In Transfusion-Dependent Thalassemia Children, Increased Iron Overload is Associated with Lower Serum Alpha-Klotho, Which is Strongly Associated with Lower Total and Ionized Calcium Concentrations

Page: [442 - 452] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Patients with transfusion-dependent thalassemia (TDT) show disorders in calcium metabolism. The α-Klotho protein is predominantly expressed in tissues that are involved in calcium homeostasis, and lowered levels are associated with bone disease. The aim of the study is to examine the associations between low α-Klotho status and calcium metabolism in relation to iron status in children with TDT.

Methods: Calcium, α-Klotho, parathyroid hormone (PTH), calcyphosin, vitamin D3, phosphorous, fibroblast growth factor receptor 2 (FGFR2), as well as iron and erythron biomarkers were measured in 60 children with TDT and 30 healthy control children.

Results: A meaningful part of TDT patients showed lowered α-Klotho levels, and those children also showed low serum total and ionized calcium concentrations. TDT patients showed increased PTH, FGFR2, and calcyphosin and lowered vitamin D3 as compared with healthy children. The α-Klotho levels were significantly correlated with total and ionized calcium (positively) and with iron overload and transfusions biomarkers (inversely). Partial Least Squares path analysis showed that 40.1% of the variance in serum total calcium could be explained by the regression on α-Klotho, vitamin D3 (both positively), and calcyphosin (inversely) and that the effects of the latter are mediated by iron overload and the number of blood transfusions.

Conclusion: In conclusion, the iron overload in TDT and its consequences may induce lowered levels of α-Klotho which in turn may lead to lower calcium thereby explaining at least in part the effects of TDT on bone metabolism including spontaneous pathological fractures, osteoporosis, osteopenia, and skeletal deformities.

Keywords: Calcium, α-Klotho, inflammation, oxidative stress, antioxidants, biomarkers.

[1]
Wahidiyat PA, Sastroasmoro S, Fucharoen S, Setianingsih I, Putriasih SA. Applicability of a clinical scoring criteria for disease severity of ß-thalassemia/hemoglobin E in Indonesia. Med J Indones 2018; 27(1): 26-32.
[http://dx.doi.org/10.13181/mji.v27i1.1779]
[2]
Viprakasit V, Ekwattanakit SJHOC. Clinical classification, screening and diagnosis for thalassemia. 2018; 32(2): 193-211.
[http://dx.doi.org/10.1016/j.hoc.2017.11.006]
[3]
Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis 2010; 5(1): 11.
[http://dx.doi.org/10.1186/1750-1172-5-11] [PMID: 20492708]
[4]
Cappellini MD. Current status in iron chelation in hemoglobinopathies. 2008; 8(7): 663-74.
[5]
Malik S, Syed S, Ahmed N. Complications in transfusion–dependent patients of ß-thalassemia major: A review. Pak J Med Sci 2009; 25(4): 678-82.
[6]
Hamed AA, Elguindy W, Elhenawy YI, Ibrahim RH. Early cardiac involvement and risk factors for the development of arrhythmia in patients with β-thalassemia major. J Pediatr Hematol Oncol 2016; 38(1): 5-11.
[http://dx.doi.org/10.1097/MPH.0000000000000467] [PMID: 26583617]
[7]
Daher R, Manceau H, Karim Z. Iron metabolism and the role of the iron-regulating hormone hepcidin in health and disease. Presse Med 2017; 46(12 Pt 2): e272-8.
[http://dx.doi.org/10.1016/j.lpm.2017.10.006] [PMID: 29129410]
[8]
Dhawan P, Kanojia RK, Chandra J, Kumar A, Anand R, Gupta S. Wrist joint skeletal changes in children with transfusion-dependent thalassemia. J Pediatr Orthop 2020; 40(6): e473-8.
[http://dx.doi.org/10.1097/BPO.0000000000001523] [PMID: 32501918]
[9]
Salama OS, Al-Tonbary YA, Shahin RA, Sharaf Eldeen OAJH. Unbalanced bone turnover in children with β- thalassemia. 2006; 11(3): 197-202.
[http://dx.doi.org/10.1080/10245330600702851]
[10]
Saboor M, Qudsia F, Qamar K, Moinuddin MJJHTD. Levels of calcium, corrected calcium, alkaline phosphatase and inorganic phosphorus in patients’ serum with β-thalassemia major on subcutaneous deferoxamine. 2014; 2(130): 2.
