Application of Artificial Intelligence in Drug Discovery

Page: [2690 - 2703] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Due to the heap of data sets available for drug discovery, modern drug discovery has taken the shape of big data. Usage of Artificial intelligence (AI) can help to modify drug discovery based on big data to precised, knowledgeable data. The pharmaceutical companies have already geared their departments for this and started a race to search for new novel drugs. The AI helps to predict the molecular structure of the compound and its in-vivo vs. in-vitro characteristics without hampering life, thus saving time and economic loss. Clinical studies, electronic records, and images act as a helping hand for the development. The data mining and curation techniques help explore the data with a single click. AI in big data analysis has paved the red carpet for future rational drug development and optimization. This review's objective is to familiarise readers with various advances in the AI field concerning software, firms, and other tools working in easing out the labor of the drug discovery journey.

Keywords: Artificial intelligence, drug discovery, high-throughput screening, electronic records, molecular docking, machine learning, deep learning.

[1]
Atanassova I, Bertin M, Mayr P. Editorial: Mining scientific papers: NLP-enhanced bibliometrics. Front Res Metr Anal 2019; 4: 2.
[http://dx.doi.org/10.3389/frma.2019.00002] [PMID: 33870034]
[2]
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162(6): 1239-49.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[3]
Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[4]
Szymański P, Markowicz M, Mikiciuk-Olasik E. Adaptation of high-throughput screening in drug discovery-toxicological screening tests. Int J Mol Sci 2012; 13(1): 427-52.
[http://dx.doi.org/10.3390/ijms13010427] [PMID: 22312262]
[5]
Lionta E, Spyrou G, Vassilatis DK, Cournia Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr Top Med Chem 2014; 14(16): 1923-38.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[6]
Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci 2019; 20(18): 1-23.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[7]
3 ways big data and artificial intelligence revolutionize drug discovery | BioPharmaTrend. Available from: https://www.biopharmatrend.com/post/24-3-ways-big-data-and-machine-learning-revolutionize-drug-discovery/ (Accessed on September 30, 2021).
[8]
Why drug designers will be at a disadvantage without AI. Available from: https://www.global-engage.com/life-science/why-drug-designers-will-be-at-a-disadvantage-without-ai/ (Accessed on September 30, 2021).
[9]
Cloud pharmaceuticals CEO and CSO to speak at AI pharma innovation, July 26-27, 2017 in Boston - Cloud Pharmaceuticals. Available from: http://www.cloudpharmaceuticals.com/aipharma.html (Accessed on October 2, 2021).
[10]
Atomwise finds first evidence towards new ebola treatments – Atomwise. Available from: https://www.atomwise.com/2015/03/24/atomwise-finds-first-evidence-towards-new-ebola-treatments/ (Accessed on September 30, 2021).
[11]
Artificial intelligence helps find new drugs: Better, faster, cheaper BioPharmaTrend. Available from: https://www.biopharmatrend.com/post/20-artificial-intelligence-helps-find-new-drugs-better-faster-cheaper/ (Accessed on September 30, 2021).
[12]
AlphaFold: A solution to a 50-year-old grand challenge in biology DeepMind Available from: https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology (Accessed on September 30, 2021).
[13]
DeepChem. Available from: https://deepchem.io/ (Accessed on September 30, 2021).
[14]
Wójcikowski M, Zielenkiewicz P, Siedlecki P. Open Drug Discovery Toolkit (ODDT): A new open-source player in the drug discovery field. J Cheminform 2015; 7: 26.
[15]
Harris CR, Millman KJ, van der Walt SJ, et al. Array programming with NumPy. Nature 2020; 585(7825): 357-62.
[http://dx.doi.org/10.1038/s41586-020-2649-2] [PMID: 32939066]
[16]
Jones G, Willett P, Glen RC. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 1995; 245(1): 43-53.
[http://dx.doi.org/10.1016/S0022-2836(95)80037-9] [PMID: 7823319]
[17]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[PMID: 19499576]
[18]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[19]
Drug discovery with an AI-augmented platform-Cyclica. Available from: https://www.cyclicarx.com/ (Accessed on October 2, 2021).
