b05017]
[75]
Du, H.S.; Liu, C.; Mu, X.D.; Gong, W.B.; Lv, D.; Hong, Y.M.; Si, C.L.; Li, B. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose, 2016, 23(4), 2389-2407.
[http://dx.doi.org/10.1007/s10570-016-0963-5]
[76]
Du, H.S.; Liu, C.; Zhang, Y.D.; Yu, G.; Si, C.L.; Li, B. Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Ind. Crops Prod., 2016, 94, 736-745.
[http://dx.doi.org/10.1016/j.indcrop.2016.09.059]
[77]
Xu, R.; Du, H.; Wang, H.; Zhang, M.; Wu, M.; Liu, C.; Yu, G.; Zhang, X.; Si, C.; Choi, S.E.; Li, B. Valorization of enzymatic hydrolysis residues from corncob into lignin-containing cellulose nanofibrils and lignin nanoparticles. Front. Bioeng. Biotechnol., 2021, 9, 677963.
[http://dx.doi.org/10.3389/fbioe.2021.677963] [PMID: 33937224]
[78]
Du, H.S.; Liu, C.; Zhang, M.M.; Kong, Q.S.; Li, B.; Xian, M. Preparation and industrialization status of nanocellulose. Huaxue Jinzhan, 2018, 30(4), 448-462.
[79]
Du, H.; Parit, M.; Wu, M.; Che, X.; Wang, Y.; Zhang, M.; Wang, R.; Zhang, X.; Jiang, Z.; Li, B. Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. J. Hazard. Mater., 2020, 400, 123106.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123106] [PMID: 32580093]
[80]
Miao, C.; Du, H.; Parit, M.; Jiang, Z.; Tippur, H.V.; Zhang, X.; Liu, Z.; Li, J.; Wang, R. Superior crack initiation and growth characteristics of cellulose nanopapers. Cellulose, 2020, 27(6), 3181-3195.
[http://dx.doi.org/10.1007/s10570-020-03015-x]
[81]
Miao, C.; Du, H.; Zhang, X.; Tippur, H.V. Dynamic crack initiation and growth in cellulose nanopaper. Cellulose, 2021, 29(1), 557-569.
[http://dx.doi.org/10.1007/s10570-021-04310-x]
[82]
Jiang, J.; Oguzlu, H.; Jiang, F. 3D printing of lightweight, super-strong yet flexible all-cellulose structure. Chem. Eng. J., 2021, 405, 126668.
[http://dx.doi.org/10.1016/j.cej.2020.126668]
[83]
Liu, W.; Liu, K.; Du, H.; Zheng, T.; Zhang, N.; Xu, T.; Pang, B.; Zhang, X.; Si, C.; Zhang, K. Cellulose nanopaper: Fabrication, functionalization, and applications. Nano-Micro Lett., 2022, 14(1), 104.
[http://dx.doi.org/10.1007/s40820-022-00849-x] [PMID: 35416525]
[84]
Chen, J.; Chen, H.; Chen, M.; Zhou, W.; Tian, Q.; Wong, C-P. Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors. Chem. Eng. J., 2022, 428, 131380.
[http://dx.doi.org/10.1016/j.cej.2021.131380]
[85]
Xiao, L.; Qi, H.; Qu, K.; Shi, C.; Cheng, Y.; Sun, Z.; Yuan, B.; Huang, Z.; Pan, D.; Guo, Z. Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv. Compos. Hybrid Mater., 2021, 4(2), 306-316.
[http://dx.doi.org/10.1007/s42114-021-00223-2]
[86]
Etman, A.S.; Wang, Z.; El Ghazaly, A.; Sun, J.; Nyholm, L.; Rosen, J. Flexible freestanding MoO3-x -carbon nanotubes-nanocellulose paper electrodes for charge-storage applications. ChemSusChem, 2019, 12(23), 5157-5163.
[http://dx.doi.org/10.1002/cssc.201902394] [PMID: 31613052]
[87]
Chen, R.; Li, X.; Huang, Q.; Ling, H.; Yang, Y.; Wang, X. Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes. Chem. Eng. J., 2021, 412, 128755.
[http://dx.doi.org/10.1016/j.cej.2021.128755]
[88]
Zhan, Y.; Hu, Y.; Chen, Y.; Yang, Q.; Shi, Z.; Xiong, C. In-situ synthesis of flexible nanocellulose/carbon nanotube/polypyrrole hydrogels for high-performance solid-state supercapacitors. Cellulose, 2021, 28(11), 7097-7108.
[http://dx.doi.org/10.1007/s10570-021-03998-1]
[89]
Nogi, M.; Iwamoto, S.; Nakagaito, A.N.; Yano, H. Optically transparent nanofiber paper. Adv. Mater., 2009, 21(16), 1595-1598.
[http://dx.doi.org/10.1002/adma.200803174]
[90]
Nogi, M.; Karakawa, M.; Komoda, N.; Yagyu, H.; Nge, T.T. Transparent conductive nanofiber paper for foldable solar cells. Sci. Rep., 2015, 5(1), 17254.