[11]
Merchant R, Udani A, Puri V, D’cruz V, Patkar D, Karkera AJTIJoP. Evaluation of osteopathy in thalassemia by bone mineral densitometry and biochemical indices. 2010; 77(9): 987-1.
[12]
Angelopoulos NG, Goula A, Rombopoulos G, et al. Hypoparathyroidism in transfusion-dependent patients with β-thalassemia. J Bone Miner Metab 2006; 24(2): 138-45.
[http://dx.doi.org/10.1007/s00774-005-0660-1] [PMID: 16502121]
[13]
Pirinççioğlu AG, Akpolat V, Köksal O, Haspolat K, Söker M. Bone mineral density in children with beta-thalassemia major in Diyarbakir. Bone 2011; 49(4): 819-23.
[http://dx.doi.org/10.1016/j.bone.2011.07.014] [PMID: 21798385]
[14]
Fung EB, Aguilar C, Micaily I, Haines D, Lal A. Treatment of vitamin D deficiency in transfusion-dependent thalassemia. Am J Hematol 2011; 86(10): 871-3.
[http://dx.doi.org/10.1002/ajh.22117] [PMID: 21818763]
[15]
Al-Hakeim HK, Ridha MAS, Muhammed ZH. Calcium status in severe iron overload Iraqi thalassemia major patients. Biochem Cell Arch 2018; 18: 22-32.
[16]
Aslan I, Canatan D, Balta N, et al. Bone mineral density in thalassemia major patients from Antalya. Int J Endocrinol 2012.
[http://dx.doi.org/10.1155/2012/573298]
[17]
Voskaridou E, Christoulas D, Plata E, et al. High circulating sclerostin is present in patients with thalassemia-associated osteoporosis and correlates with bone mineral density. Horm Metab Res 2012; 44(12): 909-13.
[http://dx.doi.org/10.1055/s-0032-1312618]
[18]
Angelopoulos NG, Goula A, Rombopoulos G, et al. Hypoparathyroidism in transfusion-dependent patients with beta-thalassemia. J Bone Miner Metab 2006; 24(2): 138-45.
[http://dx.doi.org/10.1007/s00774-005-0660-1] [PMID: 16502121]
[19]
Voskaridou E, Christoulas D, Xirakia C, et al. Serum Dickkopf-1 is increased and correlates with reduced bone mineral density in patients with thalassemia-induced osteoporosis. Reduction post-zoledronic acid administration. Haematologica 2009; 94(5): 725-8.
[20]
Abd El-Moneim ES, Zolaly MA, Al-Hawsawi ZM, Abdelmoneim AA, Abosdera MM. Age-related changes in biochemical bone profile in thalassemic children. Pediatr Neonatol 2018; 59(2): 189-97.
[http://dx.doi.org/10.1016/j.pedneo.2016.08.012] [PMID: 28967496]
[21]
Salah H, Atfy M, Fathy A, Atfy M, Mansor H, Saeed J. The clinical significance of OPG/sRANKL ratio in thalassemia patients suffering from osteopenia or osteoporosis in Egyptian patients. Immunol Invest 2010; 39(8): 820-32.
[http://dx.doi.org/10.3109/08820139.2010.498492] [PMID: 20718662]
[22]
Al-Hakeim HK, Alhillawi ZH. Effect of serum fibroblast growth factor receptor 2 and CAPS proteins on calcium status in β-thalassaemia major patients who are free from overt inflammation. Growth Factors 2018; 36(3-4): 178-85.
[http://dx.doi.org/10.1080/08977194.2018.1520707] [PMID: 30375242]
[23]
Clément S, Dumont JE, Schurmans S. Loss of calcyphosine gene expression in mouse and other rodents. Biochem Biophys Res Commun 1997; 232(2): 407-13.
[http://dx.doi.org/10.1006/bbrc.1997.6297] [PMID: 9125191]
[24]
Eswarakumar VP, Monsonego-Ornan E, Pines M, Antonopoulou I, Morriss-Kay GM, Lonai P. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 2002; 129(16): 3783-93.
[http://dx.doi.org/10.1242/dev.129.16.3783] [PMID: 12135917]
[25]
Katoh M. FGFR2 abnormalities underlie a spectrum of bone, skin, and cancer pathologies. J Invest Dermatol 2009; 129(8): 1861-7.
[http://dx.doi.org/10.1038/jid.2009.97] [PMID: 19387476]
[26]
Wilkie AO. Bad bones, absent smell, selfish testes: The pleiotropic consequences of human FGF receptor mutations. Cytokine Growth Factor Rev 2005; 16(2): 187-203.