[20]
Toronto’s AI-vendor Cyclica Inks Strategic Collaboration with Elite Chinese Academic Research Center targeting COVID-19. Available from: https://trialsitenews.com/torontos-ai-vendor-cyclica-inks-strategic-collaboration-with-elite-chinese-academic-research-center-targeting-covid-19/ (Accessed on October 2, 2021).
[21]
China’s Institute of Materia Medica Partners With Cyclica on Innovative Drug Repurposing for COVID-19 | Business Wire. Available from: https://www.businesswire.com/news/home/20200305005764/en/China’s-Institute-of-Materia-Medica-Partners-With-Cyclica-on-Innovative-Drug-Repurposing-for-COVID-19 (Accessed on October 2, 2021).
[22]
Using Cyclica’s technology to identify repurposed drug candidates for COVID-19 — Cyclica. Available from: https://www.cyclicarx.com/special-perspectives/using-cyclicas-technology-to-identify-repurposed-drug-candidates-for-covid-19 (Accessed on October 2, 2021).
[23]
Brereton AE, MacKinnon S, Safikhani Z, et al. Predicting drug properties with parameter-free machine learning: Pareto-optimal embedded modeling (POEM). Mach Learn Sci Technol 2020; 1: 025008.
[24]
Exscientia | AI Drug Discovery | Pharmatech. Available from: https://www.exscientia.ai/ (Accessed on October 2, 2021).
[25]
3-part Study to Assess Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of EXS21546. Available from: https://clinicaltrials.gov/ct2/show/NCT04727138 (Accessed on October 2, 2021).
[26]
Minnich AJ, McLoughlin K, Tse M, et al. AMPL: A data-driven modeling pipeline for drug discovery. J Chem Inf Model 2020; 60(4): 1955-68.
[http://dx.doi.org/10.1021/acs.jcim.9b01053] [PMID: 32243153]
[27]
Berthold MR, Cebron N, Dill F, et al. KNIME-the konstanz information miner: Version 2.0 and beyond. SIGKDD Explor 2009; 11(1): 26-31.
[http://dx.doi.org/10.1145/1656274.1656280]
[28]
Life sciences and material sciences | BIOVIA – Dassault systèmes. Available from: https://www.3ds.com/products-services/biovia/ (Accessed on October 3, 2021).
[29]
Schenone M, Dančík V, Wagner BK, Clemons PA. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 2013; 9(4): 232-40.
[http://dx.doi.org/10.1038/nchembio.1199] [PMID: 23508189]
[30]
Lee J, Bogyo M. Target deconvolution techniques in modern phenotypic profiling. Curr Opin Chem Biol 2013; 17(1): 118-26.
[http://dx.doi.org/10.1016/j.cbpa.2012.12.022] [PMID: 23337810]
[31]
Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 2019; 119(18): 10520-94.
[http://dx.doi.org/10.1021/acs.chemrev.8b00728] [PMID: 31294972]
[32]
Goh GB, Hodas NO, Siegel C, Vishnu A. SMILES2Vec: An interpretable general-purpose deep neural network for predicting chemical properties. arXiv preprin 2017.
[33]
Parveen A, Mustafa SH, Yadav P, Kumar A. Applications of machine learning in miRNA discovery and target prediction. Curr Genomics 2019; 20(8): 537-44.
[http://dx.doi.org/10.2174/1389202921666200106111813] [PMID: 32581642]
[34]
Maia EHB, Assis LC, de Oliveira TA, da Silva AM, Taranto AG. Structure-based virtual screening: From classical to artificial intelligence. Front Chem 2020; 8: 343.
[http://dx.doi.org/10.3389/fchem.2020.00343] [PMID: 32411671]
[35]
Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 2019; 18(6): 463-77.
[http://dx.doi.org/10.1038/s41573-019-0024-5] [PMID: 30976107]
[36]
Carpenter KA, Huang X. Machine learning-based virtual screening and its applications to Alzheimer’s drug Discovery: A review. Curr Pharm Des 2018; 24(28): 3347-58.
