The Role of Growth Factor Delivery Systems on Cellular Activities of Dental Stem Cells: A Systematic Review (Part II)

Page: [587 - 610] Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

Objective: The current systematic review aims to provide the available ex vivo evidence evaluating the biological interactions of dental stem cells (DSCs) and growth factor delivery systems.

Methods: Following the Preferred Reporting Items for a Systematic Reviews and Meta-Analyses (PRISMA) guidelines, systematic search was conducted in the electronic databases (PubMed/Medline, Scopus, Web of Science, and Google Scholar) up to January 2022. Studies evaluating the biological interactions of DSCs and growth factor delivery systems were included. The outcome measures were cell cytocompatibility, mineralization, and differentiation.

Results: Sixteen studies were selected for the qualitative synthesis. The following growth factor delivery systems exhibit adequate cytocompatibility, enhanced mineralization, and osteo/odontoblast differentiation potential of DSCs: 1) Fibroblast growth factor (FGF-2)-loaded-microsphere and silk fibroin, 2) Bone morphogenic protein-2 (BMP-2)-loaded-microsphere and mesoporous calcium silicate scaffold, 3) Transforming growth factor Beta 1 (TGF-ß1)-loaded-microsphere, glass ionomer cement (GIC), Bio-GIC and liposome, 4) TGF-ß1-loaded-nanoparticles/scaffold, 5) Vascular endothelial growth factor (VEGF)-loaded-fiber and hydrogel, 6) TGF-ß1/VEGF-loaded-nanocrystalline calcium sulfate/hydroxyapatite/calcium sulfate, 7) Epidermal growth factor-loaded- nanosphere, 8) Stem cell factor/DSCs-loaded-hydrogel and Silk fibroin, 9) VEGF/BMP-2/DSCs-loaded-Three-dimensional matrix, 10) VEGF/DSCs-loaded-microsphere/hydrogel, and 11) BMP-2/DSCs and VEGF/DSCs-loaded-Collagen matrices. The included delivery systems showed viability, except for Bio-GIC on day 3. The choice of specific growth factors and delivery systems (i.e., BMP-2-loaded-microsphere and VEGF-loaded-hydrogel) resulted in a greater gene expression.

Conclusions: This study, with low-level evidence obtained from ex vivo studies, suggests that growth factor delivery systems induce cell proliferation, mineralization, and differentiation toward a therapeutic potential in regenerative endodontics.

Keywords: Growth factors, drug delivery system, odontoblast, regenerative endodontics, and systematic review, bone morphogenic protein (BMP).

Graphical Abstract

[1]
Diogenes A, Henry MA, Teixeira FB, Hargreaves KM. An update on clinical regenerative endodontics. Endod Topics 2013; 28(1): 2-23.
[http://dx.doi.org/10.1111/etp.12040]
[2]
Nosrat A, Seifi A, Asgary S. Regenerative endodontic treatment (revascularization) for necrotic immature permanent molars: A review and report of two cases with a new biomaterial. J Endod 2011; 37(4): 562-7.
[http://dx.doi.org/10.1016/j.joen.2011.01.011] [PMID: 21419310]
[3]
Hargreaves KM, Diogenes A, Teixeira FB. Treatment options: Biological basis of regenerative endodontic procedures. Pediatr Dent 2013; 35(2): 129-40.
[http://dx.doi.org/10.1016/j.joen.2012.11.025] [PMID: 23635981]
[4]
Asgary S, Nazarian H, Khojasteh A, Shokouhinejad N. Gene expression and cytokine release during odontogenic differentiation of human dental pulp stem cells induced by 2 endodontic biomaterials. J Endod 2014; 40(3): 387-92.
[http://dx.doi.org/10.1016/j.joen.2013.09.017] [PMID: 24565658]
[5]
Javid B, Panahandeh N, Torabzadeh H, Nazarian H, Parhizkar A, Asgary S. Bioactivity of endodontic biomaterials on dental pulp stem cells through dentin. Restor Dent Endod 2019; 45(1): e3.