[http://dx.doi.org/10.1016/j.cytogfr.2005.03.001] [PMID: 15863034]
[27]
Stefanopoulos D, Nasiri-Ansari N, Dontas I, et al. Fibroblast Growth Factor 23 (FGF23) and klotho protein in beta-thalassemia. Horm Metab Res 2020; 52(3): 194-201.
[http://dx.doi.org/10.1055/a-1104-5326] [PMID: 32215890]
[28]
Saghiv M. The klotho gene and soluble klotho in health and disease: From 1997-2018; A review. Ann cardiol. Vasc Med 2018; 2: 1007.
[29]
Lewin E, Olgaard K. Klotho, an important new factor for the activity of Ca2+ channels, connecting calcium homeostasis, ageing and uraemia. Nephrol Dial Transplant 2006; 21(7): 1770-2.
[http://dx.doi.org/10.1093/ndt/gfl178] [PMID: 16627600]
[30]
Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390(6655): 45-51.
[http://dx.doi.org/10.1038/36285] [PMID: 9363890]
[31]
Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444(7120): 770-4.
[http://dx.doi.org/10.1038/nature05315]
[32]
Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: Implications in chronic kidney disease. Exp Cell Res 2012; 318(9): 1040-8.
[http://dx.doi.org/10.1016/j.yexcr.2012.02.027] [PMID: 22421513]
[33]
Xu Y, Sun Z. Molecular basis of klotho: From gene to function in aging. Endocr Rev 2015; 36(2): 174-93.
[http://dx.doi.org/10.1210/er.2013-1079] [PMID: 25695404]
[34]
Kuro-o M. Klotho. Pflugers Arch 2010; 459(2): 333-43.
[http://dx.doi.org/10.1007/s00424-009-0722-7] [PMID: 19730882]
[35]
Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science 2005; 309(5742): 1829-33.
[http://dx.doi.org/10.1126/science.1112766] [PMID: 16123266]
[36]
Yamamoto M, Clark JD, Pastor JV, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 2005; 280(45): 38029-34.
[http://dx.doi.org/10.1074/jbc.M509039200] [PMID: 16186101]
[37]
Mateu-de Antonio J. New predictive equations for serum ionized calcium in hospitalized patients. Med Princ Pract 2016; 25(3): 219-26.
[http://dx.doi.org/10.1159/000443145] [PMID: 26642197]
[38]
Elsayed ME, Sharif MU, Stack AG. Chapter four - Transferrin saturation: A body iron biomarker. Adv Clin Chem 2016; 75: 71-97.
[39]
Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B 1995; 57(1): 289-300.
[http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x]
[40]
Ringle C, Da Silva D, Bido D. Structural equation modeling with the SmartPLS. Bido, D, da Silva, D, & Ringle, C(2014) Structural Equation Modeling with the Smartpls. Brazilian J Mark 2015; 13(2): 18.
[41]
Al-Hakeim HK, Najm AH, Al-Dujaili AH, Maes M. Major depression in children with transfusion-dependent thalassemia is strongly associated with the combined effects of blood transfusion rate, iron overload, and increased pro-inflammatory cytokines. Neurotox Res 2020; 38(1): 228-41.
[http://dx.doi.org/10.1007/s12640-020-00193-1] [PMID: 32335809]
[42]
Xu Y, Peng H, Ke B. α-klotho and anemia in patients with chronic kidney disease patients: A new perspective. Exp Ther Med 2017; 14(6): 5691-5.
[http://dx.doi.org/10.3892/etm.2017.5287] [PMID: 29250136]
[43]
Saito K, Ishizaka N, Mitani H, Ohno M, Nagai R. Iron chelation and a free radical scavenger suppress angiotensin II-induced downregulation of klotho, an anti-aging gene, in rat. FEBS Lett 2003; 551(1-3): 58-62.
[http://dx.doi.org/10.1016/S0014-5793(03)00894-9] [PMID: 12965205]
[44]
Al-Hakeim HK, Auda FM, Ali BM. Lack of correlation between non-labile iron parameters, total carbonyl and malondialdehyde in major thalassemia. J Clin Biochem Nutr 2014; 55(3): 203-6.
[http://dx.doi.org/10.3164/jcbn.14-24] [PMID: 25411527]
[45]
Su XM, Yang W. α-Klotho is an acute phase protein and altered by restraint stress in mice. Int J Clin Exp Pathol 2014; 7(9): 5922-6.
[PMID: 25337236]
[46]
Ravikumar P, Ye J, Zhang J, et al. α-Klotho protects against oxidative damage in pulmonary epithelia. Am J Physiol Lung Cell Mol Physiol 2014; 307(7): L566-75.