[http://dx.doi.org/10.2174/1381612824666180607124038] [PMID: 29879881]
[37]
RoboRXN: Automating chemical synthesis | IBM Research Blog. Available from: https://www.ibm.com/blogs/research/2020/08/roborxn-automating-chemical-synthesis/ (Accessed on October 3, 2021).
[38]
Schwaller P, Petraglia R, Zullo V, et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem Sci (Camb) 2020; 11(12): 3316-25.
[http://dx.doi.org/10.1039/C9SC05704H] [PMID: 34122839]
[39]
Vaucher AC, Zipoli F, Geluykens J, Nair VH, Schwaller P, Laino T. Automated extraction of chemical synthesis actions from experimental procedures. Nat Commun 2020; 11(1): 3601.
[http://dx.doi.org/10.1038/s41467-020-17266-6] [PMID: 32681088]
[40]
Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI 2018. Nature 2018; 555: 604-10.
[http://dx.doi.org/10.1038/nature25978]
[41]
Cotarelo A, García-Díaz V, Núñez-Valdez ER, González García C, Gómez A, Chun-Wei Lin J. Improving Monte Carlo tree search with artificial neural networks without heuristics. Appl Sci (Basel) 2021; 11: 2056.
[http://dx.doi.org/10.3390/app11052056]
[42]
Subramaniam S, Mehrotra M, Gupta D. Virtual high throughput screening (vHTS)-a perspective. Bioinformation 2008; 3(1): 14-7.
[http://dx.doi.org/10.6026/97320630003014] [PMID: 19052660]
[43]
Shaikh F, Zhao Y, Alvarez L, Iliopoulou M, Lohans C, Schofield CJ, et al. Structure-Based in Silico Screening Identifies a Potent Ebolavirus Inhibitor from a Traditional Chinese Medicine Library. J Med Chem 2019; 62: 21.
[44]
Opo FADM, Rahman MM, Ahammad F, Ahmed I, Bhuiyan MA, Asiri AM. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci Rep 2021; 11: 4049.
[45]
Yang CC, Domeniconi G, Zhang L. Design of AI-enhanced drug lead optimization workflow for HPC and Cloud.IEEE International Conference on Big Data. 2020; pp. 5861-3.
[46]
Zhang L, Domeniconi G, Yang CC, Kang S, Zhou R, Cong G. CASTELO: Clustered atom subtypes aided lead optimization—a combined machine learning and molecular modeling method. BMC Bioinformatics 2021; 22: 338.
[http://dx.doi.org/10.1186/s12859-021-04214-4] [PMID: 34157976]
[47]
Melvin RL, Xiao J, Godwin RC, Berenhaut KS, Salsbury FR Jr. Visualizing correlated motion with HDBSCAN clustering. Protein Sci 2018; 27(1): 62-75.
[http://dx.doi.org/10.1002/pro.3268] [PMID: 28799290]
[48]
Awad M, Khanna R. Support vector machines for classification. Berkeley, CA: Apress 2015; pp. 39-66.
[49]
Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput 2006; 18(7): 1527-54.
[http://dx.doi.org/10.1162/neco.2006.18.7.1527] [PMID: 16764513]
[50]
Jaderberg M, Simonyan K, Vedaldi A, Zisserman A. Reading text in the wild with convolutional neural networks. Int J Comput Vis 2016; 116: 1-20.
[http://dx.doi.org/10.1007/s11263-015-0823-z]
[51]
Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in drug discovery. Pharmacol Rev 2013; 66(1): 334-95.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[52]
Krogh A. What are artificial neural networks? Nat Biotechnol 2008; 26(2): 195-7.
[http://dx.doi.org/10.1038/nbt1386] [PMID: 18259176]
[53]
Larochelle H, Bengio Y, Louradour J, Ca LU. Exploring strategies for training deep neural networks pascal lamblin. J Mach Learn Res 2009; 1: 1-40.