[http://dx.doi.org/10.5395/rde.2020.45.e3] [PMID: 32110533]
[6]
Samiei M, Alipour M, Khezri K, et al. Application of collagen and mesenchymal stem cells in regenerative dentistry. Curr Stem Cell Res Ther 2021; 17(7): 606-20.
[http://dx.doi.org/10.2174/1574888X17666211220100521] [PMID: 34931969]
[7]
Nosrat A, Peimani A, Asgary S. A preliminary report on histological outcome of pulpotomy with endodontic biomaterials vs calcium hydroxide. Restor Dent Endod 2013; 38(4): 227-33.
[http://dx.doi.org/10.5395/rde.2013.38.4.227] [PMID: 24303358]
[8]
Zhang S, Yang Y, Jia S, et al. Exosome-like vesicles derived from Hertwig’s epithelial root sheath cells promote the regeneration of dentin-pulp tissue. Theranostics 2020; 10(13): 5914-31.
[http://dx.doi.org/10.7150/thno.43156] [PMID: 32483427]
[9]
Soares DG, Zhang Z, Mohamed F, Eyster TW, de Souza Costa CA, Ma PX. Simvastatin and nanofibrous poly(l-lactic acid) scaffolds to promote the odontogenic potential of dental pulp cells in an inflammatory environment. Acta Biomater 2018; 68: 190-203.
[http://dx.doi.org/10.1016/j.actbio.2017.12.037] [PMID: 29294374]
[10]
Kim SG. Biological molecules for the regeneration of the pulp-dentin complex. Dent Clin North Am 2017; 61(1): 127-41.
[http://dx.doi.org/10.1016/j.cden.2016.08.005] [PMID: 27912814]
[11]
Kanjevac T, Gustafson C, Ivanovska A, Ravanetti F, Cacchioli A, Bosnakovski D. Inflammatory cytokines and biodegradable scaffolds in dental mesenchymal stem cells priming. Curr Stem Cell Res Ther 2019; 14(4): 320-6.
[http://dx.doi.org/10.2174/1574888X14666190103170109] [PMID: 30608044]
[12]
Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: General approaches and a review of recent developments. J R Soc Interface 2011; 8(55): 153-70.
[http://dx.doi.org/10.1098/rsif.2010.0223] [PMID: 20719768]
[13]
Goldman R. Growth factors and chronic wound healing: Past, present, and future. Adv Skin Wound Care 2004; 17(1): 24-35.
[http://dx.doi.org/10.1097/00129334-200401000-00012] [PMID: 14752324]
[14]
Grazul-Bilska AT, Johnson ML, Bilski JJ, et al. Wound healing: The role of growth factors. Drugs Today (Barc) 2003; 39(10): 787-800.
[http://dx.doi.org/10.1358/dot.2003.39.10.799472] [PMID: 14668934]
[15]
Atanasova M, Whitty A. Understanding cytokine and growth factor receptor activation mechanisms. Crit Rev Biochem Mol Biol 2012; 47(6): 502-30.
[http://dx.doi.org/10.3109/10409238.2012.729561] [PMID: 23046381]
[16]
Smith JG, Smith AJ, Shelton RM, Cooper PR. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components. Exp Cell Res 2012; 318(18): 2397-406.
[http://dx.doi.org/10.1016/j.yexcr.2012.07.008] [PMID: 22819733]
[17]
Tziafas D, Alvanou A, Panagiotakopoulos N, et al. Induction of odontoblast-like cell differentiation in dog dental pulps after in vivo implantation of dentine matrix components. Arch Oral Biol 1995; 40(10): 883-93.
[http://dx.doi.org/10.1016/0003-9969(95)00069-2] [PMID: 8526798]
[18]
Tziafas D, Kolokuris I. Inductive influences of demineralized dentin and bone matrix on pulp cells: An approach of secondary dentinogenesis. J Dent Res 1990; 69(1): 75-81.
[http://dx.doi.org/10.1177/00220345900690011301] [PMID: 2303600]
[19]
Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 2003; 21(9): 1025-32.
