[9]
Nath, D.; Banerjee, P.; Das, B. Green nanomaterial-how green they are as biotherapeutic tool. J. Nanomed. Biother Discov., 2014, 4, 1-11.
[14]
Rai, Sarita; Shukla, Saroj K. Nanomaterials: Green synthesis, characterization and applications. In: Applications of Advanced Green Mate-rials; Woodhead Publishing: UK, 2021, pp. 441-480.
[34]
Chaudhary, R.G.; Sonkusare, V.; Bhusari, G.; Mondal, A.; Shaik, D.; Juneja, H.D. Microwave-mediated synthesis of spinel CuAl2O4 nano-composites for enhanced electrochemical and catalytic performance. Res. Chem. Intermed., 2017, 44, 239-2060.
[63]
Hasan, R.; Ahommed, S.; Bacchu, S.; Ali, R.; Khan, Z.H. Nanofertilizers towards sustainable agriculture and environment. Environ. Technol. Innov., 2021, 23, 101658.
[68]
Yasmeen, F.; Razzaq, A.; Iqbal, M.N.; Jhanzab, H.M. Effect of silver, copper and iron nanoparticles on wheat germination. Int. J. Biosci., 2015, 86(6), 112-117.
[70]
Hafeez, A.; Razzaq, A.; Mahmood, T.; Jhanzab, H.M. Potential of copper nanoparticles to increase growth and yield of wheat. J. Nanosci. Adv. Technol., 2015, 1, 6-11.
[71]
Baskar, V.; Nayeem, S.; Kuppuraj, S.P.; Muthu, T.; Ramalingam, S. Assessment of the effects of metal oxide nanoparticles on the growth, physiology and metabolic responses in vitro grown eggplant (Solanum melongena). 3 Biotech., 2018, 8, 362.
[79]
Meruvu, H.; Vangalapati, M.; Chippada, S.C.; Bammidi, S.R. Synthesis and characterization of zinc oxide nanoparticles and its antimicro-bial activity against Bacillus subtilis and Escherichia coli. J. Rasayan Chem., 2011, 4(1), 217-222.
[88]
Agarwal, A.; Ashraf, I.; Rachna, K.; Singh, N.B. Sensing and removal of chromium metal ion from water using spectroscopic and adsorp-tion techniques. Smart Biomedical and Physiological Sensor Technology XVIII. International Society for Optics and Photonics, 2020, vol. 11757, pp. 44-47.
[89]
Guin, M.; Singh, N.B. Removal of Hydrophobic Pollutants from Water Using Adsorption and Degradation Method with Special Reference to Biosurfactants. In Green Sustainable Process for; Chemical and Environmental Engineering and Science, 2021, pp. 227-273.
[91]
Sonkusare, V.N.; Chaudhary, R.G.; Bhusari, G.; Rai, A.R.; Juneja, H.D. Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3microflowers/novel γ-Bi2O3 microspindles. Nano-Struct. Nano-Objects, 2018, 13, 121-131.
[95]
Potbhare, A.K.; Chaudhary, R.G. Aziz, Tarik, S.K.; Umekar, M.; Bhuyar, S.; Mondal, A. Phytochemically fabricated reduced graphene Oxide-ZnO NCs by Sesbania bispinosa for photocatalytic performances. Mater. Today:Procs, 2021, 36, 756-762.
[101]
Chaudhary, R.G.; Potbhare, A.K.; Chouke, P.B.; Rai, A.R.; Mishra, R.K.; Desimone, M.F.; Abdala, A.A. Graphene-based materials and their nanocomposites with metal oxides: Biosynthesis, electrochemical, photocatalytic and antimicrobial applications, magnetic oxides and composites-II. M. Res. Forum, 2020, 83, 79-116.
[109]
Jawaid, M.; Ahmad, A.; Lokhat, D., Eds.; Graphene-Based Nanotechnologies for Energy and Environmental Applications; Elsevier Science B. V: Amsterdam , 2019.
[113]
Bushra, R. Nanoadsorbents-based polymer nanocomposite for environmental remediation. New Polymer Nanocomposites for Environmen-tal Remediation; Elsevier: Amsterdam, 2018, pp. 243-260.
[115]
Shirazi, M.M.A.; Kargari, A.; Ramakrishna, S.; Doyle, J.; Rajendrian, M.; Ramesh, B.P. Electrospun membranes for desalination and wa-ter/wastewater treatment: A comprehensive review. J. Membr. Sci. Res., 2017, 3, 209-227.