[54]
Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network.International Conference on Engineering and Technology (ICET). 2017; pp. 1-6.
[55]
Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition: A convolutional neural-network approach. IEEE Trans Neural Netw 1997; 8(1): 98-113.
[http://dx.doi.org/10.1109/72.554195] [PMID: 18255614]
[56]
Raj JS, Ananthi JV. Recurrent neural networks and nonlinear prediction in support vector machines. J Soft Comput Paradigm 2019; 1: 33-40.
[http://dx.doi.org/10.36548/jscp.2019.1.004]
[57]
Yin C, Zhu Y, Fei J, He X. A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 2017; 5: 21954-61.
[http://dx.doi.org/10.1109/ACCESS.2017.2762418]
[58]
Joo S, Kim MS, Yang J, Park J. Generative model for proposing drug candidates satisfying anticancer properties using a conditional variational autoencoder. ACS Omega 2020; 5(30): 18642-50.
[http://dx.doi.org/10.1021/acsomega.0c01149] [PMID: 32775866]
[59]
Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A. druGAN: An advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm 2017; 14(9): 3098-104.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00346] [PMID: 28703000]
[60]
Polykovskiy D, Zhebrak A, Vetrov D, et al. Entangled conditional adversarial autoencoder for de novo drug discovery. Mol Pharm 2018; 15(10): 4398-405.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00839] [PMID: 30180591]
[61]
Using AI to accelerate drug discovery. Available from: https://www.nature.com/articles/d42473-020-00354-y (Accessed on October 5, 2021).
[62]
Standigm - Standigm. Available from: https://www.standigm.com/technology/ (Accessed on October 5, 2021).
[63]
Home - Cytoreason. Available from: https://www.cytoreason.com/ (Accessed on October 5, 2021).
[64]
Cytoreason and Pfizer to use machine learning model of the immune system for drug discovery. Available from: https://www.manufacturingchemist.com/news/article_page/Cytoreason_and_Pfizer_to_use_machine_learning_model_of_the_immune_system_for_drug_discovery/150509 (Accessed on October 5, 2021).
[65]
Normand R, Du W, Briller M, et al. Found in translation: A machine learning model for mouse-to-human inference. Nat Methods 2018; 15(12): 1067-73.
[http://dx.doi.org/10.1038/s41592-018-0214-9] [PMID: 30478323]
[66]
Maxeiner J, Sharma R, Amrhein C, et al. Genomics integrated systems transgenesis (GENISYST) for gain-of-function disease modelling in Göttingen Minipigs. J Pharmacol Toxicol Methods 2021; 108: 106956.
[http://dx.doi.org/10.1016/j.vascn.2021.106956] [PMID: 33609731]
[67]
Genimaps®-Genisyst® drug discovery platform Genome Biologics UG - [LSE] Life-Sciences-Europe.com - The European Life Sciences Web Portal. Available from: https://www.life-sciences-europe.com/product/genimaps-genisyst-drug-discovery-genome-biologics-technology-products-2001-30955.html (Accessed on October 5, 2021).
[68]
Our Solution - BullFrog AI Holdings Available from: https://www.bullfrogai.com/our-solution/ (Accessed on October 5, 2021).
[69]
Lavecchia A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov Today 2015; 20(3): 318-31.
[http://dx.doi.org/10.1016/j.drudis.2014.10.012] [PMID: 25448759]
[70]
Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 2015; 55(2): 263-74.
[http://dx.doi.org/10.1021/ci500747n] [PMID: 25635324]
[71]
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017; 60: 84-90.
[http://dx.doi.org/10.1145/3065386]
[72]
Öztürk H, Özgür A, Schwaller P, Laino T, Ozkirimli E. Exploring chemical space using natural language processing methodologies for drug discovery. Drug Discov Today 2020; 25(4): 689-705.
[http://dx.doi.org/10.1016/j.drudis.2020.01.020] [PMID: 32027969]
[73]
Jiménez-Luna J, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opin Drug Discov 2021; 16(9): 949-59.