[http://dx.doi.org/10.1152/ajplung.00306.2013] [PMID: 25063799]
[47]
Sun S, Cheng B, Sun PG, Wu XH, Wu QQ, He P. RTEF-1 protects against oxidative damage induced by H2O2 in human umbilical vein endothelial cells through klotho activation. Exp Biol Med 2015; 240(12): 1606-13.
[http://dx.doi.org/10.1177/1535370215587914] [PMID: 26041389]
[48]
Wang Y, Kuro-o M, Sun Z. Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway. Aging Cell 2012; 11(3): 410-7.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00796.x] [PMID: 22260450]
[49]
Izbeki F, Asuzu DT, Lorincz A, et al. Loss of Kitlow progenitors, reduced stem cell factor and high oxidative stress underlie gastric dysfunction in progeric mice. J Physiol 2010; 588(Pt 16): 3101-17.
[http://dx.doi.org/10.1113/jphysiol.2010.191023] [PMID: 20581042]
[50]
Vadakke Madathil S, Coe LM, Casu C, Sitara D. Klotho deficiency disrupts hematopoietic stem cell development and erythropoiesis. Am J Pathol 2014; 184(3): 827-41.
[http://dx.doi.org/10.1016/j.ajpath.2013.11.016] [PMID: 24412515]
[51]
Kuro-o M. Klotho as a regulator of oxidative stress and senescence. Biol Chem 2008; 389(3): 233-41.
[http://dx.doi.org/10.1515/BC.2008.028] [PMID: 18177265]
[52]
Hosokawa K, Arai F, Yoshihara H, et al. Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochem Biophys Res Commun 2007; 363(3): 578-83.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.014] [PMID: 17897629]
[53]
Baldan A, Giusti A, Bosi C, et al. Klotho, a new marker for osteoporosis and muscle strength in β-thalassemia major. Blood Cells Mol Dis 2015; 55(4): 396-401.
[http://dx.doi.org/10.1016/j.bcmd.2015.08.004] [PMID: 26460265]
[54]
Nabeshima Y, Imura H. α-Klotho: A regulator that integrates calcium homeostasis. Am J Nephrol 2008; 28(3): 455-64.
[http://dx.doi.org/10.1159/000112824] [PMID: 18160815]
[55]
Nabeshima Y. Discovery of α-Klotho unveiled new insights into calcium and phosphate homeostasis. Proc Jpn Acad, Ser B, Phys Biol Sci 2009; 85(3): 125-41.
[http://dx.doi.org/10.2183/pjab.85.125] [PMID: 19282648]
[56]
Nabeshima Y. The discovery of alpha-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis. Cell Mol Life Sci 2008; 65(20): 3218-30.
[http://dx.doi.org/10.1007/s00018-008-8177-0] [PMID: 18726073]
[57]
Nijenhuis T. TRPV5 and TRPV6 in Ca. 2005; 2: 181-92.
[58]
Lu P, Boros S, Chang Q, Bindels RJ, Hoenderop JG. The β-glucuronidase klotho exclusively activates the epithelial Ca2+ channels TRPV5 and TRPV6. Nephrol Dial Transplant 2008; 23(11): 3397-402.
[http://dx.doi.org/10.1093/ndt/gfn291] [PMID: 18495742]
[59]
Drüeke TB. Klotho, FGF23, and FGF receptors in chronic kidney disease: A yin-yang situation? Kidney Int 2010; 78(11): 1057-60.
[http://dx.doi.org/10.1038/ki.2010.339] [PMID: 21076444]
[60]
Kempe DS, Ackermann TF, Fischer SS, et al. Accelerated suicidal erythrocyte death in Klotho-deficient mice. Pflugers Arch 2009; 458(3): 503-12.
[http://dx.doi.org/10.1007/s00424-009-0636-4] [PMID: 19184092]
[61]
Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 2011; 22(1): 124-36.
[http://dx.doi.org/10.1681/ASN.2009121311] [PMID: 21115613]
[62]
Lim K, Lu T-S, Molostvov G, et al. Vascular klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation 2012; 125(18): 2243-55.
[63]
Riancho JA, Valero C, Hernández JL, et al. Association of the F352V variant of the klotho gene with bone mineral density. 2007; 8(2): 121-7.
[http://dx.doi.org/10.1007/s10522-006-9039-5]
[64]
Mirhosseini NZ, Shahar S, Ghayour-Mobarhan M, et al. Bone-related complications of transfusion-dependent beta thalassemia among children and adolescents. J Bone Miner Metab 2013; 31(4): 468-76.