[http://dx.doi.org/10.1038/nbt864] [PMID: 12949568]
[20]
Qin W, Yang F, Deng R, et al. Smad 1/5 is involved in bone morphogenetic protein-2-induced odontoblastic differentiation in human dental pulp cells. J Endod 2012; 38(1): 66-71.
[http://dx.doi.org/10.1016/j.joen.2011.09.025] [PMID: 22152623]
[21]
Chen S, Gluhak-Heinrich J, Martinez M, et al. Bone morphogenetic protein 2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J Biol Chem 2008; 283(28): 19359-70.
[http://dx.doi.org/10.1074/jbc.M709492200] [PMID: 18424784]
[22]
Yang W, Harris MA, Cui Y, Mishina Y, Harris SE, Gluhak-Heinrich J. Bmp2 is required for odontoblast differentiation and pulp vasculogenesis. J Dent Res 2012; 91(1): 58-64.
[http://dx.doi.org/10.1177/0022034511424409] [PMID: 21984706]
[23]
Unda FJ, Martín A, Hernandez C, Pérez-Nanclares G, Hilario E, Aréchaga J. FGFs-1 and -2, and TGF beta 1 as inductive signals modulating in vitro odontoblast differentiation. Adv Dent Res 2001; 15(1): 34-7.
[http://dx.doi.org/10.1177/08959374010150010801] [PMID: 12640736]
[24]
Matsushita K, Motani R, Sakuta T, et al. The role of vascular endothelial growth factor in human dental pulp cells: Induction of chemotaxis, proliferation, and differentiation and activation of the AP-1-dependent signaling pathway. J Dent Res 2000; 79(8): 1596-603.
[http://dx.doi.org/10.1177/00220345000790081201] [PMID: 11023281]
[25]
Aksel H, Huang GT. Combined effects of vascular endothelial growth factor and bone morphogenetic protein 2 on odonto/osteogenic differentiation of human dental pulp stem cells in vitro. J Endod 2017; 43(6): 930-5.
[http://dx.doi.org/10.1016/j.joen.2017.01.036] [PMID: 28457634]
[26]
Zhang J, Liu X, Yu W, et al. Effects of human vascular endothelial growth factor on reparative dentin formation. Mol Med Rep 2016; 13(1): 705-12.
[http://dx.doi.org/10.3892/mmr.2015.4608] [PMID: 26647730]
[27]
He H, Yu J, Liu Y, et al. Effects of FGF2 and TGFbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int 2008; 32(7): 827-34.
[http://dx.doi.org/10.1016/j.cellbi.2008.03.013] [PMID: 18442933]
[28]
Nie X, Tian W, Zhang Y, et al. Induction of transforming growth factor-beta 1 on dentine pulp cells in different culture patterns. Cell Biol Int 2006; 30(4): 295-300.
[http://dx.doi.org/10.1016/j.cellbi.2005.12.001] [PMID: 16458025]
[29]
Saito T, Ogawa M, Hata Y, Bessho K. Acceleration effect of human recombinant bone morphogenetic protein-2 on differentiation of human pulp cells into odontoblasts. J Endod 2004; 30(4): 205-8.
[http://dx.doi.org/10.1097/00004770-200404000-00005] [PMID: 15085046]
[30]
Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 2004; 83(8): 590-5.
[http://dx.doi.org/10.1177/154405910408300802] [PMID: 15271965]
[31]
Shamszadeh S, Asgary S, Shirvani A, Torabzadeh H. Effects of growth factors on cellular activities of dental stem cells: A systematic review and meta-analysis (part I). Curr Stem Cell Res Ther 2022.
[http://dx.doi.org/10.2174/1574888X17666220628125048] [PMID: 35762556]
[32]
Chen FM, Shelton RM, Jin Y, Chapple IL. Localized delivery of growth factors for periodontal tissue regeneration: Role, strategies, and perspectives. Med Res Rev 2009; 29(3): 472-513.
[http://dx.doi.org/10.1002/med.20144] [PMID: 19260070]
[33]
Mitchell AC, Briquez PS, Hubbell JA, Cochran JR. Engineering growth factors for regenerative medicine applications. Acta Biomater 2016; 30: 1-12.