[http://dx.doi.org/10.1080/17460441.2021.1909567] [PMID: 33779453]
[74]
Sydow D, Burggraaff L, Szengel A, et al. Advances and challenges in computational target prediction. J Chem Inf Model 2019; 59(5): 1728-42.
[http://dx.doi.org/10.1021/acs.jcim.8b00832] [PMID: 30817146]
[75]
Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: Toxicity prediction using deep learning. Front Environ Sci 2016; 3: 80.
[http://dx.doi.org/10.3389/fenvs.2015.00080]
[76]
Zang Q, Mansouri K, Williams AJ, et al. In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning. J Chem Inf Model 2017; 57(1): 36-49.
[http://dx.doi.org/10.1021/acs.jcim.6b00625] [PMID: 28006899]
[77]
Zhong F, Xing J, Li X, et al. Artificial intelligence in drug design. Sci China Life Sci 2018; 61(10): 1191-204.
[http://dx.doi.org/10.1007/s11427-018-9342-2] [PMID: 30054833]
[78]
Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 2013; 53(7): 1563-75.
[http://dx.doi.org/10.1021/ci400187y] [PMID: 23795551]
[79]
Kumar R, Sharma A, Siddiqui MH, Tiwari RK. Prediction of human intestinal absorption of compounds using artificial intelligence techniques. Curr Drug Discov Technol 2017; 14(4): 244-54.
[http://dx.doi.org/10.2174/1570163814666170404160911] [PMID: 28382857]
[80]
Rupp M, Körner R, Tetko IV. Estimation of acid dissociation constants using graph kernels. Mol Inform 2010; 29(10): 731-40.
[http://dx.doi.org/10.1002/minf.201000072] [PMID: 27464016]
[81]
Öztürk H, Özgür A, Ozkirimli E. DeepDTA: Deep drug-target binding affinity prediction. Bioinformatics 2018; 34(17): i821-9.
[http://dx.doi.org/10.1093/bioinformatics/bty593] [PMID: 30423097]
[82]
Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012; 486(7403): 361-7.
[http://dx.doi.org/10.1038/nature11159] [PMID: 22722194]
[83]
Karimi M, Wu D, Wang Z, Shen Y. DeepAffinity: Interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 2019; 35(18): 3329-38.
[http://dx.doi.org/10.1093/bioinformatics/btz111] [PMID: 30768156]
[84]
Feng Q, Dueva E, Cherkasov A, Ester M. A deep learning-based framework for drug-target interaction prediction. arXiv 2018; 1-29.
[85]
Fonger GC. Hazardous substances data bank (HSDB) as a source of environmental fate information on chemicals. Toxicology 1995; 103(2): 137-45.
[http://dx.doi.org/10.1016/0300-483X(95)03145-6] [PMID: 8545846]
[86]
Fonger GC, Hakkinen P, Jordan S, Publicker S. The National Library of Medicine’s (NLM) Hazardous Substances Data Bank (HSDB): Background, recent enhancements and future plans. Toxicology 2014; 325: 209-16.
[http://dx.doi.org/10.1016/j.tox.2014.09.003] [PMID: 25223694]
[87]
Hansch C. A quantitative approach to biochemical structure-activity relationship. Acc Chem Res 1969; 2(8): 232-9.
[http://dx.doi.org/10.1021/ar50020a002]
[88]
Bradbury SP. Predicting modes of toxic action from chemical structure: An overview. SAR QSAR Environ Res 1994; 2(1-2): 89-104.
[http://dx.doi.org/10.1080/10629369408028842] [PMID: 8790641]
[89]
Cronin MTD, Dearden JC. QSAR in toxicology. 1. prediction of aquatic toxicity. Mol Inform 1995; 14: 1-7.
[90]
Dunn WJ III. QSAR approaches to predicting toxicity. Toxicol Lett 1988; 43(1-3): 277-83.
[http://dx.doi.org/10.1016/0378-4274(88)90033-1] [PMID: 3176069]
[91]
Wang S, Liu W, Wu J, Cao L, Meng Q, Kennedy PJ. Training deep neural networks on imbalanced data sets Int Jt Conf Neural Netw. (IJCNN) 2016; pp. 4368-74.