[http://dx.doi.org/10.1038/srep17254] [PMID: 26607742]
[91]
Markstedt, K.; Mantas, A.; Tournier, I.; Martínez Ávila, H.; Hägg, D.; Gatenholm, P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 2015, 16(5), 1489-1496.
[http://dx.doi.org/10.1021/acs.biomac.5b00188] [PMID: 25806996]
[92]
Zanini, M.; Lavoratti, A.; Zimmermann, M.V.; Galiotto, D.; Matana, F.; Baldasso, C.; Zattera, A.J. Aerogel preparation from short cellulose nanofiber of the Eucalyptus species. J. Cell. Plast., 2017, 53(5), 503-512.
[http://dx.doi.org/10.1177/0021955X16670590]
[93]
Zhang, Z.; Sèbe, G.; Rentsch, D.; Zimmermann, T.; Tingaut, P. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater., 2014, 26(8), 2659-2668.
[http://dx.doi.org/10.1021/cm5004164]
[94]
Chen, W.; Yu, H.; Lee, S.Y.; Wei, T.; Li, J.; Fan, Z. Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev., 2018, 47(8), 2837-2872.
[http://dx.doi.org/10.1039/C7CS00790F] [PMID: 29561005]
[95]
Xing, J.; Tao, P.; Wu, Z.; Xing, C.; Liao, X.; Nie, S. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors. Carbohydr. Polym., 2019, 207, 447-459.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.010] [PMID: 30600028]
[96]
Kim, J.H.; Lee, D.; Lee, Y.H.; Chen, W.; Lee, S.Y. Nanocellulose for energy storage systems: Beyond the limits of synthetic materials. Adv. Mater., 2019, 31(20), e1804826.
[http://dx.doi.org/10.1002/adma.201804826] [PMID: 30561780]
[97]
Chen, C.; Hu, L. Nanocellulose toward advanced energy storage devices: Structure and electrochemistry. Acc. Chem. Res., 2018, 51(12), 3154-3165.
[http://dx.doi.org/10.1021/acs.accounts.8b00391] [PMID: 30299086]
[98]
Xu, T.; Du, H.; Liu, H.; Liu, W.; Zhang, X.; Si, C.; Liu, P.; Zhang, K. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater., 2021, 33(48), e2101368.
[http://dx.doi.org/10.1002/adma.202101368] [PMID: 34561914]
[99]
Liu, H.; Du, H.; Zheng, T.; Liu, K.; Ji, X.; Xu, T.; Zhang, X.; Si, C. Cellulose based composite foams and aerogels for advanced energy storage devices. Chem. Eng. J., 2021, 426, 130817.
[http://dx.doi.org/10.1016/j.cej.2021.130817]
[100]
Tian, W. VahidMohammadi, A.; Reid, M.S.; Wang, Z.; Ouyang, L.; Erlandsson, J.; Pettersson, T.; Wågberg, L.; Beidaghi, M.; Hamedi, M.M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater., 2019, 31(41), e1902977.
[http://dx.doi.org/10.1002/adma.201902977] [PMID: 31408235]
[101]
Zheng, Q.F.; Xie, R.S.; Fang, L.M.; Cai, Z.Y.; Ma, Z.Q.; Gong, S.Q. Oxygen- deficient and nitrogen- doped MnO2 nanowire- reduced graphene oxide- cellulose nanofibril aerogel electrodes for high- performance asymmetric supercapacitors. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(47), 24407-24417.
[http://dx.doi.org/10.1039/C8TA09374A]
[102]
Xia, L.; Li, X.; Wu, Y.; Hu, S.; Liao, Y.; Huang, L.; Qing, Y.; Lu, X. Electrodes derived from carbon fiber-reinforced cellulose nanofiber/multiwalled carbon nanotube hybrid aerogels for high-energy flexible asymmetric supercapacitors. Chem. Eng. J., 2020, 379, 122325.
[http://dx.doi.org/10.1016/j.cej.2019.122325]
[103]
Wang, D.C.; Yu, H.Y.; Qi, D.; Ramasamy, M.; Yao, J.; Tang, F.; Tam, K.M.C.; Ni, Q. Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors. ACS Appl. Mater. Interfaces, 2019, 11(27), 24435-24446.
[http://dx.doi.org/10.1021/acsami.9b06527] [PMID: 31257847]
[104]
Liu, Z.; Chen, J.; Zhan, Y.; Liu, B.; Xiong, C.; Yang, Q.; Hu, G-H. Fe3+ cross-linked Polyaniline/Cellulose nanofibril hydrogels for high-performance flexible solid-state supercapacitors. ACS Sustain. Chem.& Eng., 2019, 7(21), 17653-17660.
[http://dx.doi.org/10.1021/acssuschemeng.9b03674]
[105]
Sheng, N.; Chen, S.; Yao, J.; Guan, F.; Zhang, M.; Wang, B.; Wu, Z.; Ji, P.; Wang, H. Polypyrrole@TEMPO-oxidized bacterial cellulose/reduced graphene oxide macrofibers for flexible all-solid-state supercapacitors. Chem. Eng. J., 2019, 368, 1022-1032.
[http://dx.doi.org/10.1016/j.cej.2019.02.173]