[http://dx.doi.org/10.1016/j.actbio.2015.11.007] [PMID: 26555377]
[34]
Mittermayr R, Slezak P, Haffner N, et al. Controlled release of fibrin matrix-conjugated platelet derived growth factor improves ischemic tissue regeneration by functional angiogenesis. Acta Biomater 2016; 29: 11-20.
[http://dx.doi.org/10.1016/j.actbio.2015.10.028] [PMID: 26497625]
[35]
Bruggeman KF, Rodriguez AL, Parish CL, Williams RJ, Nisbet DR. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel. Nanotechnology 2016; 27(38): 385102.
[http://dx.doi.org/10.1088/0957-4484/27/38/385102] [PMID: 27517970]
[36]
Vasita R, Katti DS. Growth factor-delivery systems for tissue engineering: A materials perspective. Expert Rev Med Devices 2006; 3(1): 29-47.
[http://dx.doi.org/10.1586/17434440.3.1.29] [PMID: 16359251]
[37]
Jiang L, Ayre WN, Melling GE, et al. Liposomes loaded with transforming growth factor β1 promote odontogenic differentiation of dental pulp stem cells. J Dent 2020; 103: 103501.
[http://dx.doi.org/10.1016/j.jdent.2020.103501] [PMID: 33068710]
[38]
Pankajakshan D, Voytik-Harbin SL, Nör JE, Bottino MC. Injectable highly tunable oligomeric collagen matrices for dental tissue regeneration. ACS Appl Bio Mater 2020; 3(2): 859-68.
[http://dx.doi.org/10.1021/acsabm.9b00944] [PMID: 32734173]
[39]
Huang KH, Chen YW, Wang CY, et al. Enhanced capability of bone morphogenetic protein 2-loaded mesoporous calcium silicate scaffolds to induce odontogenic differentiation of human dental pulp cells. J Endod 2018; 44(11): 1677-85.
[http://dx.doi.org/10.1016/j.joen.2018.08.008] [PMID: 30409449]
[40]
Shamszadeh S, Asgary S, Nosrat A. Regenerative endodontics: A scientometric and bibliometric analysis. J Endod 2019; 45(3): 272-80.
[http://dx.doi.org/10.1016/j.joen.2018.11.010] [PMID: 30803534]
[41]
Hosseinpour S, Rad MR, Khojasteh A, Zadeh HH. Antibody administration for bone tissue engineering: A systematic review. Curr Stem Cell Res Ther 2018; 13(4): 292-315.
[http://dx.doi.org/10.2174/1574888X13666180207095314] [PMID: 29412118]
[42]
Nokhbatolfoghahaei H, Rad MR, Khani MM, Shahriari S, Nadjmi N, Khojasteh A. Application of bioreactors to improve functionality of bone tissue engineering constructs: A systematic review. Curr Stem Cell Res Ther 2017; 12(7): 564-99.
[http://dx.doi.org/10.2174/1574888X12666170822100105] [PMID: 28828969]
[43]
Archer DE, Mafi R, Mafi P, Khan WS. Preclinical studies on biomaterial scaffold use in knee ligament regeneration: A systematic review. Curr Stem Cell Res Ther 2018; 13(8): 691-701.
[http://dx.doi.org/10.2174/1574888X13666180809093343] [PMID: 30091417]
[44]
Luiz de Oliveira da Rosa W. Machado da Silva T, Fernando Demarco F, Piva E, Fernandes da Silva A. Could the application of bioactive molecules improve vital pulp therapy success? A systematic review. J Biomed Mater Res A 2017; 105(3): 941-56.
[http://dx.doi.org/10.1002/jbm.a.35968] [PMID: 27998031]
[45]
Sanz JL, Forner L, Almudéver A, Guerrero-Gironés J, Llena C. Viability and stimulation of Human Stem Cells from the Apical Papilla (hSCAPs) induced by silicate-based materials for their potential use in regenerative endodontics: A systematic review. Materials (Basel) 2020; 13(4): E974.