[http://dx.doi.org/10.1007/s00774-013-0433-1] [PMID: 23475127]
[65]
Sultan S, Irfan SM, Ahmed SI. Biochemical markers of bone turnover in patients with β-thalassemia major: A single center study from southern Pakistan. Adv Hematol 2016; 2016: 5437609.
[http://dx.doi.org/10.1155/2016/5437609] [PMID: 27006658]
[66]
Hu MC, Kuro-o M, Moe OW, Eds. Renal and extrarenal actions of klotho. Semin Nephrol 2013.
[67]
Hu MC, Kuro-o M, Moe OW. Secreted klotho and chronic kidney disease. Endocrine FGFs and Klothos 2012; 126-57.
[http://dx.doi.org/10.1007/978-1-4614-0887-1_9]
[68]
Hu MC, Kuro-o M, Moe OW. The emerging role of Klotho in clinical nephrology. Nephrol Dial Transplant 2012; 27(7): 2650-7.
[http://dx.doi.org/10.1093/ndt/gfs160] [PMID: 22802580]
[69]
Yamada S, Giachelli CM. Vascular calcification in CKD-MBD: Roles for phosphate, FGF23, and Klotho. Bone 2017; 100: 87-93.
[http://dx.doi.org/10.1016/j.bone.2016.11.012] [PMID: 27847254]
[70]
Salanova Villanueva L, Sánchez González C, Sánchez Tomero JA, Aguilera A, Ortega Junco E. Bone mineral disorder in chronic kidney disease: Klotho and FGF23; cardiovascular implications. Nefrologia 2016; 36(4): 368-75.
[http://dx.doi.org/10.1016/j.nefro.2016.01.011] [PMID: 27118192]
[71]
Kuro-O M. The FGF23 and Klotho system beyond mineral metabolism. Clin Exp Nephrol 2017; 21(1) (Suppl. 1): 64-9.
[http://dx.doi.org/10.1007/s10157-016-1357-6] [PMID: 27838783]
[72]
Takenaka T, Inoue T, Miyazaki T, Hayashi M, Suzuki H. Xeno‐klotho inhibits parathyroid hormone signaling. J Bone Miner Res 2016; 31(2): 455-62.
[http://dx.doi.org/10.1002/jbmr.2691] [PMID: 26287968]
[73]
Pirinççioğlu AG, Gökalp D, Söker M. arathyroid functions in thalassemia major patients. Ann Clin Endocrinol Metab 2017; 1: 015-9.
[74]
David V, Martin A, Isakova T, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 2016; 89(1): 135-46.
[http://dx.doi.org/10.1038/ki.2015.290] [PMID: 26535997]
[75]
Tharwat RJ, Balilah S, Habib HM, et al. Ferritin and vitamin D levels and its relation to bone diseases in thalassemic adults: A hospital-based retrospective cohort study. J Appl Hematol 2019; 10(1): 15.
[http://dx.doi.org/10.4103/joah.joah_56_18]
[76]
Forster RE, Jurutka PW, Hsieh JC, et al. Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem Biophys Res Commun 2011; 414(3): 557-62.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.117] [PMID: 21982773]
[77]
Lips P. Vitamin D physiology. Prog Biophys Mol Biol 2006; 92(1): 4-8.
[http://dx.doi.org/10.1016/j.pbiomolbio.2006.02.016] [PMID: 16563471]
[78]
Kuro-o M. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 2013; 9(11): 650-60.
[http://dx.doi.org/10.1038/nrneph.2013.111] [PMID: 23774819]
[79]
Alesutan I, Feger M, Pakladok T, et al. 25-Hydroxyvitamin D3 1-α-hydroxylase-dependent stimulation of renal klotho expression by spironolactone. Kidney Blood Press Res 2013; 37(4-5): 475-87.
[http://dx.doi.org/10.1159/000355728] [PMID: 24247665]
[80]
Bian A, Xing C, Hu MC. Alpha Klotho and phosphate homeostasis. J Endocrinol Invest 2014; 37(11): 1121-6.
[http://dx.doi.org/10.1007/s40618-014-0158-6] [PMID: 25194425]
[81]
Cheddani L, Leblanc T, Silve C, et al. Iron chelation resulting in renal phosphate wasting. Kidney Int Rep 2017; 3(1): 1-4.
[http://dx.doi.org/10.1016/j.ekir.2017.07.011] [PMID: 29340306]