[http://dx.doi.org/10.1109/IJCNN.2016.7727770]
[92]
Myint KZ, Wang L, Tong Q, Xie XQ. Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions. Mol Pharm 2012; 9(10): 2912-23.
[http://dx.doi.org/10.1021/mp300237z] [PMID: 22937990]
[93]
Myint KZ, Xie XQ. Ligand biological activity predictions using fingerprint-based artificial neural networks (FANN-QSAR). Methods Mol Biol 2015; 1260: 149-64.
[http://dx.doi.org/10.1007/978-1-4939-2239-0_9] [PMID: 25502380]
[94]
Dahl GE, Jaitly N, Salakhutdinov R. Multi-task neural networks for QSAR predictions. arXiv 2014; 1-21.
[95]
Gute BD, Basak SC. Predicting acute toxicity (LC50) of benzene derivatives using theoretical molecular descriptors: A hierarchical QSAR approach. SAR QSAR Environ Res 1997; 7(1-4): 117-31.
[http://dx.doi.org/10.1080/10629369708039127] [PMID: 9501507]
[96]
Basak SC, Grunwald GD, Gute BD, Balasubramanian K, Opitz D. Use of statistical and neural net approaches in predicting toxicity of chemicals. J Chem Inf Comput Sci 2000; 40(4): 885-90.
[http://dx.doi.org/10.1021/ci9901136] [PMID: 10955514]
[97]
Lu J, Peng J, Wang J, et al. Estimation of acute oral toxicity in rat using local lazy learning. J Cheminform 2014; 6: 26.
[http://dx.doi.org/10.1186/1758-2946-6-26] [PMID: 24959207]
[98]
Martin TM, Lilavois CR, Barron MG. Prediction of pesticide acute toxicity using two-dimensional chemical descriptors and target species classification. SAR QSAR Environ Res 2017; 28(6): 525-39.
[http://dx.doi.org/10.1080/1062936X.2017.1343204] [PMID: 28703021]
[99]
Xu Y, Pei J, Lai L. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J Chem Inf Model 2017; 57(11): 2672-85.
[http://dx.doi.org/10.1021/acs.jcim.7b00244] [PMID: 29019671]
[100]
CovDock | Schrödinger.. Available from: https://www.schrodinger.com/science-articles/covdock (Accessed on February 18, 2021).
[101]
QM-Polarized Ligand Docking | Schrödinger. Available from: https://www.schrodinger.com/science-articles/qm-polarized-ligand-docking (Accessed on February 18, 2021).
[102]
Gohlke H, Klebe G. DrugScore meets CoMFA: Adaptation of fields for molecular comparison (AFMoC) or how to tailor knowledge-based pair-potentials to a particular protein. J Med Chem 2002; 45(19): 4153-70.
[http://dx.doi.org/10.1021/jm020808p] [PMID: 12213058]
[103]
Gohlke H, Hendlich M, Klebe G. Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 2000; 295(2): 337-56.
[http://dx.doi.org/10.1006/jmbi.1999.3371] [PMID: 10623530]
[104]
Roche O, Kiyama R, Brooks CL III. Ligand-protein database: Linking protein-ligand complex structures to binding data. J Med Chem 2001; 44(22): 3592-8.
[http://dx.doi.org/10.1021/jm000467k] [PMID: 11606123]
[105]
Gohlke H, Hendlich M, Klebe G. Predicting binding modes, binding affinities and “hot spots” for protein-ligand complexes using a knowledge-based scoring function. Perspect Drug Discov Des 2000; 20: 115-44.
[http://dx.doi.org/10.1023/A:1008781006867]
[106]
Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997; 267(3): 727-48.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[107]
Weisel M, Proschak E, Schneider G. PocketPicker: Analysis of ligand binding-sites with shape descriptors. Chem Cent J 2007; 1(7): 7.
[http://dx.doi.org/10.1186/1752-153X-1-7] [PMID: 17880740]