[http://dx.doi.org/10.3390/ma13040974] [PMID: 32098171]
[46]
Tavares S, Pintor A, Mourão CFAB, et al. Effect of different root canal irrigant solutions on the release of dentin-growth factors: A systematic review and meta-analysis. Materials (Basel) 2021; 14(19): 5829.
[http://dx.doi.org/10.3390/ma14195829] [PMID: 34640224]
[47]
Moher D, Altman DG, Liberati A, Tetzlaff J. PRISMA statement. Epidemiology 2011; 22(1): 128.
[http://dx.doi.org/10.1097/EDE.0b013e3181fe7825] [PMID: 21150360]
[48]
Institute JB. The Joanna Briggs Institute Joanna Briggs Institute Reviewers’ Manual. (2014 edition.), The Joanna Briggs Institute 2014.
[49]
Xia K, Chen Z, Chen J, et al. RGD- and VEGF-mimetic peptide epitope-functionalized self-assembling peptide hydrogels promote dentin-pulp complex regeneration. Int J Nanomedicine 2020; 15: 6631-47.
[http://dx.doi.org/10.2147/IJN.S253576] [PMID: 32982223]
[50]
Silva CR, Babo PS, Gulino M, et al. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomater 2018; 77: 155-71.
[http://dx.doi.org/10.1016/j.actbio.2018.07.035] [PMID: 30031163]
[51]
Xiao M, Qiu J, Kuang R, Zhang B, Wang W, Yu Q. Synergistic effects of stromal cell-derived factor-1α and bone morphogenetic protein-2 treatment on odontogenic differentiation of human stem cells from apical papilla cultured in the VitroGel 3D system. Cell Tissue Res 2019; 378(2): 207-20.
[http://dx.doi.org/10.1007/s00441-019-03045-3] [PMID: 31152245]
[52]
Li X, Wang L, Su Q, et al. Highly proliferative immortalized human dental pulp cells retain the odontogenic phenotype when combined with a beta-tricalcium phosphate scaffold and BMP2. Stem Cells Int 2020; 2020: 4534128.
[http://dx.doi.org/10.1155/2020/4534128] [PMID: 32148517]
[53]
Shrestha S, Kishen A. Temporal-controlled bioactive molecules releasing core-shell nano-system for tissue engineering strategies in endodontics. Nanomedicine 2019; 18: 11-20.
[http://dx.doi.org/10.1016/j.nano.2019.02.013] [PMID: 30844574]
[54]
Dobie K, Smith G, Sloan AJ, Smith AJ. Effects of alginate hydrogels and TGF-β 1 on human dental pulp repair in vitro. Connect Tissue Res 2002; 43(2-3): 387-90.
[http://dx.doi.org/10.1080/03008200290000574] [PMID: 12489186]
[55]
Oliva-Rodríguez R, Pérez-Urizar J, Dibildox-Alvarado E, et al. Design of a controlled release system of OP-1 and TGF-β1 based in microparticles of sodium alginate and release characterization by HPLC-UV. In Vitro Cell Dev Biol Anim 2011; 47(10): 681-8.
[http://dx.doi.org/10.1007/s11626-011-9459-7] [PMID: 22012415]
[56]
Li F, Liu X, Zhao S, Wu H, Xu HH. Porous chitosan bilayer membrane containing TGF-β1 loaded microspheres for pulp capping and reparative dentin formation in a dog model. Dent Mater 2014; 30(2): 172-81.
[http://dx.doi.org/10.1016/j.dental.2013.11.005] [PMID: 24332410]
[57]
Li Z, Sae-Lim V. Comparison of acidic fibroblast growth factor on collagen carrier with calcium hydroxide as pulp capping agents in monkeys. Dent Traumatol 2007; 23(5): 278-86.
[http://dx.doi.org/10.1111/j.1600-9657.2006.00459.x] [PMID: 17803484]
[58]
Mullane EM, Dong Z, Sedgley CM, et al. Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 2008; 87(12): 1144-8.
[http://dx.doi.org/10.1177/154405910808701204] [PMID: 19029083]
[59]
Ishimatsu H, Kitamura C, Morotomi T, et al. Formation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor-2 from gelatin hydrogels. J Endod 2009; 35(6): 858-65.
[http://dx.doi.org/10.1016/j.joen.2009.03.049] [PMID: 19482186]
[60]
Ko H, Yang W, Park K, Kim M. Cytotoxicity of mineral trioxide aggregate (MTA) and bone morphogenetic protein 2 (BMP-2) and response of rat pulp to MTA and BMP-2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109(6): e103-8.
[http://dx.doi.org/10.1016/j.tripleo.2010.01.030] [PMID: 20451825]
[61]
Imura K, Hashimoto Y, Okada M, Yoshikawa K, Yamamoto K. Application of hydroxyapatite nanoparticle-assembled powder using basic fibroblast growth factor as a pulp-capping agent. Dent Mater J 2019; 38(5): 713-20.
[http://dx.doi.org/10.4012/dmj.2018-198] [PMID: 31189793]
[62]
Chiang Y-C, Chang H-H, Wong C-C, et al. Nanocrystalline calcium sulfate/hydroxyapatite biphasic compound as a TGF-β1/VEGF reservoir for vital pulp therapy. Dent Mater 2016; 32(10): 1197-208.
[http://dx.doi.org/10.1016/j.dental.2016.06.013] [PMID: 27492847]
[63]
El-Fiqi A, Mandakhbayar N, Jo SB, Knowles JC, Lee JH, Kim HW. Nanotherapeutics for regeneration of degenerated tissue infected by bacteria through the multiple delivery of bioactive ions and growth factor with antibacterial/angiogenic and osteogenic/odontogenic capacity. Bioact Mater 2020; 6(1): 123-36.
[http://dx.doi.org/10.1016/j.bioactmat.2020.07.010] [PMID: 32817919]
[64]
Mathieu S, Jeanneau C, Sheibat-Othman N, Kalaji N, Fessi H, About I. Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration. J Endod 2013; 39(2): 228-35.
[http://dx.doi.org/10.1016/j.joen.2012.11.007] [PMID: 23321236]
[65]
Rakkiettiwong N, Hengtrakool C, Thammasitboon K, Kedjarune-Leggat U. Effect of novel chitosan-fluoroaluminosilicate glass ionomer cement with added transforming growth factor beta-1 on pulp cells. J Endod 2011; 37(3): 367-71.
[http://dx.doi.org/10.1016/j.joen.2010.11.031] [PMID: 21329823]
[66]
Mu X, Shi L, Pan S, He L, Niu Y, Wang X. A customized self-assembling peptide hydrogel-wrapped stem cell factor targeting pulp regeneration rich in vascular-like structures. ACS Omega 2020; 5(27): 16568-74.
[http://dx.doi.org/10.1021/acsomega.0c01266] [PMID: 32685822]
[67]
Zhang R, Xie L, Wu H, et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater 2020; 113: 305-16.
[http://dx.doi.org/10.1016/j.actbio.2020.07.012] [PMID: 32663663]
[68]
Wu S, Zhou Y, Yu Y, et al. Evaluation of chitosan hydrogel for sustained delivery of VEGF for odontogenic differentiation of dental pulp stem cells. Stem Cells Int 2019; 2019: 1515040.
[http://dx.doi.org/10.1155/2019/1515040] [PMID: 31949434]
[69]
Aksel H, Öztürk Ş, Serper A, Ulubayram K. VEGF/BMP-2 loaded three-dimensional model for enhanced angiogenic and odontogenic potential of dental pulp stem cells. Int Endod J 2018; 51(4): 420-30.
[http://dx.doi.org/10.1111/iej.12869] [PMID: 29080346]
[70]
Yang JW, Zhang YF, Sun ZY, Song GT, Chen Z. Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. J Biomater Appl 2015; 30(2): 221-9.
[http://dx.doi.org/10.1177/0885328215577296] [PMID: 25791684]
[71]
Wang W, Dang M, Zhang Z, et al. Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta Biomater 2016; 36: 63-72.
[http://dx.doi.org/10.1016/j.actbio.2016.03.015] [PMID: 26971664]
[72]
Bellamy C, Shrestha S, Torneck C, Kishen A. Effects of a bioactive scaffold containing a sustained transforming growth factor-β1-releasing nanoparticle system on the migration and differentiation of stem cells from the apical papilla. J Endod 2016; 42(9): 1385-92.
[http://dx.doi.org/10.1016/j.joen.2016.06.017] [PMID: 27484250]
[73]
Wei J, Sun XQ, Hou BX. Evaluation of silk fibroin-RGD-stem cell factor scaffold effect on adhesion, migration, and proliferation of stem cells of apical papilla. Stem Cells Int 2021; 2021: 6612324.
[http://dx.doi.org/10.1155/2021/6612324] [PMID: 34046070]
[74]
Yadlapati M, Biguetti C, Cavalla F, et al. Characterization of a vascular endothelial growth factor-loaded bioresorbable delivery system for pulp regeneration. J Endod 2017; 43(1): 77-83.
[http://dx.doi.org/10.1016/j.joen.2016.09.022] [PMID: 27939739]
[75]
Choi MR, Kim HY, Park JY, et al. Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neurosci Lett 2010; 472(2): 94-8.
[http://dx.doi.org/10.1016/j.neulet.2010.01.054] [PMID: 20117176]
[76]
Hafner M, Niepel M, Chung M, Sorger PK. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat Methods 2016; 13(6): 521-7.
[http://dx.doi.org/10.1038/nmeth.3853] [PMID: 27135972]
[77]
Ashe HL, Mannervik M, Levine M. Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. Development 2000; 127(15): 3305-12.
[http://dx.doi.org/10.1242/dev.127.15.3305] [PMID: 10887086]
[78]
Pamies D, Bal-Price A, Simeonov A, et al. Good cell culture practice for stem cells and stem-cell-derived models. Altern Anim Exp 2017; 34(1): 95-132.
[PMID: 27554434]
[79]
Parhizkar A, Asgary S. Local drug delivery systems for vital pulp therapy: A new hope. Int J Biomater 2021; 2021: 5584268.
[http://dx.doi.org/10.1155/2021/5584268] [PMID: 34567123]
[80]
Farooq M, Khan AW, Kim MS, Choi S. The role of Fibroblast Growth Factor (FGF) signaling in tissue repair and regeneration. Cells 2021; 10(11): 3242.
[http://dx.doi.org/10.3390/cells10113242] [PMID: 34831463]
[81]
Boilly B, Vercoutter-Edouart AS, Hondermarck H, Nurcombe V, Le Bourhis X. FGF signals for cell proliferation and migration through different pathways. Cytokine Growth Factor Rev 2000; 11(4): 295-302.
[http://dx.doi.org/10.1016/S1359-6101(00)00014-9] [PMID: 10959077]
[82]
Ma Y, Kakudo N, Morimoto N, Lai F, Taketani S, Kusumoto K. Fibroblast growth factor-2 stimulates proliferation of human adipose-derived stem cells via Src activation. Stem Cell Res Ther 2019; 10(1): 350.
[http://dx.doi.org/10.1186/s13287-019-1462-z] [PMID: 31775870]
[83]
Kim J, Park JC, Kim SH, et al. Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth. Oral Dis 2014; 20(2): 191-204.
[http://dx.doi.org/10.1111/odi.12089] [PMID: 23496287]
[84]
Fayazi M, Salehnia M, Ziaei S. The effect of stem cell factor on proliferation of human endometrial CD146(+) cells. Int J Reprod Biomed (Yazd) 2016; 14(7): 437-42.
[http://dx.doi.org/10.29252/ijrm.14.7.1] [PMID: 27525327]
[85]
Nakashima M. Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine Growth Factor Rev 2005; 16(3): 369-76.
[http://dx.doi.org/10.1016/j.cytogfr.2005.02.011] [PMID: 15878301]
[86]
Casagrande L, Demarco FF, Zhang Z, Araujo FB, Shi S, Nör JE. Dentin-derived BMP-2 and odontoblast differentiation. J Dent Res 2010; 89(6): 603-8.
[http://dx.doi.org/10.1177/0022034510364487] [PMID: 20351355]
[87]
Sun N, Jiang T, Wu C, Sun H, Zhou Q, Lu L. Expression and influence of BMP-4 in human dental pulp cells cultured in vitro. Exp Ther Med 2018; 16(6): 5112-6.
[http://dx.doi.org/10.3892/etm.2018.6824] [PMID: 30542466]
[88]
Zhang R, Lin J, Liu Y, et al. Transforming growth factor-β signaling regulates tooth root dentinogenesis by cooperation with Wnt signaling. Front Cell Dev Biol 2021; 9: 687099.
[http://dx.doi.org/10.3389/fcell.2021.687099] [PMID: 34277628]
[89]
Niwa T, Yamakoshi Y, Yamazaki H, et al. The dynamics of TGF-β in dental pulp, odontoblasts and dentin. Sci Rep 2018; 8(1): 4450.
[http://dx.doi.org/10.1038/s41598-018-22823-7] [PMID: 29535349]
[90]
Li Y, Lü X, Sun X, Bai S, Li S, Shi J. Odontoblast-like cell differentiation and dentin formation induced with TGF-β1. Arch Oral Biol 2011; 56(11): 1221-9.
[http://dx.doi.org/10.1016/j.archoralbio.2011.05.002] [PMID: 21641578]
[91]
Mastrangelo F, Sberna MT, Vinci R, et al. Vascular endothelial growth factor behavior in different stages of tooth germ development. Minerva Stomatol 2016; 65(4): 223-30.
[PMID: 27374362]
[92]
Roberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix. Arch Oral Biol 2000; 45(11): 1013-6.
[http://dx.doi.org/10.1016/S0003-9969(00)00075-3] [PMID: 11000388]
[93]
Shirakawa M, Shiba H, Nakanishi K, et al. Transforming growth factor-beta-1 reduces alkaline phosphatase mRNA and activity and stimulates cell proliferation in cultures of human pulp cells. J Dent Res 1994; 73(9): 1509-14.
[http://dx.doi.org/10.1177/00220345940730090501] [PMID: 7929985]
[94]
Cui W, Liu Q, Yang L, et al. Sustained delivery of BMP-2-related peptide from the true bone ceramics/hollow mesoporous silica nanoparticles scaffold for bone tissue regeneration. ACS Biomater Sci Eng 2018; 4(1): 211-21.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00506] [PMID: 33418690]
[95]
Kang KJ, Ryu CJ, Jang YJ. Identification of dentinogenic cell-specific surface antigens in odontoblast-like cells derived from adult dental pulp. Stem Cell Res Ther 2019; 10(1): 128.
[http://dx.doi.org/10.1186/s13287-019-1232-y] [PMID: 31029165]
[96]
Kim S, Tsao H, Kang Y, et al. In vitro evaluation of an injectable chitosan gel for sustained local delivery of BMP-2 for osteoblastic differentiation. J Biomed Mater Res B Appl Biomater 2011; 99(2): 380-90.
[http://dx.doi.org/10.1002/jbm.b.31909] [PMID: 21905214]
[97]
Li DD, Pan JF, Ji QX, et al. Characterization and cytocompatibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA. J Mater Sci Mater Med 2016; 27(8): 134.
[http://dx.doi.org/10.1007/s10856-016-5743-0] [PMID: 27405491]
[98]
Ruel-Gariépy E, Chenite A, Chaput C, Guirguis S, Leroux J. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 2000; 203(1-2): 89-98.
[http://dx.doi.org/10.1016/S0378-5173(00)00428-2] [PMID: 10967431]
[99]
Kim JE, Lee EJ, Kim HE, Koh YH, Jang JH. The impact of immobilization of BMP-2 on PDO membrane for bone regeneration. J Biomed Mater Res A 2012; 100(6): 1488-93.
[http://dx.doi.org/10.1002/jbm.a.34089] [PMID: 22396132]